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VARIOUS INEQUALITIES RELATED TO THE ADAMS
INEQUALITY ON WEIGHTED MORREY SPACES

TAKESHI IIDA

(Communicated by J. Soria)

Abstract. We consider various inequalities related to the Adams inequality for the fractional
integral operators on weighted Morrey spaces. In 2014, Izumi, Komori-Furuya and Sato proved
an inequality which is the type of the Adams inequality on weighted Morrey spaces. Firstly,
we investigate another proof of their result. Secondly, we investigate various inequalities related
to their result for higher order commutators generated by BMO -functions and the fractional
integral operator on weighted Morrey spaces. One of the main results in this papar recovers
the result due to Cruz-Uribe and Fiorenza in 2003. Thirdly, we extend the fractional integrals
to the multilinear fractional integrals. The result of the multilinear fractional integrals partially
recovers the Moen result.

1. Introduction

In this paper, we study the boundedness the fractional integral operator, higher
order commutators generated by BMO -functions (see Definition 4 below for the def-
inition of BMO) and the fractional integral operator, fractional integral operator with
homogeneous kernel and multilinear fractional integral operator on weighted Morrey
spaces. In this paper, the main results are Theorems 1, 3 and 4. Theorem 2 is investi-
gated by Izumi, Komori-Furuya and Sato [17] and plays a central role in this paper.

We list the definitions to state the one of main result. Let m € Z; . The m-fold
commutator [b,,]"™ is defined as the following:

DEFINITION 1. Given 0 < & <n and b € L (R"), define

(b(x) —b())"

no =y

b 1o)™ f(x) := / FO)dy,

as long as the integral makes sense. Write [b,1,]f := [b, 1]V f.

We recall the definition of weighted Lebesgue spaces. By a ‘weight’ we will mean
a non-negative function w that is positive measure a.e. on R”.

Mathematics subject classification (2010): 26A33, 42B25.
Keywords and phrases: Weights, weighted Morrey spaces, fractional integral operator, multilinear
fractional integral operator, homogeneous kernels, BMO spaces, commutator.
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DEFINITION 2. Let 0 < p < e and w be a weight function; w(x) > 0 and w €
Ll (R"). One says that f € LP(w), if the weighted Lebesgue norm is defined as the

following is finite:
Wl = ([ 10wt

Komori and Shirai introduced the weighted Morrey spaces (see [19]):

DEFINITION 3. Let 0 < p <eo and 0 <A < 1. Let u and v be weights. One says
that f € LP* (u,v), if the weighted Morrey norm which is defined as the following is
finite for f € LI (u):

1 ,
”fHLPl(u,v) = QSCng", (@/th(x)pu(x)dx) )

Q;cube

where v(Q) := / v(x)dx.

0

The following result is one of the most important theorems in this paper:

THEOREM |. Let 0 <ot <n, 0SA<1-% 1<p<Z(1-A), =54
and qu = % - ﬁ. IfweApg (R") and b € BMO(R"), then we have
H[b’la}(m)f L92 (w1 i1 ) < Cllblsmo Hf||L”")L(W”7W‘“)'

As far as we know, Theorem 1 is a new result. In Theorem 1, taking A = 0 and
m = 1, we obtain the following corollary which is due to Cruz-Uribe and Fiorenza
(see [5, Theorem 1.6]).

COROLLARY 1. Let O< o <n, 1 <p<Z and ;=
If weApy(R") and b € BMO(R"), then we have

116 La] f 1l g way < ClILllmo [1f 1] ooy -
We recall the definition of the BMO space.

1_¢
p n’

DEFINITION 4. Foran L} (R") -function b, define

Plio = sup f\b ob)|dx,
chhe

where the supremum is taken over all cubes O C R" and the integral average of a
measurable function f over Q is written as

) :][Qf(x)dx:: é/Qf(x)dx
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Define
BMO(R") := {b € Ljy.(R") : [|b]lgpo < =} -

REMARK 1.

1. To prove of Theorem 1, we can use the Calder6n-Zygmund decomposition.
2. To prove of Theorem 2, we can use the idea which is due to Hedberg [11].

3. The following inequality holds:

ol ™ 1) < [ 00 (M

no =y

As shall be verified in the proof of Theorem 1, we consider the operator

- [ b

R

f)dy

and hence it will turn out that the integral defining [b,1,]") f(x) converges for
ae.x eR".

4. When u = v = 1, then the weighted Morrey spaces is reduced to the ordinary
Morrey spaces:

||fHLM(R") = ||f||LM(1,1)'

5. If A =0, then the weighted Morrey spaces is reduced to the weighted Lebesgue
spaces:

Hf”u%f’(u,v) = ”f“L”(u)'

We recall the definitions of the fractional integral operator I, and the fractional
maximal operator My, .

DEFINITION 5. Given 0 < o < n, define

I f(x) ::/]R Ldy.

0 fx—ylr-e

Given 0 < o < n, define

Maf () := sup 1(0)" ][Q o
Q;cul;e

We list the results of the boundedness of the fractional integral operator on Morrey
spaces.

Spanne investigated the boundedness of the fractional integral operator on Morrey
spaces. Theorem A is in [25].
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THEOREM A. Let 0 <o <n, 0SA<1-% 1<p<i(l-A4), ;=54
and % = % then we have
HIafHLq# < CHfHLM .
Adams showed the following inequality (see [1]):
THEOREM B. Let 0 <o <n, 0<A<1-% 1<p<i(l-A)and =~

ﬁ. Then we have

Mofllgr <CIfllpn-

REMARK 2. Let

1 1 « 1 1 o u A
—_— = s —_— = - — ——F and — = .
g p n g p n(l-24) g1 p

Since g1 < g2, by Holder’s inequality, we have
1F | gan < [IF g9 -
Hence, Theorem B is a sharper result than Theorem A:

Moo larn < Mef | g < CUSfll o -

We list the results of the fractional integral operator on weighted Lebesgue spaces.
Firstly, we recall the definition of A, -weights:

DEFINITION 6. Let 1 < p < eo. One says that w € A,(R"), if the following con-

dition holds:
P p=1
[W]a, := sup (7[ w(x)dx) (7[ w(x)_l’dx) < oo, (2)
QCR", 9 (@]
Q;cube
where p’ := L= The condition (2) is called the A,-condition, and the weights which

—1
satisfy it are galled Ap-weights. The case of p = oo is defined by the following:

AR = ) A,R").

1<p<oo

REMARK 3. The property of the A,-weights is well known (for example, see [8,
10, 20]). This implies that generally speaking, we should check whether a weight u
satisfies an A, -condition or not.

Next, we recall the definition of A, ,-weights:
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DEFINITION 7. Let 1 < p <o and 0 < g < o. One says that w € A, ,(R"), if
the following condition holds:

Q;cube

REMARK 4. We can characterize the class A, ,(R") in terms of A,-weight: w €
Ap4(R") if and only if w? € A}, ¢ (R") if and only if wt e ALy (R™).
P T

Muckenhoupt and Wheeden [23] showed the following inequality:

THEOREM C. Let 0 < o0 <n, 1<p<§and$:

-2 Ifwe A, (R"), then
we have

1
p
eS| agay < C LNl iour) -

Next, we recall the fractional integral operator with homogeneous kernels Ig ¢ .
The definition of Ig 4 dates back to [7]:

DEFINITION 8. Given 0 < o < n,
Q(x—
Io.of(x) 1=/n %‘W

Ding and Lu [7] generalized Theorem C (see [20, Theorem 1]):

THEOREMD. Let O < ax<n, 1 <s <p<
Assume that Q(Ax) = Q(x) for & >0 and w* € A

1_1 s(qn—1
» 4 (R"), then we have

s

We list the results of the fractional integral operator on weighted Morrey spaces.
Komori and Shirai proved the following theorem (see [19, Theorem 3.6]):

THEOREME. Let 0<a<n, 0<A<1-2 1<p<Z(l-2), +=
and - = %. If weApq (R"), then we have

o f Wl v gt sy < C ISl o op oy -

In 2014, Izumi, Komori-Furuya and Sato proved the following theorem (see [17,
Theorem 2.1]):

THEOREM 2. Let 0 < <n, 0<A<1-2% 1<p<Z(l1-2), +=

n’
1

and % =5 ﬁ. IfweA,, (R"), then we have

HlocfHqu.k(qu wil) < CHf”UJJL(WmWﬂy
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REMARK 5. Theorem 2 is a sharper result than Theorem E. Indeed, Since q; <
q», by Holder’s inequality, we have

HF”L‘“‘“(W‘“,W‘“) < HF||qu~l(qu7wa)~

Hence, we have

”IafHqu#(wa wil) < ||Iaf||qu>l(Wq17wq1) < C”fHLnl(WPMﬂy

Therefore Theorem 2 recovers Theorems B, C and E.
Moreover, there is a close connection between Theorems 1, 2, 3 and 4. Therefore,
it is worth considering an another proof of Theorem 2.

Next, we consider the boundedness of the higher order commutators generated by
BMO-functions and the fractional integral operator (see [29, 30]). The study of com-
mutators with the fractional integral operator was initated by Chanillo [2] on Lebesgue
spaces.

