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SOME NEW ESTIMATIONS FOR THE HADAMARD PRODUCT
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(Communicated by G. P. H. Styan)

Abstract. In this paper, some new bounds for the minimum eigenvalue of the Hadamard product
of a nonsingular M-matrix and its inverse are obtained, which improve some existing results.
Finally, numerical examples are given to show that these bounds are better than some existing
ones.

1. Introduction

For a positive integer n , N denotes the set N = {1,2, · · · ,n} . The set of all n×
n real matrices is denoted by Rn×n , and Cn×n denotes the set of all n× n complex
matrices. For a matrix A = (ai j) ∈ Rn×n , we write A � 0(> 0) if ai j � 0(> 0) for any
i, j ∈ N . If A � 0(> 0) , A is called a nonnegative (positive) matrix.

Let Zn denote the set of n× n real matrices all of whose off-diagonal entries
are nonpositive. A matrix A = (ai j) ∈ Rn×n is called an M-matrix [1] if there exist a
nonnegative matrix B and a nonnegative real number λ such that

A = λ I−B, λ � ρ(B),

where I is the identity matrix and ρ(B) is the spectral radius of the matrix B . If
λ = ρ(B) , then A is a singular M-matrix; if λ > ρ(B) , then A is called a nonsingular
M-matrix. Denote by Mn the set of all n×n nonsingular M-matrices. Let us denote

τ(A) = min{Re(λ ) : λ ∈ σ(A)},

where σ(A) is the spectrum of A . It is known that [2] τ(A) = 1
ρ(A−1) is a posi-

tive real eigenvalue of A ∈ Mn . If A ∈ Mn , we write CA = DA − A , where DA =
diag(a11,a22, · · · ,ann) . Note that aii > 0 for all i ∈ N if A ∈ Mn . Thus we define the
Jacobi iterative matrix of A by JA = D−1

A CA . It is easy to check that JA is nonnegative
and ρ(JA) < 1 [12].
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Recall that A = (ai j) ∈ Cn×n is called row diagonally dominant if |aii| � ∑
k �=i

|aik|
for all i ∈ N . If |aii| > ∑

k �=i
|aik| , we say that A is strictly row diagonally dominant. For

a matrix A∈Rn×n , if A � 0 and there exists e = (1, · · · ,1)T ∈Rn such that Ae = e and
AT e = e , we call A is a doubly stochastic matrix.

The Hadamard product of two matrices A = (ai j)n×n and B = (bi j)n×n is the
matrix A ◦B = (ai jbi j)n×n . In [3] it is shown that if A and B are nonsingular M -
matrices, then A◦B−1 is also a nonsingular M-matrix.

A matrix A is irreducible if there does not exist a permutation matrix P such that

PAPT =
(

A11 A12

0 A22

)
,

where A11 and A22 are square matrices.
For α ⊆ N , denote by |α| the cardinality of α and α ′ = N −α the complement

of α in N . If α,β ⊆N , we write A(α,β ) to mean the submatrix of A lying in the rows
indicated by α and the columns indicated by β . In particular, A(α,α) is abbreviated
to A(α) . Assume that A(α) is nonsingular. Then

A/α = A/A(α) = A(α ′)−A(α ′,α)[A(α)]−1A(α,α ′)

is called the Schur complement of A respect to A(α) [4].
Let A = (ai j)∈ Rn×n be a strictly row diagonally dominant matrix. For any i∈ N ,

let us denote

Ri = ∑
k �=i

|aik|, Ci = ∑
k �=i

|aki|, di =
Ri

|aii| , ci =
Ci

|aii| , i ∈ N;

s ji =
|a ji|+ ∑

k �= j,i
|a jk|dk

|a j j| , j �= i, j ∈ N; si = max
j �=i

{si j}, i ∈ N;

mji =
|a ji|+ ∑

k �= j,i
|a jk|ski

|a j j| , j �= i, j ∈ N; mi = max
j �=i

{mi j}, i ∈ N;

p ji =
|a ji|+ ∑

k �= j,i
|a jk|mki

|a j j| , j �= i, j ∈ N; pi = max
j �=i

{pi j}, i ∈ N;

h ji =
|a ji|

|a j j|p ji− ∑
k �= j,i

|a jk|pki
, j �= i, j ∈ N; hi = max

j �=i
{h ji}, i ∈ N;

g ji =
|a ji|+ ∑

k �= j,i
|a jk|pkihi

|a j j| , j �= i, j ∈ N; gi = max
j �=i

{gi j}, i ∈ N;

r ji =
|a ji|

|a j j|− ∑
k �= j,i

|a jk| , j �= i, j ∈ N; ri = max
j �=i

{r ji}, i ∈ N;
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t ji =
|a ji|+ ∑

k �= j,i
|a jk|ri

|a j j| , j �= i, j ∈ N; ti = max
j �=i

{ti j}, i ∈ N;

u ji =
|a ji|+ ∑

k �= j,i
|a jk|tki

|a j j| , j �= i, j ∈ N; ui = max
j �=i

{ui j}, i ∈ N;

v ji =
|a ji|

|a j j|t ji− ∑
k �= j,i

|a jk|tki , j �= i, j ∈ N; vi = max
j �=i

{v ji}, i ∈ N;

wji =
|a ji|+ ∑

k �= j,i
|a jk|tkivi

|a j j| , j �= i, j ∈ N; wi = max
j �=i

{wi j}, i ∈ N.

Let A ∈ Mn and A−1 = (bi j)n×n . It was proved in [5] that

0 < τ(A◦A−1) � 1.

Fiedler and Markham [3] gave a lower bound for τ(A ◦ A−1) and showed that
τ(A ◦A−1) � 1

n . They also conjectured that τ(A ◦A−1) � 2
n . Chen [6], Song [7] and

Yong [8] have independently proved this conjecture.
In [9], Li et al. obtained the following result:

τ(A◦A−1) � min
i∈N

{
aii − siRi

1+ ∑
j �=i

s ji

}
. (1)

In [10], Li et al. derived the following result:

τ(A◦A−1) � min
i∈N

{
aii− tiRi

1+ ∑
j �=i

t ji

}
. (2)

In [11], Cheng et al. improved the results in [9] and [10], showing that

τ(A◦A−1) � min
i∈N

{
aii−uiRi

1+ ∑
j �=i

u ji

}
. (3)

In [12], Zhou et al. presented

τ(A◦A−1) � 1−ρ2(JA). (4)

In [13], Li et al. arrived at

τ(A◦A−1) � min
i∈N

⎧⎪⎨
⎪⎩

aii −wi ∑
j �=i

|a ji|

1+ ∑
j �=i

w ji

⎫⎪⎬
⎪⎭ . (5)
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Recently, Chen in [14] improved the results in [9] and gave the following result:

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
mi ∑

k �=i

|aki|bii

)(
mj ∑

k �= j

|ak j|b j j

)] 1
2
}

. (6)

In this paper, we exhibit some new lower bounds for τ(A ◦A−1) . These bounds
improve the ones in [9, 10, 11, 12, 13, 14].

The rest of this paper is organized as follows. In Section 2, we recollect and derive
some notations and lemmas which are utilized in the next sections. We focus on the
bounds of τ(A◦A−1) and establish some new lower bounds for τ(A◦A−1) in Section
3. Section 4 is devoted to some numerical experiments to show the advantages of the
new lower bounds for τ(A◦A−1) . Finally, the paper is ended with some conclusions in
Section 5.

2. Some preliminaries and notations

In this section, we start with some notations and lemmas for the entries of A−1

and the strictly diagonally dominant matrix. They will be useful in the proofs.

LEMMA 1. [8] Let A ∈ Rn×n be a strictly row diagonally dominant matrix, that
is, |aii| > ∑

j �=i
|ai j|, ∀i ∈ N . Then A−1 = (bi j)n×n exists, and

|b ji| � d j|bii|, j �= i,∀ j ∈ N.

LEMMA 2. [15] Let A = (ai j)n×n be a nonsingular M-matrix, C = (ci j)n×n ∈ Zn

and A � C, i.e., ai j � ci j for all i, j ∈ N . Then C is a nonsingular M-matrix and
A−1 � C−1 � 0 .

LEMMA 3. [15] Let A = (ai j)n×n , /0 �= α ⊆ N , and assume that A(α) is nonsin-
gular. Then

detA = detA(α)detA/α.

LEMMA 4. Let A = (ai j)∈Rn×n be a strictly row diagonally dominant M-matrix.
Then, for A−1 = (bi j)n×n , we have

b ji �
|a ji|+ ∑

k �= j,i
|a jk|pkihi

a j j
bii � g jbii, j �= i,∀ j ∈ N.
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Proof. For i ∈ N and j �= i , let d j(ε) =
∑

k �= j
|a jk|+ε

a j j
,

s ji(ε) =
|a ji|+ ∑

k �= j,i
|a jk|dk(ε)+ ε

a j j
, mji(ε) =

|a ji|+ ∑
k �= j,i

|a jk|ski(ε)+ ε

a j j

and

p ji(ε) =
|a ji|+ ∑

k �= j,i
|a jk|mki(ε)+ εmji(ε)

a j j
, h ji(ε) =

|a ji|+ εmji(ε)
|a j j|p ji(ε)− ∑

k �= j,i
|a jk|pki(ε)

.