Di Fazio and Ragusa [6] obtained the next theorem on Morrey spaces:

THEOREMF. Let 0 <o <n, 0 <A <1, 1 <p <eo, 1<q2<wandqiz:

% — ﬁ. If b € BMO(R"), then we have

116: o) 1l gy < C UM oy -
Conversely if n — « is an even integer and

11B: o) fll 2 2y < C NNl ot ey
then b € BMO(R").

Komori and Mizuhara [18] removed the restriction n — ¢ is an even integer.
Moreover, Komori and Shirai [19] proved the following (see [19, Theorem 3.7]):

THEOREM G. Let 0<a<n, 0<A <1-% 1<p<L(l-1), ;=
and(f—l:%.
IfweA,, (R") and b € BMO(R"), then we have

H [bylot]fHqusﬂ(wa 7qu ) < C ||f||LI’>k(wl’7wa) .
REMARK 6. By Remark 5, Theorem 1 is a sharper result than Theorem G.

REMARK 7. In[14], the author investigated the weighted inequalities for [b, I,,]")
which are not a directly relevant to Theorem 2. In this paper, we shall investigate the
weighted inequalities which is a directly relevant to Theorem 2.

Theorem 2 gives us crucial applications the following result:
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THEOREM 3. Let 0 < <n, 0<SA<1-%, 1 <s<oo, I<s' <p<L(1-2),

n’

KILI = %— 2, qu = 11—7— &. L and Q € L¥(S"'). Assume that, Q(ux) = Q(x) for

every 1> 0. If w* €Ap 4 (R"), then we have

HIQ.,a(f)Hqu)l(qu’qu) < C”Q”LS(S'H) HfHUM(Wawa) . (3)

REMARK 8.

1. In [13], the author investigated the weighted inequalities for Iq o which are not
a directly relevant to Theorem 2. In this paper, we shall investigate the weighted
inequalities which is a directly relevant to Theorem 2. As far as we know, Theo-
rem 3 is also a new result.

2. Taking A =0, Theorem 3 is reduced to Theorem D.

3. Since the operator Ig, ( is controlled by the fractional maximal operator M, on
weighted Morrey spaces, the proof of Theorem 3 is not difficult.

Next, we list the result of the multilinear fractional integral operator. We recall the
multilinear fractional integral operator and the multilinear fractional maximal operator.

DEFINITION 9. Given 0 < o0 < mn, define

To.m (f) (x) ::/nm ‘( S11) - fn(ym) a5

x_yl7"‘7x_ym)|mn_a ’

Given 0 < o < mn, define

03,
Q;cube

A (7) )= s 1000 TT f 1505
j=1

Moen [22] introduced the following class of weights:

DEFINITION 10. Let 1 < pq,...,py, <o and 0 < g < e0. For a multiple weight

W= (Wi,...,Wy), one says that w € Ay q(R"), if the following condition holds:
1 1
q M ) p’,
lag, = sup (0w T () 7hae) <
* 8.C.R£’ 0 =1 \Jo

Moen proved the following result which is a multilinear version of Theorem C:

THEOREM H. Let 0 < ax <mn, 1 < pp,...,pm < oo, 0<61<°°a”d$:ﬁ+
..._|_me—% > 0. Ifﬁ}eAﬁ’q(R”),thenwehave

lan ()

La((wy-wp

) S le:Il Hfj’|ij(ij) :
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Chen and Xue [4] and the author [12] completely characterized the A q -multiple
weights in terms of A, -weights:

PROPOSITION 1. Let 1 < piy...,pp < oo, 3= oo+ - and 0 < g <eo. A

pm
vector w of weights satisfies W € Ap (R") if and only if
oo, )4 n
(W1 Wm) EAH—q(m—%) (R )

: cA R") (j=1,2,...,m).
Vi 1+p}<1+m—lfi,)( ) U ™)

J

REMARK 9. In Proposition 1, if taking m = 1 we learn, Proposition 1 is reduced
to Remark 4.

On the other hand, in 2014, Chen, Wu and Xue [3] investigated the fundamen-
tal properties of multiple weights Az —and characterized the Az Ba -multiple weights in
terms of A, -weights, under the natural restricted condition p < q.

PROPOSITION 2. Let 1 < pi,...,pm < o0, 5 = oo+ + 2= and q with 3, <

p < q<oo. Then w Equ(R”) if and only if

(Wi wm)? € Apg(R")
EAmp9(R”) (j=1,....m)

REMARK 10. In the ordinary case, we may assume that p < ¢q. Hence, Proposi-
tion 2 is worth enough using practically. However, in Proposition 2, we can not remove
the condition p < g. If ¢ < p, then Proposition 2 fails even for n =1 and m =1 (linear
and 1-dimension case). Notice that in Proposition 1, the condition p < g is not exist.

In Proposition 2, when ¢ < p, the counterexample (see Section 5). Lastly, we
investigate a multilinear version of Theorem 2.

THEOREM 4. Let O <o <mn, 0<SA<I1, 1 <pp,....pm<e0oand 0<p,qi1,q2 <
- L, ... 1L 1 _1_ ¢« 1 _1_a _1_ m
T n T T W T b nandqz_p no 12 If(‘)m vp>€

Igm( "), then, we have

lan (7)

REMARK 11.

1

. 1 , by

<C (v)|P AN )

L2 (0 yat) Qsculgl ,Hl (vql(Q)A /Qm(y") o) dy") @
Q;cube

1. If m =1 in Theorem 4, Theorem 4 is reduced to Theorem 2.

2. If v=1 in Theorem 4, Theorem 4 recovers [15, Theorem 1.2].
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3. Theorem 4 partially recovers Theorem H.

?j
ey
4. By Theorems 1 and 2, the weights v/ and v "/ (j=1,...,m) in Theorem 4

satisfy the condition of the A, -weights for some 1 < p < eo.

The remainder of this paper is organized as follows. In Section 2, we list lemmas
in this paper. In Section 3, we prove the lemmas which are not known. In Section 4, we
prove the main results. In Section 5, we give the appendices.

Throughout this paper all notation is standard or will be defined as needed. Let
2(R") be the collection of all dyadic cubes on R". All cubes are assumed to have
their sides parallel to the coordinate axes. For a cube O C R”, we use [(Q) to denote
the side-length /(Q) and cQ to denote the cube with the same center as Q but with
side-length c/(Q) . Given a measurable set of E, |E| will denote the measure of E.

The integral average of a vector valued function f = (f1,---,fm) over Q is written

mo (f) ::j]j1 ij()’j)d}’j'

In this paper, we may assume that f > 0 without loss of generality. A symbol C
denotes a positive constant which may change from line to line.

2. Some Lemmas

Firstly, we use the reverse Holder inequality (see [8], [10] and [20]):

LEMMA 1. Let w € A,(R") for some 1 < p < eo. Then there exists constants
C >0 and € > 0 that depend only on the dimension n, on p, and on [w] A, such that
for every cube Q we have

(fQ w(x)1+£dx> o <C ]{2 Ww(x)dx.

We divide Lemmas to follow into two parts. We list Lemmas the 1-linear version.

2.1. 1-linear version

To prove Theorem 2, we use the following inequalities:

LEMMA2. 0<a<n, 0<SA<land 0<qg<oo. IfveEA(R") and f €
Lz (R"), then we have

HlocfHLq‘l(w) < CHMafHLM(v,v)'
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Lemma 2 implies that we may concentrate on proving the boundedness of M on
weighted Morrey spaces.
We define the following operator. Let V be weight. Given 0 < o < n, define

a 1

To prove Theorem 2, we use the following pointwise inequality:

LEMMA 3. Under the condition of Theorem 2, assume that for a small number
a>1and 0 :=q (% — %) . Then we have,

ok

Mo f(x) SR, , Myar e | =) ()7 )

REMARK 12.

1. In Lemma 3, we can choose a > 1 be small so as to be able to apply Lemma 1 to

follow: | 9
<7€2W(y)6(5)/dy> & <c (][Qw(y)—z”dy) v

2. Komori and Shirai [19] and Lerner [21] give the similar argument of Lemma 3
for the Hardy-Littlewood maximal function M.