Since A is a strictly row diagonally dominant matrix, it holds that 0 � d j < 1,
0 � s ji < 1 and 0 � mji < 1 (i, j ∈ N, i �= j) . By making use of Theorem 3.3 in [14],
we have d j � s ji, j �= i . Thus, we have the results

s ji =
|a ji|+ ∑

k �= j,i
|a jk|dk

|a j j| �
|a ji|+ ∑

k �= j,i
|a jk|ski

|a j j| = mji, j �= i

and

mji =
|a ji|+ ∑

k �= j,i
|a jk|ski

|a j j| �
|a ji|+ ∑

k �= j,i
|a jk|mki

|a j j| = p ji,

h ji =
|a ji|

|a ji|+ ∑
k �= j,i

|a jk|(mki − pki)
� 1, j �= i.

Thus 0 � hi � 1 (i∈N) and for sufficiently small ε > 0 we have 0 < d j(ε),s ji(ε) < 1,
0 < mji(ε), p ji(ε) < 1, p ji(ε) < mji(ε) ( j �= i) and 0 < hi(ε) � 1. For any i ∈ N , let

Gi(ε) = diag(p1i(ε)hi(ε), · · · , pi−1,i(ε)hi(ε),1, pi+1,i(ε)hi(ε), · · · , pn,i(ε)hi(ε)).

For a given i ∈ N , one checks that the matrix AGi(ε) is a strictly row diagonally
dominant M-matrix. In fact, for j �= i , we have

hi(ε) � h ji(ε) =
|a ji|+ εmji(ε)

|a j j|p ji(ε)− ∑
k �= j,i

|a jk|pki(ε)
>

|a ji|
|a j j|p ji(ε)− ∑

k �= j,i
|a jk|pki(ε)

,

which results in

|a j j|p ji(ε)hi(ε) > |a ji|+ ∑
k �= j,i

|a jk|pki(ε)hi(ε). (7)

While, for j = i , we have

|aii| > ∑
k �=i

|aik| � ∑
k �=i

|aik|pki(ε)hi(ε). (8)
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From Inequalities (7) and (8) it follows that AGi(ε) is a strictly row diagonally
dominant matrix, so it is also a nonsingular M-matrix. From Lemma 1 we derive the
following inequality:

b ji

p ji(ε)hi(ε)
�

|a ji|+ ∑
k �= j,i

|a jk|pki(ε)hi(ε)

a j j p ji(ε)hi(ε)
bii, j �= i, j ∈ N,

i.e.,

b ji �
|a ji|+ ∑

k �= j,i
|a jk|pki(ε)hi(ε)

a j j
bii, j �= i, j ∈ N.

Letting ε → 0 yields

b ji �
|a ji|+ ∑

k �= j,i
|a jk|pkihi

a j j
bii � g jbii, j �= i, j ∈ N. �

REMARK 1. Since A is a strictly row diagonally dominant matrix, we obtain

s ji � mji � p ji � p jihi, j �= i, j ∈ N

by virtue of the proof of Lemma 4. Additionally, we see that

hi � h ji =
|a ji|

|a j j|p ji− ∑
k �= j,i

|a jk|pki
, j �= i, j ∈ N.

Then, it has

s ji � mji � p ji � p jihi �
|a ji|+ ∑

k �= j,i
|a jk|pkihi

a j j
= g ji, j �= i, j ∈ N

and

si � mi � pi � gi, i ∈ N.

This means that the result of Lemma 4 is sharper than those of Theorem 2.1 in [9]
and Lemma 2.2 in [14].

LEMMA 5. Let A = (ai j)∈R
n×n be a strictly row diagonally dominant M-matrix.

Then, for A−1 = (bi j)n×n , we have

1
aii − ∑

k �=i

aikaki
akk

� bii �
1

aii − ∑
j �=i

|ai j|g ji
, i ∈ N. (9)
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Proof. Let B = A−1 . Due to A is a nonsingular M-matrix, it has B � 0. Let Ai

denote the submatrix of A which is obtained by deleting the i th row and the i th column
of A . Then,

Ai � diag(a11, · · · ,ai−1,i−1,ai+1,i+1, · · · ,ann).

Thus, by Lemma 2 and since diag(a−1
11 , · · · ,a−1

i−1,i−1,a
−1
i+1,i+1, · · · ,a−1

nn ) is a nonsingular
M-matrix, we have

A−1
i � diag(a−1

11 , · · · ,a−1
i−1,i−1,a

−1
i+1,i+1, · · · ,a−1

nn ). (10)

Lemma 3 implies that for i ∈ N ,

bii =
detAi

detA
=

detAi

detAi detA/Ai
=

1
detA/Ai

. (11)

According to (10), we deduce that

detA/Ai = aii − (ai1, · · · ,ai,i−1,ai,i+1, · · · ,ain)A−1
i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1i
...

ai−1,i

ai+1,i
...

ani

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� aii−∑
k �=i

aikaki

akk
,

which together with Inequality (11) gives

bii =
detAi

detA
� 1

aii− ∑
k �=i

aikaki
akk

, i ∈ N. (12)

Combining Lemma 4 and AB = I results in

1 =
n

∑
j=1

ai jb ji = aiibii−∑
j �=i

|ai j|b ji

� aiibii−∑
j �=i

|ai j|
|a ji|+ ∑

k �= j,i
|a jk|pkihi

a j j
bii

=
(

aii −∑
j �=i

|ai j|g ji

)
bii,

i.e.,

bii �
1

aii− ∑
j �=i

|ai j|g ji
, i ∈ N. (13)

The claim now follows by combining Inequalities (12) and (13). �
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REMARK 2. According to Remark 1, we have

s ji � mji � p ji � g ji, j �= i, j ∈ N,

which implies that

1
aii − ∑

j �=i
|ai j|g ji

� 1
aii− ∑

j �=i
|ai j|p ji

� 1
aii− ∑

j �=i
|ai j|mji

� 1
aii − ∑

j �=i
|ai j|s ji

.

Moreover, it is not difficult to verify that

1
aii

� 1
aii− ∑

k �=i

aikaki
akk

, i ∈ N.

This readily shows that the bounds in Lemma 5 are always better than those in Theorem
2.3 of [9] and Lemma 2.3 of [14].

LEMMA 6. [16] If A−1 is a doubly stochastic matrix, then Ae = e, AT e = e,
where e = (1,1, · · · ,1)T .

LEMMA 7. [14] Let A = (ai j) ∈ Rn×n be an irreducible nonsingular M-matrix,
then 0 < τ(A) < aii for all i ∈ N .

LEMMA 8. [17] Let A = (ai j)∈Cn×n and x1,x2, · · · ,xn be positive real numbers.
Then all the eigenvalues of A lie in the region

n⋃
i, j=1,i�= j

{
z ∈ C : |z−aii||z−a j j| �

(
xi ∑

k �=i

1
xk
|aki|

)(
x j ∑

k �= j

1
xk
|ak j|

)}
.

LEMMA 9. [15] Let A ∈ Zn . A is a nonsingular M-matrix if and only if all its
leading principal minors are positive.

LEMMA 10. [3] If A is an irreducible nonsingular M-matrix, and Az � kz for a
nonnegative nonzero vector z, then τ(A) � k .

3. Main results

In this section, we develop some lower bounds for τ(A◦A−1) , which improve the
ones in [9, 14].

THEOREM 1. Let A = (ai j) ∈ Rn×n be a nonsingular M-matrix, and suppose that
A−1 = (bi j)n×n is doubly stochastic. Then

bii �
1

1+ ∑
j �=i

g ji
, i ∈ N.
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Proof. Since A−1 is doubly stochastic and A is a nonsingularM-matrix, by Lemma
6, we have

bii + ∑
j �=i

b ji = 1, i ∈ N.

Taking into account that A is a strictly row diagonally dominant matrix and using
Lemma 4, for i ∈ N , we infer that

1 = bii + ∑
j �=i

b ji � bii + ∑
j �=i

|a ji|+ ∑
k �= j,i

|a jk|pkihi

a j j
bii

=
(

1+ ∑
j �=i

|a ji|+ ∑
k �= j,i

|a jk|pkihi

a j j

)
bii

=
(

1+ ∑
j �=i

g ji

)
bii,

which is equivalent to

bii � 1
1+ ∑

j �=i
g ji

, i ∈ N. �

REMARK 3. According to Remark 1, it holds that

s ji � mji � g ji, j �= i, j ∈ N,

which yields that

1
1+ ∑

j �=i
g ji

� 1
1+ ∑

j �=i
m ji

� 1
1+ ∑

j �=i
s ji

.