Next, we recall the definition of the doubling condition. One says that V € A,, if
there exists constant C > 0 such that V(20Q) < CV(Q) for every cube Q. If V € A,
then V satisfies the reverse doubling condition (see [17, 19]): There exists D > 1 such
that V(2Q) > DV (Q) for every cube Q. To prove Theorem 2, we use the following
norm inequality ([27, Theorem 4.3]):

LEMMA 4. Let 0< o <n, 0SA<1-% 1 <p<Z(l-A)and =4~
o

n(1-A)"
If V € Ay, then we have

1
P

HMV,OCFHqul(Vy) < CHFHU’JL(VY)'
To prove Theorem 3, we use the following lemma:

LEMMA 5. Let 0<a<n, 0<A <1, () <s5<o0, 0<g<o, vEAL(R")
and Q € L*(S" ). Assume that Q(ux) = Q(x) for every > 0. If v € Ae.(R"), then
we have

1
HIQ,afHLq‘/l(v,v) < CHQHLS(SH—I) HMas' <|f|\ ) ’ LA (1)



VARIOUS INEQUALITIES RELATED TO THE ADAMS INEQUALITY 611
To prove Lemma 5, we use the following Lemma:

LEMMA 6. Under the condition of Lemma 5,

oo

Y it Mae () (07 <Cv(00) T

i—0z€2k3/nQy

w (177)

LA (vv) '

The following inequality is a well known result (see [9]):

LEMMA 7. Let 1 < p < oo. Suppose that v € Ay, then we have

1My f oy < CUS Il e o)

where

Mf (@)= swp s | 70
0>x,
chbe

We use the following property (see [16, 28]).

|-

LEMMA 8. For B> 1 and f >0, let y(B) :=m3g, (f*)? and A(B) > (2-18")5

For k=1,2,... we set

Du(p)=U{ 0 e 7(@0)imao ()7 > ripa(p)}.
Considering the maximal cubes, we have

Di(B) =JOx.(B)
j

Then we have

YBIAB) < msg, s (17)7 <2 y(B)a(B).
Let Eo(B) := Qo \D1(B) and E; j(B) := Ok ;j(B) \ Dk+1(B). Moreover we obtain
120/(B)\Dea(B)] < 510058

Moreover, suppose that W € A (R"), then there exists C > 1 such that

W(Qo(B)) < CW(Eo(B)) and W(Q;(B)) < CW(Ek;(B))-

Moreover, {Eo(B)} U{Ey ;j(B)} is a disjoint family of sets, which decomposes Q.

Qo = Eo(B)U (UEk.,j(ﬁ)> :
k.j
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REMARK 13. In Lemma 8, for the sake of simplicity, when B = 1, we omit the
index :

v:i=7(1), A:=A(1), Dy := Di(1), Ok j = Ok j(1), Eo := Eo(1) and Ey ; := Ej ;(1).
By the similar argument in the text [10, pp.124-126], we can prove the following

inequality:

LEMMA 9. If b € BMO(R") and W € Aw.(R"), then there exist C; >0 and C; >
0 such that for every Q C R" and for every A >0

Crd

W ({x € Q:[b(x) —mwg(b)] > 1}) < CiW(Q)e Temo,

where
1

w(Q)

Lemma 9 gives us the following inequality which we use to prove Theorem 1,

my.o(b) = /Q bW (x)dx.

LEMMA 10. Let 1 < p <eo. [f b € BMO(R") and W € A(R"), then we obtain
the following inequality:

P
sup( / Ib(x) — o >|Pw<x>dx) = ||bllgssoan - ©)
QCR",
Q;cube
1
P
sup (][ Ib(x) — my o >|de) <Clblgvon- D
QCR",
Q;cube

We list Lemmas the multilinear version.
2.2. Multilinear version
To prove Theorem 4, we use the following inequalities:

LEMMA 11. 0 < o <mn and 0 < g < e. Suppose that v € Aw(R"), then we

have
o ()

Lemma 11 implies that we may concentrate on proving the boundedness of .#
on weighted Morrey spaces. To prove Lemma 11, we use the following lemma:

<claun(

L4 (v,v) La2 (vy) ’

LEMMA 12. Under the condition of Lemma 11, for every cube Qg C R", suppose
that 19 = fixaeo 17 = SiXsgye and fi= (fi's oo fin), where T= (..., L) €
{0,00}™ and [ # 0. Then for x € Qy, we have

oo

Ia,,,(f,) (x))gcz inf ///a,m(f) ).

i—0z€2k3/nQy
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= (F],...,Fm),let

sup V(Q)" ( /\F )|V

My (F) (@)= sup
Q;cube

For a vector valued function F

\_/
S

We have several inequalities for the preceding operator
LEMMA 13. Let 0 < oo <mn, 0 KA <1, 1 <a<p;<e (j=12,...,m),
| 1 O‘adq —%—%L.Foraweight

- 2

O<P,Q17Q2<oo 11_7_I7L1++p_m’qll L n
ya
o Sppose that < " "vp%> EAqu( n)~ Then we have
2 » b\ 16 )
Ao (f> () < [(vm ’m’vpmﬂ,qﬁ %vql7§7a (F> (),
W]
0-L
. | J )
where G i= (. B2). 0= an (%_%> > 1, Fj(x) := % and F =
y(x)" P
(Fiy....Fy).

REMARK 14. In Lemma 13, we can choose a > 1 and 6 > 1 be small so as to be
able to apply Lemma 1 to the following situation. For every cube Q C R",

(fQ v(y,,»wf?e(ij)'dyj) ™ (f v 77 )_

LEMMA 14. Under the condition of Lemma 13, we have
1-£

/|F y, V(yj dyj)

M

<ﬁ> (x) < | sup (
Vi QcR"7/ 1

Q;cube

(7))

where
(7)) P = s 11 (5 s [ imonl Vo)

2~

Q\'Ul

03x, j=1
Q;cube”

LEMMA 15. Under the condition of Lemma 13, we have

H(ﬂV(ﬁ{: SC| sup H( /| J y, 467 dy/)

CR"7 .
L2t v.v) g scube” =l

SN—
—~
NG
iR
N—
Sk

S
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LEMMA 16. Under the condition of Lemma 13, we have

1

sup ( /’ J yJ V(y;j dYI)
QcR” j=1

Q;cube

— 17
- oo 11 (g [ lnonl vonran)”

Q; cube

We use the following property which is a multilinear version of Lemma 8 (see [16,
28]).

LEMMA 17. Let ¥ :=m3g, (f) and A’ > (2m)™ - 18™ . Let

D} =J{0 € 2(00).ms0 (F) > Y(a)}.

Considering the maximal cubes with respect to inclusion, we can write

J

where the cubes {Q;c /’} C R" are non-overlapping. By the maximality of Q) j» we see
that

7 (A <myg () <2y (A )
Moreover, suppose that W € Aw(R"), then we have
W(Qo) <CW(Ey) and W(Qy ;) < CW(Ey ), 9)

where Ejy:= Qo \ D} and E} ;= Q) ;\Dj;.
disjoint family of sets, which decomposes Qp:

On the other hand, {Ey} U{E] ,} is a

Qo = E\U (UE,’w) . (10)

k,j

3. Proofs of Lemmas

We omit the proofs of Lemmas 1, 2,4, 7, 8,9 and 17. That is, We prove Lemmas 3,
5,6,10,11, 12,13, 14, 15 and 16.

Lemma 11 gives us the proof of Lemma 2. Lemma 1, 4, 7, 8 and 17 are known
results. The proof of Lemma 9 is obtained by the similar argument in the text [10, pp.
124-126],
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Proof of Lemma 3. Since f(x) = f(x)w(x)®w(x)~9, by Holder’s inequality for
B>1, we have

Maf () = sup 10)" f |70)id
0>x,
Q;cube

< sup 10" (f (rowe)?) " av )" (f wor V)

0>x,
Q;cube

Note that for every cube Q C R",

10" (72 (rome)?)* dy)Z

<o @ S0 (i [ (romor?) )"

. a o °] .
Since — — — = —, we obtain

p n q

If x € Q, then we have

e (FOW:)®)* 1 ’ (fw?) a
(wq @ wa(Q)/Q w(y)a w)* dy) ngql.%( wal )(x).

This implies that

M () < (fQ wiata ) g (][Q W) ay) O by (ULVZ)%) ()",

Applying Lemma 1 to 6 (Ia—’)/ > p’, we learn

(][Q w(y)0(%) dy) W <c (][Q w(y)f”dy)

By we Ay, (R"), we have

(]éw(x>qldx) ! (fQ W(y)"(5>'dy> @ < cwlg,, . O

o
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Proof of Lemma 5. For every cube Qg C R", we have
|IQ af ’IQ och ’+ |IQ afoo )’

where fo 1= fX30, and fw := [X(39,c. We evaluate |Ig o fw(x)|. We use a routine
estimate (see [28]):

}Ig,afm(x)}g/ IQ(x—y)Ifa(y)dyg/ IQ(x—y)LJ‘Ofy)dy
(o x—yI” PN Y U

s | Qu—II0)

S0 J241000) <h—yi<2k Q) =y

STt Ll N R [/
k=0 Pe—y[<2KF11(Qo)

By Holder’s inequality, we have

k=0 (Qo)

.Y/d 7
- 2k+ll Qo
=¥ (24 Q- &) 1" tdld
3040 ( L. )P 5)
"d ' )
) </|x—y<2k+11(Qo> oy y)

By the homogeneity of €2, we obtain

o.afe()] < i(zkl(QO))ain </| <2k |Q(X—Y)|Sd>’>

)] <l 1, 3 241100 " (2 100) (/ f<y>s'dy> |
k*O be—y|<2K11(Qy)

o -
<ClQl, s ‘2"*3 m ‘” (f s q )
1] s(s I)ZE) VnQo 2k+3ﬁQ0f(y) y
<ClQlpe S, it Mae()0)7
X LS (S"’l) k:02e2k+3 \/EQO os .

By Lemma 6, we have

I ! N
Q@MéﬂWﬂ@W@ﬂ><CQMWQWMfW

LA (vy) ’
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Next, we evaluate Io ¢ fo(x). By Holder’s inequality, we have

loafo@)| <CIQp@-y, Y 1Q) mso(f)¥ xolx).
0<72(0o)

We apply Lemma 8 to f =5 and W =v.
Let

Z0(Qo3s') = {Q € 2(Q); (ﬁQf(y)sldy> "< Y(ﬁ)A(ﬁ)}

and

Dk j(Q03s') = {Q € 2(00);Q C Oxj(s),
k s ‘L/ ! INk+1
<<]£Qf(y) dy) <HDA) }

2(Q0) = Zo(Qoss") U (U@k,j(QO;S/)> :

k,j

Then we have

Case 1. 0 < g < 1. Since

sq
Ho.afo®)* < ClIQ g Y UQ)Mmap(f*)Y xo(x),
QEQ(QO)

we obtain

(/) aasotomisias)

<CHQan Sn 1) Z Z(Q)aquQ(fS)
0€2(Qo)

=ClQlf, g 1)< Yoo+ Y )I(Q)aqmgQ(f')§v(Q)

A
s

v(Q)

0€%0(Q0’)  k.j O€Zy j(Qoss")
= ClQll; g1 (1(5/) +2Hk,j(5/)> -
k.j
We evaluate /1 ;(s'). By the definition of the Z ;(Qo;s'),

(') < (A > | veoas
€D, j(Qos")

A
s/

AG)(On i (5') *mag, (s ()7 v (Qus(s)-
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Since v (O ;(s')) < Cv (Ey (s')). we have

!

I j(s") < CA(S )1 (Qr (1) “Imagy () (F*) Y v(Ei,(5))

NEA

oAy [ ey molr) s

=

<) [ Ma(F) 0P,

Epj(s')

A similar argument gives us the following:

1)< AW [ Mo ()0
Ep(s")
Therefore we have

1) + S0 () < CA(S)? / M (f°) ()
k,j Qo

J

©

This implies that

(sigye . aholratoas) "<l (o /. OMaS/<fS’><x>?v<x>dx>‘l’

Case 2. 1 < q < o. By the duality, we have

1

( /Q ey fo () v (x) dx) :

—sup? [ Iloafulo)lgta)dy g stistes that ]
Qo Lq’(

v

!

)

Let g >0, supp(g) C Qo and

HgHLq, (vf%) = (/Qog(x)q’v(x)—%/dxy =1.

Then, we obtain

/Q loafo®)s@Wdx<C Y, 10) mo(f*)? 2(Q)
o 0

€2(Qo)

N

C( DD )l(Q)“mag(f‘,)sl’g(Q)

0€%0(Qoss’)  k.Jj Q€Z j(Qo3s)

=C (I(s/) + ZIIkJ(s/)) .
k.j
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We evaluate II; j(s") . By the definition of the % ;(Qo;s’), we have

I (s sHA(s)<H! x)dx
W< T () [ 5@

SAEQu () msg oy (F)T Y 5(0).
0<%y j(Qo3s")

Since U 0 C O ;(s),

0€ D j(Qo3s')

I j(s') < CA(S/)Z(Qk,j(S/))amagkj(s')(fsl)*‘ g (O j(s")
1
TR

/

= CA(s)(Qx(5) *m3g, () ()

Okj(s) - v(Qr,j(s"))-

©

Since v(Qy j(s')) < Cv(Ex (")), we have

-
V(O j(s))

J

I j(s") < CA(S)(Qx j(5') " mag, (o) (F)s

/ g(X)dx- v(E ;(5)))
O (s)

=AW [ 1O g (7)) (ﬁ . »(g)g(x)dx) )y

<ca@) [ a7 (§) Opiar

A similar argument gives us the following:
/ 1
1) <CAW) [ Mog(£)0)7 M, (2) o).
Ep(s')
Hence, we have
1

16) 4 0y (5) < CAW) [ Mag ()00, (£) 00
k.j Qo

By Holder’s inequality, we obtain the following inequality:

0

1)+ S () < caw) | Ma.«<fs’><y>?v<y>dy)%( [ (&) 01 stas)
5] 0

By Lemma 7, we obtain

</Q () 0ol ) e </Q (%)q/v(x)d)) q,
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Therefore we obtain

(s) +§j11k,j(s’) </QOM‘“ (e )dx> g

This implies that

I

1

< (Qo)* ’Qaf I dx) <C< (Qo)* ~/Qon i ()1’ ()dx>q'

Therefore we get the desired inequality. [

-

Proof of Lemma 6. We evaluate  inf  Mggy( f‘Y/)(z)

. By the definition of
2€2k3/nQy
v(273/nQy) , we have

! 1
inf M, (f)(z)¥Y
o Mer (7))

(- i N AV g k+3 at
a (V(Z"H\/EQO))L /2k+3ﬁQ0 zezkglf/zQOMw (F)(@) v )dx> <2 \/—Q())

A-l
9
7

o >dx) o(24 o) "

1
< (FM N /2 g Mas P

V<va@QQAT

!

1
< HMa.\" (f)s

Lt (V7V)

Since v € Aw(R"), there exists D > 1 such that v(2Qg) > Dv(Qp). Therefore we have

A )
v<2k+3\/ﬁQ0> < (F) v(QO)kql-

This implies that

oo

-

inf Moy (F)(2) T Mg (7)Y 0

f=02€25H3/nQy

La* (vv) '

Proof of Lemma 10. For every cube Q, we have

][|b (b \de—‘Q|/ AP {x e Q: [b(x) — mw ()| > A} dA

_ 1 H{x € Q:|b(x) —mwo(b)| > A}
_pA A 0] an
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If W € A.(R"), then there exists 1 < r < co such that W € A.(R"). Therefore we
invoke the property (9.2.1) in text [10, pp.293]. We have for every A C O

1
@ <C (W(A> ) " )
[J w(Q)
This implies that

/wlpfl [{x € Q: |b(x) —mwo(b)| > M‘d?t
0 0|

(W€ Q: b(x) —my o) > A} "
<cf v ( W) ) a.

By Lemma 9, we have

1 -
/ )Lp1<W({xEQ:|b(x)—mW7Q(b)>l}))rdkgcl/ APy TG dA
0 0

w(Q)
<C[bllgyo -
This implies that

1

(7@1’<X>—mwg<b>|ﬂdx)”<cbBMo. 0

Proof of Lemma 11. For x € Qp, we have

Toom (f) (x)‘ < |Ia,m (ﬁ)) (x)‘ + ﬂz, ‘Ia,m (ﬁ) (x)|,
740,
{000}

where f7(v;) = fi(v)a30, ) f7007) = Fi0)X00c (i) s fo= (... f5) and
fi= ( fl s-., fIm) . We prove the following inequality. We have

</Qo Loem (fo) (x))qv(x)dx); <C (/QO Mom <f0> (x)qv(x)dx) !

We use the following in [26]:

lam () 0| <C % 10)*msg (F) xo(x):

0€2(Qo)

Let
74(00) == { @ € 7(00) : mg (F) <y}
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and

7;(Q0) == {Q € 2(00),0 € 0} ;Y (W) < msg (F) <YV}
Then we have

2(Q0) = Zj(Qo) U (U-@k, (Qo) )

Case 1. 0 <g< 1. Since 0 < g <1, we have

tan (fo) ' <€ 3, 10000 (F)" o)

0€2(Qo)

Integrating over the cube Qg , we obtain

|, Jran () @
<cr 3 u@mo(f)'( / e

0€2(Qo)

v(x)dx

)q

=C’1< IR )Z(Q)“‘fmsg(f>q</g v(x)dx)=lo+21k7j.

0€%)(Q0)  k.J Q€Z; ;(Qo) k.j

We evaluate [y ;.

I j < Z 1(Q)%m3g <f)q (/Qv(x)dx)

Qe-@)i.j(QO)
N
SANQy ) Mmsg (f ) v(Qr))-
By v (Q;@j> < Cv (E,’CJ) , we have

I j < CA' Mam (fb) (x)%v(x)dx.
Ey

A similar argument gives us the following:
Ih < CA// Mam <f0> (x)v(x)dx.
Ey

We sum up /o and I ;. The result is:

I+ Zlk.l < C/ Mam <f0> (x)?v(x)dx.

k.j
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Case 2. 1 < q < o. By the duality, we have

(

L () 0] viny) %

=sup /
Qo

Let g >0, supp(g) C Qo and ||g|| ( q/>:1.Weevaluate/
L‘Il v q

p

Iom <fo> (x)) lg(x)|dx : g satifies that||g]|| B
d (v

-

o (o) (x)‘g(x)dx.

Qo

|, Jren () o] sty < c 3 10 mo(7) | st

<cl ¥ 43X 3 uermo(F) /Q ¢(x)dx

0€2)(Q)  k.J QeZ; ;(Qo)

=1lo+ Y 1l .
k.j

We evaluate 11} ;.