This implies that the bounds in Theorem 1 are tighter than those in Lemma 3.2 of [9]
and Theorem 3.1 of [14].

THEOREM 2. Let A = (ai j)n×n be a nonsingular M-matrix, and let A−1 = (bi j)n×n

be doubly stochastic. Then

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2

+4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

. (14)
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Proof. It is evident that Inequality (14) holds with equality for n = 1. Below we
assume that n � 2.

Firstly, we assume that A is irreducible. According to Lemma 6, we see that

aii = ∑
k �=i

|aik|+1 = ∑
k �=i

|aki|+1 > 1, i ∈ N.

Let

g j = max
i�= j

{g ji} = max
i�= j

⎧⎨
⎩

|a ji|+ ∑
k �= j,i

|a jk|pkihi

a j j

⎫⎬
⎭ , j ∈ N.

Note that A is an irreducible matrix, 0 < g j < 1. Let τ(A◦A−1) = λ . By making
use of Lemma 7, it is easily seen that 0 < λ < aiibii , i ∈ N . By combining Lemma 8
with Lemma 4, there is a pair (i, j) of positive integers with i �= j such that

|λ −aiibii||λ −a j jb j j|�
(

gi ∑
k �=i

1
gk

|akibki|
)(

g j ∑
k �= j

1
gk
|ak jbk j|

)

�
(

gi ∑
k �=i

1
gk

|aki|gkbii

)(
g j ∑

k �= j

1
gk

|ak j|gkb j j

)

=
(

gi ∑
k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)
. (15)

It follows from Inequality (15) that

(λ −aiibii)(λ −a j jb j j) �
(

gi ∑
k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)
. (16)

Solving the quadratic Inequality (16) yields

λ � 1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

, (17)

Inequality (17) directly leads to the following result

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2

+4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

. (18)
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If A is reducible, by Lemma 9 we know that all leading principal minors of A are
positive. Denote by P = (pi j) the n× n permutation matrix with p12 = p23 = · · · =
pn−1,n = pn,1 = 1, and the remaining pi j being zero. If ε > 0 is sufficiently small, then
all the leading principal minors of A− εP are positive and A− εP is an irreducible
nonsingular M-matrix. Now we substitute A− εP for A in the previous case. Letting
ε → 0, the result follows by continuity. �

REMARK 4. Having obtained the bound in Theorem 2, we can compare the bound
in Theorem 2 with those in Theorem 3.1 of [9] and Theorem 3.2 of [14]. By Remark 1,
we have

si � mi � gi, i ∈ N,

which leads to

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

� min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
mi ∑

k �=i

|aki|bii

)(
mj ∑

k �= j

|ak j|b j j

)] 1
2
}

.

Furthermore, it follows from Theorem 3.3 in [14] that

min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2 +4

(
mi ∑

k �=i

|aki|bii

)(
mj ∑

k �= j

|ak j|b j j

)] 1
2
}

� min
i∈N

{
aii− siRi

1+ ∑
j �=i

s ji

}
.

Thus the bound in Theorem 2 is an improvement on those in Theorem 3.1 of [9] and
Theorem 3.2 of [14].

THEOREM 3. Let A = (ai j)n×n be a strictly row diagonally dominant M-matrix.
Then

τ(A◦A−1) � min
i∈N

⎧⎪⎨
⎪⎩

aii− ∑
j �=i

|a ji|g ji

aii− ∑
k �=i

akiaik
akk

⎫⎪⎬
⎪⎭ . (19)
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Proof. Firstly, we assume that A is irreducible, then A−1 > 0, and A◦A−1 is again
irreducible. Note that

τ(A◦A−1) = τ((A◦A−1)T ) = τ(AT ◦ (AT )−1).

Let

(AT ◦ (AT )−1)e = (l1, l2, · · · , ln)T ,

where e = (1,1, · · · ,1)T ∈ Rn . Without loss of generality, we may assume that l1 =
min
i∈N

{li} . We deduce by Lemma 4 and Lemma 5 that

l1 =
n

∑
j=1

a j1b j1 = a11b11− ∑
j �=1

|a j1|b j1

� a11b11− ∑
j �=1

|a j1|
|a j1|+ ∑

k �= j,1
|a jk|pk1h1

a j j
b11

= a11b11− ∑
j �=1

|a j1|g j1b11 = (a11− ∑
j �=1

|a j1|g j1)b11

�
a11− ∑

j �=1
|a j1|g j1

a11− ∑
k �=1

ak1a1k
akk

.