1
v (Q;w'

1 <AT(QL) g, (F) /Q Cgdx | v(Qhy).  AD
)

N———

By v (Q§<7j> < Cv <E,£j) , we have

ey <A [t (7)) 0)-38,(2) 0) vy (12)

v

A similar argument gives us the following:
o <A | M () )M () 0)-v0)ay (13)
0
We sum up Iy and 11} ;. By (12) and (13), the result is:
Hot Xl <A /Q Man (f3) )M, () 0)-vO)ay.
J 0

By Holder’s inequality for ¢ > 1, we have

1

Mo+ ;H;{J <A (/QO Mo (fb) (y)qV(y)dy> " (/Q My <§> (y)qlv(y)dy> i '

0
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By Lemma 7, we have

(o ()dyf\C</Qo<%>qlv<”dy>%—cgq (-9

Hence, we have

Q\Q

o+ Y <A”( | o (%) (y>qv(y)dy>"

k,j

The Case 1 and the Case 2 imply that the following inequality holds for 0 < g < co:

tam (o)

Next, we prove for f;é 6,

o (1))

By Lemma 12, we have

<l ()

LA (v,v) LA (v,v) '

<l an ()

LA (v,v) L4 (v,v) '

oo

o () (x))SCE inf M () (2)

i—0z€2k3/nQy

On the other hand, for every Q' C R” the following holds:

ey T R
A—1

< | e (F)|| o, ¥(@)

L9 (v,v)

Therefore we have

Zv2"+3\fQ )7

lam () )] < €| am (7)

LA (v,v)
On the other hand, by the reverse doubling condition of v, there exists D > 1 such that
v(243vn0o) = Dy (242v/nQy) > -+ > D (Vo) = DFv(0).

Therefore we have

o (1) )] <€ e ()], -v(00) T

LA (v,v)

This implies that the following holds for 0 < g < ee:

Lo <fl ) H L9 (vy) S CH‘///""’” (f )

LoA (vy)
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Therefore we get the desired result. [J

Proof of Lemma 12. Fix x € Q. Because f;é 0, there exists 1 < Jj < m such that
€ (3Q0)€. Therefore |x —y;| >1(Qp). Hence |(x —y1,...,x—ym)| > 1(Qp). This
implies that

T (1) ()] < /|< 001 L)

31t [21(00) [ V1o X = ym

5 001l
far 2"l(Qo)<\(x Vi) [<2411(Qg) [(X = Y1 X =y ) [

< Z zkl Y=o H |f, (¥j) |dy1

Jj=1 [x— YJ|<2k+ll(

Let xo be a center point of Qp. By the triangle 1nequahty, we have

o — ;| < |xo — x|+ [x —y;j| < Val(Qo) +25711(Qy)
< 2N/nl(Qo) + 2 V/nl(Qo) = 2°72v/nl (Qo).

Since B(xo,25%\/nl(Qo)) C O (x0,253/nl(Qp)) = 23/nQy, we obtain the follow-
ing:

{31 b=l <210(00) } € 2 V.
This implies that

=

fi(yi)|dy;
,;;)Zkl QO mn o /l_Il ey [ <2510y } J\Vi | J

k43 i - '
ces ol (L in)

oo

) Clcg(‘)zdki*glf/ﬁQo Mo <f> @ O

Proof of Lemma 13. Note that

A (7) () = supt @) TT £, 1500l
j=170

O>x

dL Lg -2
=supl(Q)* [ 1 i)y 7 v(y;) 7i dy;.
03« j=170

By Holder’s inequality for I;—’ >1,

Mom (f)( ) < supl(Q (][ O () a’yj>)i

05x
.)/ .

X (JQV(yj)"’-)fe(“j) dyj> (

sl
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Calculating the right-hand side, we have

i@ I1 (f ekt dy,)"-(fgv(y,)""?

a

= supv?! (Q) " (vfh / fio)lev(y) 9dyj> P

0>x
1
q1 5w m 2o(liY 7Y
X(v (Q))p i fv(y,-)”fe(“>dyj (%)
|Q‘ j=1 [0}
Since a_“ = g, we have
p n  q

- (fg v(x)’“dx) o

N/
Applying Lemma 1 to Lo (—) A p’;, we have
pj a pj

0

2 o(Pi) Py _r T
<][Qv(yj)"f6<“)dyj> <) gC(/Qv(yj) ”fp-’dyj) i (j=1,2,...

Hence

Since P +- 4 P _ 1, we decompose
P1 Pm

e(g)/dy;) (

(][Q"(x)qldx)% _ (i) <v(x)ﬁ...v(x>,%>’“ dx)%_

This implies that

Sl

m N ;0/' )id
<][ ’“dx) (/ yj) i ’dy) RS Kvﬂ,...
0] j=1

Therefore we have

Aan () 0 <C[(F )]s, (f"—

8|3 |~

)
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By the definition of F;, we get the desired inequality. [J

Proof of Lemma 14. We follow the idea of in [28, Lemma 2.6] and [11].

=R

M5 (F‘ ) (x) = inf max sup sup V(0)
Voo £>0 an 0>x,
V(Q)<e,Q;cube V(Q)>e,Q;scube

( /\F i)l y,)dy,)i

= 1nf max {I, 11} .
e>0

For € > 0, we evaluate I.. We have

a2 1% a - P a
I < sup S"H /\ ()@ V(yy)dy; <endy|Fa)(x)F.
03x, j
V(Q)<e,Q;cube

Next, we evaluate /1. By Holder’s inequality for a > 1, we have

1
a_ 1,4 Pj
11 < ZUP V()7 ( /\F )l y/)dyj>
SX,

V(Q)>¢€,0;cube

L
o 1,
Len T I) sup H( /‘F yj pj yj)dyj> .
03x, j=1
Q;cube’

We choose € > 0 such that the following equality holds:

1
a P a o_ 12 Pi
en My (FZ)(x)ﬁzsﬂ »*p sup H( /\F ;)] yj)dyj> .

03x, j=1
Q;cube’
This implies that
1\ 1
sup [ ( / ()P yj)dyj)
QGR; =1
e — Q;cube




628

T. IIDA
Then we have

[~
=R

>

, we get the desired inequality.
2

_r
1 o

- m 1 ’L
vEa (F)e < e 4 ﬂ(@/Ql )|V dyj>

Q;cube

P a %
x (///V (F> <x>ﬁ> O
Proof of Lemma 15. Writting out the norm in fully, we have

(a0, g o () e

cube
For every cube Qg C R”", let Fj(y;) =
Fr(y) (J=1,2,...,

iR

Fi(y)) %300 (y;) +Fi(v)Xa0pc (v)) = FY () +
m), WhereF = Fjx30, and F;> = Fj)39,)c - Then we have

///V<F*’3)()% ///V<( 0)@ 7...,(F0)P%>(x)

p

il

m

b (R () ) i
140,

1€{0,00}m

(/Q//V ((FP)?,...,(FO)”;"

By change ‘sup’ and ‘I]’, we obtain

We evaluate

() () ) o< T (5

Therefore we have
P pm
(/ Ay ((Fp) E ()
Qo

< ( /Q 0 Jﬁle ((F;’ﬁ) <x>"if’”v<x>dx) .
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1 1 1
By Holder’s inequality for — = — 4 --- 4+ —, we have
p

1 Pm

( onlm'IIMv ((F}’)%)( ):7”V(x)dx> <ij ( /Q My ((F;))%> (x)“V(x)dx) "

By Lemma 7, we obtain

Hl( |, wo (D)7 ) wrvias) g <cjli (/ NG P 7)) a

Taking supremum for every cube, we have
m ) %
I1 (/ |Fj(yj)p’V(yj)dyj)
j=1 \J30Qp

A 5 _1 (v )|Pi v )
Voo | o ] (g Ly sa)

Since V € Ay, we have V(3Qy) < CV(Qp). Therefore we have

s [ (0% Y iy

v(Qo
p
m 1 —/
<C —— [ |Fj iV(y;)d
g@ﬂ(wgvfg' PV i)y )]

Next, for Z# 0, we evaluate

i ()7 () ¥ Y0

Since [ # 0, there exists i € {1,2,...,m} such that y; € (300)€. If x € Qp, yi €
(300)¢,x € Q and y; € Q, then we have Qp C 3Q. This implies that

p

iR

)4

jfv((Ff')%,...,(F#)P%)(x)%p
< C sup H( / Fy) (yj)dyj),f.p.

Q0CO, j=1
Q;cube’

By Holder’s inequality for a > 1, we have

(@/QF(M)” (y,)dy,)vij“’< (@/QF(W) /V(yj)dyj)’_j Gl
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P
a p

il

This implies that
P

e (R o (E) )0
< C sup ﬁ( /I i)l yj)dy,)_ V(.

QOCQ7J 1

Q;cube

Since V(Q)*~! < V(Qp)*~! for Qy C O, we obtain

My ((Flll)%l e <F,fqm>p7m> (x) 57

<CV(QO)171 sup H( /‘F yj yj)dyj>
QOCQJ 1

Q;cube

Therefore we have

pm

V(;)l /Qo Ay ((Fll'ﬁ (Fri) T) (x) PPV (x)dx

m . %
<CV(00)* sup [] (/ Fj(yj)p’V(yj)dyj> :
00CQ, j=1 o

Q;cube

Hence we get the desired inequality. [l

p

0.2
vj
Proof of Lemma 16. Note that Fj(y;) = M

For every cube Q C R", we have

e~p£/_ pj
/\Fj(yj)lp-"V(yj)dyj=/ M v(y;) @ dy;
0 0

=
(yz')l"f
/|f/ YI ep q1a+q1dy
0 o
Since — = a4 —, we have
qi p n
0 a 1 1 «o
Op—qua+qi=pq1| ——=+=)=pq|-——|=p
qq P P p n

Hence we have

/|fj )| v(y;)Braetagy, —/ || v(yi)Pdy;.
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Therefore we get the following equality:

i 1 Pj
ngl@ ,1_[1 (W/Q’Fj(yjﬂv(yj')dyj)

Q;cube
1

m

= sup H( 7 /’f, O v; pdy/) - U
QCR” il V l
QO;cube’

4. Proofs of Theorems

Firstly, we prove Theorem 1.

Proof of Theorem 1. For every dyadic cube Qp € Z(R"), for x € Qp, we have

[16,10] ) £ ()
b(x) = b "

S — e )ldy
R x—l
[b(x) =)™ |b(x) — b(y)|™
S R,,W| FO)lxsey (v dH/ |x y|n o [FO) 230y )y

o) bt [b(x) — ()"
¥)ldy +/ |n W 1)y

T e e

o m
We evaluate M |foo(¥)|dy. From the definition of f.., we have
Rt XY
[b(x) =)™ [b(x) = b(y)["
e eW)ldy = o O)ldy.
Re  x—yprm® -0)l (300)° |x —y|r—@ 7o)l

If x € Qp and y € (3Q0)¢, then we have |x —y| > 1(Qy). This implies that
[b(x) —b()|™ |b(x) —b(y)|"
W)y < I ()ldy.
/(3Q0)f [ox — y[r o Wy >10) =Y O

=

Since {y: [x—y| > 1(Qo)} = | {y L 241(Q) < Jx—y] < 2’<+11(Q0)}, we obtain
k=0

|b(x)—b(y)|" - / b(x)—b(y)|"

e fO)ldy = POV £(y)|dy.
/XY|>1(Q0) x—y[r = 70l kgf) 2H1(Q0)< iyl <2+11(Qg) =YY el
If 2%1(Qy) < |x —y|, then we have

1 1
< -
=y (2k1(Q0))"
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This implies that

i/ |b(x) —b(y)|"
15024100 <y <2k t1(0y) XYM
- | /
<) — |b(x) —b)["|f(v)|dy
kzo(Z"l(Qo)) * Jemyl<2kt11(0y)
1
=C ———Xo(x) / 1b(x) —b)["f(v)|dy-
sz) QGJZ‘R" () [x—y[<1(Q)
1(0)=2511(Qo)

|f(v)ldy

If x € Q and |x—y| <1(Q), then y € 3Q0. Therefore we have

S OY el / Ib(x) — )£ () dy
[x—y|<1(Q)

k=0 Qe (RM), oy
1(Q)=2*11(0y)

1
S gl / 1b(x) — )" £ ()\d.
QQ(R"
EQDQo

By (a+b)" < C(d" +Db™), we obtain

S el [ D)~ mno,(b) + men g, (4) ~ bSOy

Qe (RY),
0209

1 m
¢ ko) b =m0, 0" [ (7l
QE@Z(R,,)/(Q) 0@ [b( " [,
0200

1
| X ek Iman,0,(6) = b(3) " ()| dy
o<1, 0 - / o

= C(Lo(x) + Ia()).

We evaluate L.(x). Recall that I.(x) is given by:

1 m

I.(x) = s b i o(b a)

¥ Qe%Rn>,l<Q>n #xel) |b o(0)] (/3Q|f(y) y)
0200
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By Holder’s inequality for p > 1, we have

1

1 m 4
lo(x) = x) |b(x) —mya o(b Pyw(v)Pd
=% pgaredhe)—manol) ([, lronmiray)
0200

(fyova)-

By taking weighted Morrey norm, we have

I.x,(x) < Hf”uz‘)t(wp’wa) 2 Z(XQQ)(:C)O( }b(x) —qul’Q(b)|mw‘11 (3Q)%
Q€Z(R"),

0200

(fyrorea)

This implies that

(Wrn(lw /Q 0 Im(x)%w(x)qldx) "

1 o P
Wlrramy 3, 60 ([ ) 7ay)
oeomm), 10" n 30
0200

SIS
]~

1
a2

X ( o |b(x)—qul’Q(b)’quw(x)qldx>

Next, we check that the following inequality holds:

1
( 0 lb(x>—qul,g<b>|’“”w<x>‘“dX) P <R bl W (). (14)
0

If Q€ Z(R") and Q 2 Qy, then there exists k= 1,2,..., such that O =: Qx 2 Q1 2
O 2 Qo, where Q,...,0r € Z(R") and |Q;| =2"|Qj_1|. By the triangle inequal-
ity, we have

|b(x) — byar o ()|
= |b(x) — My ,Qo(b) +qu1,Qo (b) — Mya1 0, (b) + myar 0, (b) -
+myar g, (b) —mya o, (D)
S }b(x) — My,0, (b)} + }qul 00(b) =m0, (b)} +ot |qu1 01 () = myan o, (b)} :
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Therefore we have for j =1,2,... k

1
Myar 2j-1Q; (b) — My 0, (b)| = m
J

/ (b(x) —myar o, (b))w(x)" dx
0

j—1

1
S W) /Q

J

< m /Q ’b(x) —myai g; (b)‘w(x)‘“dx.

Since wi €A, 4, (R"), we have w?! (2Q) < Cw? (Q). This implies that
p/

b(x) — myar g, (b) ‘ ()T dx

mya; ’jS1 (b) _qul’Q/( wa / ’b — M9 0; (b)‘ w(x)ql dx.
By the inequality (6) in Lemma 10,
T / 6(0) ~ myas g, (5) | wix) 1 < C bl gy

Therefore we obtain
|b(x) —mya o(b) }m < (}b(x) —myai g, (b)| +Ck HbHBMO)m
We obtain the following inequality:
|b(x) = mya o(b)]" < C (|6(x) = myar 0, (0)|" + K" [[b]gp0) -

Hence we have

( o, [P =m0 () W(x)‘“dX) =

1

<C( (=m0, B+ 7 bln0) i)

By the triangle inequality, we have

1

</Qo (|B(x) = myar g, (B)[" + K" ||br§Mo)q2W(x)qldx> ’
) ( " e O W(x)qld") " (/Q (6" 15]i0)® W(X)qldx> ’

1
:< |b(X)—qul,Qo(b)|mq2W(X)q'dx) Kb o W (Q0) 2
Qo
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By the inequality (6) in Lemma 10, we have

1
. ) 1
( 0 |b(x) = mya1 0, (b)) qu(X)qldx) < Cl[bllgpo W (Qo)
0

Therefore we obtain the inequality (14).
We return to the estimate I.(x). By the inequality (14), we have

<W“(IW /QO L WZW(x)‘hdx) %

<C ”b”gMo ||fHLﬁ>l(WP7wq1)

(1+47) Y, Mww@%(/gg o) 7ay)”

1 ocomn, LA
0-0,209

1-A
— C[18llnt0 111102 ) 7 (Q0)

Mx

k

=3 30|11 " q1 ’
2 (14&™) 2 wil(3Q) © l‘f |QQ||W <]£Qw(x)‘“dx) (jégw(y)p dy
S

Since w € Ap 4, (R"), we have

1-2
< C[W}Ap.ql HngMO H-]CHLI’)L Wf”wa)wa (QO) a2

) 2 2 %wm(g@ B (LR

=100 R, n
0=0:200
Since % = % — 2, we have

I Azt
<Capg, 18180 1l o2 up iy W1 (Q0) 2 X, X w1 (3Q) 2 (14K").

Since wi €A, gy (R"), there exists D > 1 such that
P/

wi (3Q) = Dw? (Q) = Dw (2710g) > DM w1 (Qy).

~|
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Hence, we have
At

Wi (30) 0 < (Dk“wa(Qo)) “

Therefore we have

k=10e2(R"), kil QeI(R")
0=0;20 0=0,200
P
_qu(QO) 2 2 D(k+l) 7 (1_|_km)
k=1 0c (R,
0=0,200
L& (k1) A "
= wi(Qg) 2 ZD 2 (1+k™)
k=1

(k+1) .
Since the series 2 p*h ‘@ (1 +£&™) is convergent, we have
k=1

w(Qo) A"_ 2 (i3t (1+km)<CWq'(Qo)

Therefore we have

1
1 a
92 q1 . m .
(wa(QO)x /Q Oloo(x) w(x) dx) S CWa,g, 101870 - 112 (oo -

Next, we evaluate IL.(x). By Holder’s inequality for a small number 6; > 1,

1

1 mo of

I.(x) < 2 v Xo(x) (7[ }qulQ(b | ld)

ocirtem, Q)" 3
0200

x (]fgmy)ﬂdy) " gl

Since |[m,n o(b) — b(y)| < [myn o(b) — mya 30(b)| + [mya 30(b) — b(y)

(f et
g<]£Q}r%(’)(b)_'"W"'sQ<b>| ldY) (][ [y 3o (b <y>}'nefdy)#

= ’qul ,Q(b) - qu1,3Q(b) |m + (]ég |qu1 ,3Q(b) - b()’)’mei dy) o

, we have

1
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1

m o
- mGl 1
= 'w—‘ll(Q) + (]ﬁ }qul 3Q(b | d ) .
Since wi €A, 4, (R"), we have w?! (3Q) < Cw?! (Q). Therefore we obtain
p/

G )= mangl®)|wisyay)
< (g L 00 o0 )y )

By the inequalities (6) and (7) in Lemma 10,

/Q (b(y) - qul,3Q(b)) w(y)?dy

1
4 o] m
(f, Imn o) =200 a5 ) < Clolf.

This implies the following estimate:

L

1) <Clblo- 3 Q|ffxg<x>(f f(y)leldy>el-
) 30

QP (R"),
020

By Hoélder’s inequality for 0£ > 1, we have
1
1
a r
IL(x) <C|bllgyo - 2, 101" 20() (ﬁgf(y)IPW(y)pdy)
)

Q€7 (R"),
050

(fyror )’

By Lemma 1 for 6; (

1

(&)

!
) > p’, we have

2=

1
P

I1.(x) <CHngMO-QEQZ(‘Rn%‘Q|%XQ(X) (ﬁgf(y)lpvv(y)”dy)%(]; )~ ”dy)

050
1

o 1 1 P

< C|blgmo " / Pyw(v)Pd )

12ll5mo QEQ@DZ%%"LQ XQ(X)BQ‘% (wq1(3Q))L 3Q‘f(y)| w(y)Pdy
0

x (]égvv(y)"”dy) Wi (30)%

~|
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Taking the weighted Morrey norm, we have

o(x) < CIbl[gmo * 1l o2 (ur s

<Y 10 el — (ﬁgw@)—l”dy)

1
0e7(R"), 130|»

€
! A
P

Wi (30)7 .

]

Since w € Ap 4, (R"), we have
11(x) < Oy, 158500 11l e
o 1 q _% q A
<3 ol (f, woinay) " wn o)t
‘Q|p 30

QeI (R"),
0509

This implies that

b
m 2
19 < OVl Wl Iy 3, ([ wtymay)
Qe (R"), \/3Q
0209

Next, we examine that the series is convergent. Since wil € A L4 (R™), there
P

exists D > 1 such that
At

(k+1)2=L 7
1(x) < C[W]Ap‘ql ”ngMO HfHLﬁl WP wil) ZD 72 </Q W()’)qldy>
o

A-1

> A-l
w(y)‘“dy) 2 ZD(HU o

k=0

< ol 16080 1oy [

Qo

< Cllay 10010 - 1l i 9 (Q0)
This implies that
1
(o [, 1w ax) ™ < by, 1000 1
wL ( 0 a1 LA (wP wit)

Qo)
[b(x) —b(y)["

no =yl

/ LORLIPYNIPS

fo(y)|dy. By telescoping m,a o(b), we

Next, we evaluate /

have

‘x_y‘n o
= [ BRI ey
30, =yl
<c f () — 5" £ )| dy - 20(x)

QEQ Qo
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<C< ][ |b(x) — myar o(B)™ [ f(y )dy'%Q(X)>
0e9( Qo

( ][ g 0(B) — B £ )dy-xQ(x)>
0co( Qo

= C(lo(x) +1o(x))-
We consider I(x). Firstly, it is obvious that the following holds:
b= 3 10" b) ~mm o®)[" (£, 70y 2ol
0€7(Qo) 30

We apply Lemma 8.
Let

F0(Q0) = {Q & (Qv): ]fg £ 0)ldy < yA}

and
D4 ;(00) = {Q € D(00):0 C Oy Ak < ]fg FO)ldy < yA**! }

Then we have
P2(Qo) = Zo(Qo) U (U%, Qo )
k,j
By the duality, we have

1

(/Qolo(x)%w(x)fhdx> - 5P /QOIO( X)|g(x)|dx.

/

_a
Let g € L% (w qz‘“) satisfies ¢ > 0, supp (g) C Qp and ng ©

1% (0y)

|, o= N @ (£, 1r01ar) [ 96 - 00" et

:(Qe@%gofgge%%)l “(f 1rolay)

X ( Q|b(x)—qu17Q(b)} g(x)dx)
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We evaluate Ay ;. By the definition of Z ;(Qo).

< 3 o |b<x>_qul7g<b>;mg<x>dx>

07 j(Qo)

— AI(QL)" (ﬁg <>|dy> >N ( | 66— of B)["slw)ax).

By Hélder’s inequality for a small number 6, > 1, we obtain

Apj <AL(QOx ;) <]£Q »|f(Y)dY>

X Qe@%@w ( /Q 1b(x) — ma1 ()" w(x)‘“dx) 4 ( /Q w<x>3§‘“g<x>%dx> "

Since w(x)_iqlg(x)ez _ ( g((xl

w(x)q

Ay j <AL )" (]fQ ‘|f(y)dy>

x 2 wi(Q (wa /}b My g )|m9ﬁw(x)‘11dx> ’

0<% j(Qo)

(it () )™

By the inequality (6) in Lemma 10, we have

0,
) w(x)9", we have

Apj S Allbllgmo (k. j)” <][ f(y)ldy>

Ok,j
1

! ! 8(*) ezwx Ldx "
xQe@%(QO)Wq Q) (w‘ll(Q)/Q(w(x)‘h) (x)7d ) :

If y € O, then we have

s () wtamas < (5"

This gives us the following estimate:

Ay A BlBo1(€1)" (fQ | f(y)ldy>

B e (G o)
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Therefore we obtain the following by the definition of Z ;(Qo):

Ay < Allblo (21 )° (ﬁg _f(y)ldy> ( /Q My ((%)92) (y)éw(ymy) |

Since w7t (Qk ;)W (O ;)" =1, we have

Arj <A|bllgpo(Qkj)” (][ f(Y)|dy> wi (O ;)

Ok,j

. (@ /Q o ((%)"2) <y>05w<y>‘“dy> .

By w9 (Qx,;) < Cwi'(Ey,;), we obtain

At j < CA[bl[gwo W (Ex j)1(Qx. 1) (7[ |f()’)d)’>

Ok, j

. (@ /Q o ((%)"2) <y>05w<y>qldy> .

Therefore we have

Apj < CA”ngLMo/E »l(Qkh/)a (]{Q _f(Y)|d)’>

) (m /Q'kﬁj Mo <<%>62> (y)éw(y)fﬂdy) w(x) T dx.

If x € Oy ;, then we have

101))° (ﬁg _f(y)ldy> < Maf ()

and

iy o () (i ()4

This implies that
m g \o 1
Ay <CA Hb”BMO/ Mo f(x)Mya | My (W) ()% ) (x)w(x)? dx.
Erj
By a similar argument, we obtain

Ao < CABIGo [ Mo ()M (4 ((5)") %) comtarna
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We sum up Ag and Ay ;:
m g \o 1
Aot ks < CAlBIEvo | Mot Mo (Moo (5)) O ) oty
k,j Qo

By Hélder’s inequality for g, > 1, we have
1

)
Ag —l—ZAkJ' < CA|b|Emo (/Q Maf(x)qzw(x)qldx>
k.j 0

x </Qonql (qul ((%)ﬂ (ﬁ) (x)q%w(x)mdx>" .

By Lemma 7, we obtain

-

1

([ o ()oY
<C (/nqu. ((%)92) (x)%w(x)‘ﬂdx>

By Lemma 7 again, we obtain

(@ yteref {2t

That is,

SN

6 1 , 7 _a
(/ M, (qul ((i) 2) (.)62) (x)flzw(x)flldx> 2 gCHgW ol , =c.
0o wal L%2(Qo)
Therefore we have
{ 1
@
(W/QOIO(X)IDW(X)MX) < CA|bllgpo M 1l ar 2 ar ) -
By Theorem 2, we obtain
1
1 9 qarq ” < b|I™m
W QOIO(X) w(x)?dx < Cllblfgmo Hf“LM(meql)-
Lastly, we evaluate IIy(x). By the duality, we have
1
©
(/ Ho(x)’“w(x)qldx>
Qo
a1
=su IIo(x) - h(x)dx : h satisfies that th_E / :1}.
p{/Qo olx)-h(x) L%(0y)
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Let 7 >0, supp (k) C Qp and th o & =1.

%2(00)
/QOHO(x)h(x)a’x—CQU QO/ <][ Imyar o(b)—b()|" | f(y dy) Xo(x) - h(x)dx

By Holder’s inequality for 63 > 1, we obtain

[ o ” d .y
Qeg}Qw = <]£Q|m o) =bM[" 111 y)/Q (x)dx

: Qe@z@wl(g)a <7£Q man o8) = b()["™ dy) % ( ﬁQ f(y)|93dy> % /Q h(x)dx.

By (7) in Lemma 10, we have

/QO (e <Clbllave Y, Q)" (ﬁg If(y)93dy) 4 /Q hx)dx.

0€2(Qo)
We apply Lemma 8 to § = 03 and W = w. Let

1

P0(Q0;6) = {Q € 2(Qo); (]égf(yﬂ%dy) N

Dr.j(Qo;03) = {Q € 2(00:63); O C Q;(63),7(63)A(63)*

< (iQ f(y>|"3dy) % < y<93>A<63>"“}-

P0(Q0:03) = Zo(Q0; 63) U (U%,Qo,%))

k.j

< Y(93)A(93)}

and

Then, we have

/QUo(X)h(X)dx=Cb§M0( )INEEDIEDY )

0€20(00,63)  k.j O Z j(00,63)

0)° (]fQ If(y)93dy) % /Q h(x)dx

=C||blzmo <30(93) +2Bk7,-(93)> :

k,j
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We evaluate By ;(603). By the definition of Z ;(Qo,63), we have

Bij(63) < 7(63)A(63) " Y / h(x)dx
0€ % ;(00:63) 7 @

If(y)93dy> Y /Q hx)dx

0€%,;(Q0363)

< A(B3)I(Qu(05))° (i

0,;(63)

= ABI(011(6:))" (ﬁg " If(Y)93dy> 3

1
’ (Wj(%)) /Qk,,-(es) h<x>dx> W)
By w?(Qrj(63)) < Cw'(Ey ;(63)), we have

By j(85) < CA(65)1(0Qx,j(65))” (ﬁ |f(y)93dy> ’

0r,;(63)

1 1 ‘
: (m/;k.j(%)h(wdx) v (Ek7j(93))

o . o 63 %
_CA(Gs)(/Ew(%)l(Qk,,(Gz)) (]égk,ng'f(y) dy)

1
8 (wa(Qk,j(93)) /Qk,j(egh(x)dx) Wby dy)

<ca@) [ Mu (1r1%) 0% Mo () Oy

Ey j(63)
A similar argument gives us the following inequality:
L h
Bo(on) < CA(@r) [ Mao, (171%) 005 Mo (57 ) w0
Eo(63) w
This implies that

30(93)4'%3&;'(93) < CA(93)/QOMae3 (\f\e3> (y)% M) <i) (V)w(y)?dy.

w41

By Holder’s inequality for g» > 1, we obtain

Qo

Do)+ 3, 81(09) < Ca03) (| M, (1717) ) F )
5]
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By Lemma 7, we have

By(65) +kZBk,j(93) < CA(65) (/Q M, (|f|93> (y)ggw(y)‘“dy) "

1

(L (285 woma)

By supp (h) C Qo, we obtain

</ " <w}z(y§)% )qlz W()’)qldy>

Hence we have

,\,\|._

-t

1500

% 1
7 6

Bo(63)+ 38109 < Ca63) (| M, (117) 0wy

This implies that the following estimate holds:

(ﬁéﬁzémmwwﬂwol<meﬂwmoﬂ%

L@? (w1 i)

2ol o o ’
L3< 303 393

We choose a small number 63 > 1 that the following holds: 0 < 63 < n and w%
AGL a1 (R™). Since

3703

= CA(83) || Mas, (171%)|

65 65 abs 65 0; b
—“==—-—"— and —=—-—"2,

& p n(l-2) @ p n

by Theorem 2, we obtain

i ()]

L%

1
03 03
‘12 1 <C ‘f ‘ N P a
A 93 A 6 03
83,30 LB [w? 03 70

=C ”f”Lnl(wp,qu) . O

Next, we prove Theorem 2.

Proof of Theorem 2. By Lemma 2, we have

”IO!fHquJL(Wﬂ wil) < CHMOCfHqul(Wﬂ wil)
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By Lemma 3, we have

P
0|a
) | fw
”MafHqu’k(W{“ wil) < C[W]Apm MWqH% 7 aqy
L7 (it i)
()"
Taking w9' =V and F = ~*—/—, we have
P
fwf|a B H g
Hquha”p ( wi “a2 5 = [Myp ()]l o vy
L7 (it i)

Since

p 1 L

ag; a n l1—-1’
by Lemma 4, we obtain

%
M2 PPy, < CUPI
1
=C sup /f VP w(x) q1a+6p g
QCR”, W‘ﬂ
Q;cube

Since g — qia+ p6 = p, we obtain the desired inequality:

6
Suﬂgl (qu /f Pw 511 qra+ pdx) ||f||L,,>A(W,,7wa).
OCR",
Q;cube

Therefore we obtain

0
”Iocf”qu‘l(wa wil) < C[ }Al’fn R") HfHLpl wP wil) *

Hence we get the desired result. [J

Next, we prove Theorem 3.

Proof of Theorem 3. By Lemma 5, we have

s\ 1/s'
HIQ,a(f)HquJ(Vqlﬁ\m) < CHQHLS(S"*I) HMas’(f ) / LA (a1 y) :
The scaling law yields
/ 1
S/ IS/ o , S/ Al
HMas’ (f ) qu‘x(v,“ i) = HMocs (f ) L%"l(v‘fl Vi) :
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a/ / / a/
Since oy % and ot —s,by Theorem 2, we have
@ p n(l-21) @ p n

Lt (va1 1)

Vp )

The scaling law yields

!

fS

|

This gives us the inequality (3):

- s
Lsﬂ"l(vl’,v‘ﬂ) - ”fHLp"x(vavql) ’

HIQﬂ(f)HLqM(vql,vql) < C”fHLM(vﬁ,vql)- 0

Lastly, we prove Theorem 4.

Proof of Theorem 4. By Lemma 11, we have

Ia,m (f) qu,k(vql 1) < H/fmm <f>

By Lemma 13, we obtain

L92% (1 1) :

647

- P L 6 =
Mo (F) <cl(vir,... v . (F) ’
H am ( f L92 (41 1) v v Ay v.La L2A (V)
0- L
"7 o
where Fj(x) = ——————— and V(x) = v(x)?'. By Lemma 14, we have
V()C)ql Pj

H//V.,Sm <F>

qu*(v.,V)< Q?@H(W/QWJ(WW V(yj)dyj)
)o

Q;cube

(//zv (ﬁ

P

)qz

QMo
ol

L922(V,v)

By Lemma 15, we have

r
H (//V (F’P> (.)%) -
These imply that

lan (7)

Lemma 16 gives us the inequality (4). [

<C| sup H( /\F vi)l y,)dyj>

n .
L2 (V,V) e !

1

L92A (01 1) <C Qsculgl H( / IF, J yJ YI)dYJ>

Q;cube’

St
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5. Appendix

According to [31], for f € C5(R"), we have

<czn|ze|e

Therefore by Theorem 2, we obtain a type of the Fefferman-Phong inequality:

COROLLARY 2. Letn>2, 0<7L<l——andl<p<n(l— ). Define gy and

q2 by
1 1 1 1 1 1 1

@ p nl-X @ pon
Suppose that w € Ap 4, (R"), then for f € C5(R"), we obtain

”fHqu‘l(Wﬂ’wa) < CH ‘Vf| HLp~l(Wp7w<11)~

According to [26], if n > 3, f € C5(R"), then we have f = CL(Af). Therefore,
we obtain the following inequality.

COROLLARY 3. Letn>3, 0< A < 1—% and 1 < p <5(1—24). Define q1 and
g2 by
1 1 2 1 1 2 1

—=—-———- and —=—-——-——.
g p n g p nl-24

Suppose that w € A, 4, (R"), then for f € C5(R"), we have

”fHquJL(qu’qu) < CHAfHLpl(wp,quy

We give the counterexample of Remark 10.

1/1 1
EXAMPLE 1. Let 00 =~ (— + —) and w(x) = |x|*. If g < p, then w € A, 4(R).
q P

However, we have

w? € Ay(R)

w P ¢ Ay (R).

Proof of Example 1. Firstly we check w € A 4(R). By Remark 4, [x|* € A, 4(R)
if and only if |x|*¢ € A, ¢ (R). On the other hand, By [10, pp. 286], |x|* € A,(R) if
P

and only if —1 < @ < p— 1. Combined with the property, |x|* € A, 4(R) if and only if
— l <oa< i . Therefore the matters are reduced to check the following: — l <oa< i
Smce o< O we have o <y . Since 1 > ~, we have —}1 = % (—}1 — —) <o. ThlS
implies that w(x) € Ap7q(R).
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Next we prove that [x|*? € A,(R). By a similar argument, we have only to check

the following:
1 1
——<oa< .
q q

Since o < 0, we have o < %. Hence we have w? € A4(R). Lastly, we disprove
x|~ €A, (R). Since é > 11_?’ we have o < —}—9. On the other hand, |x| =%’ €A, (R)

if and only if —7 < o < ;. This implies that x|~ ¢ A (R). O
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