Then it follows from the above inequality and Lemma 10 that

τ(A◦A−1) � min
i∈N

⎧⎪⎨
⎪⎩

aii− ∑
j �=i

|a ji|g ji

aii− ∑
k �=i

akiaik
akk

⎫⎪⎬
⎪⎭ .

The case when A is reducible can be treated similarly as in the proof of Theorem
2. This completes our proof. �

REMARK 5. By making using of Remark 1 and Remark 2, we have

s ji � mji � g ji, j �= i, j ∈ N

and

1
aii

� 1
aii− ∑

k �=i

aikaki
akk

, i ∈ N.

As a result, it holds that

aii− ∑
j �=i

|a ji|g ji

aii− ∑
k �=i

akiaik
akk

� 1− 1
aii

∑
j �=i

|a ji|mji � 1− 1
aii

∑
j �=i

|a ji|s ji.

Hence the bound in Theorem 3 always improves the corresponding ones in Theo-
rem 3.5 of [9] and Theorem 3.4 of [14].
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THEOREM 4. Let A = (ai j)n×n be a strictly row diagonally dominant M-matrix
and A−1 = (bi j)n×n . Then

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

. (20)

Proof. It is not difficult to verify that the result holds with equality for n = 1. We
next assume that n � 2.

Firstly, we assume that A is irreducible. Let τ(A◦A−1) = λ . Having in mind that
0 < λ < aiibii for all i ∈ N . Thus, by Lemma 8 and Lemma 2.2 in [14], there exists a
pair (i, j) of positive integers with i �= j such that

|λ −aiibii||λ −a j jb j j|�
(

∑
k �=i

|akibki|
)(

∑
k �= j

|ak jbk j|
)

�
(

∑
k �=i

|aki|biimki

)(
∑
k �= j

|ak j|b j jmk j

)
. (21)

From Inequality (21), we see that

(λ −aiibii) (λ −a j jb j j) �
(

bii ∑
k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)
,

which yields that

λ � 1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

,

from which one may deduce the following result

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

. (22)

With a quite similar strategy utilized in Theorem 2, the result of Theorem 4 is still
valid for the case that A is reducible. �
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REMARK 6. Without loss of generality, for i �= j , we assume that

aiibii −bii ∑
k �=i

|aki|mki � a j jb j j −b j j ∑
k �= j

|ak j|mk j,

we can rewrite the above equation into the following equivalent form

b j j ∑
k �= j

|ak j|mk j � a j jb j j −aiibii +bii ∑
k �=i

|aki|mki. (23)

By applying Inequalities (20) and (23) together with Lemma 2.3 of [14] we obtain

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2 +4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

� 1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)(
a j jb j j −aiibii +bii ∑

k �=i

|aki|mki

)] 1
2
}

=
1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)2

+4

(
bii ∑

k �=i

|aki|mki

)(
a j jb j j −aiibii

)] 1
2
}

=
1
2

{
aiibii +a j jb j j −

[(
a j jb j j −aiibii +2bii ∑

k �=i

|aki|mki

)2] 1
2
}

= aiibii−bii ∑
k �=i

|aki|mki =
(

aii−∑
k �=i

|aki|mki

)
bii �

aii − ∑
k �=i

|aki|mki

aii
.

Then it immediately leads to the following result

min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2 +4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

� min
i∈N

{
1− 1

aii
∑
j �=i

|a ji|mji

}
.

Moreover, by Remark 3.2 in [14], we have

min
i∈N

{
1− 1

aii
∑
j �=i

|a ji|mji

}
� min

i∈N

{
1− 1

aii
∑
j �=i

|a ji|s ji

}
.

This implies that the bound in Theorem 4 is always tighter than those in Theorem
3.5 of [9] and Theorem 3.4 of [14].
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REMARK 7. If A is a nonsingular M-matrix, we know that there exists a diagonal
matrix D with positive diagonal entries such that D−1AD is a strictly row diagonally
dominant nonsingular M-matrix. So the results of Theorems 3-4 also hold for a nonsin-
gular M-matrix.

REMARK 8. According to Theorem 2 and Theorem 4, it is clearly seen that the
forms of the lower bounds in Theorem 2 and Theorem 4 are similar. For given i, j ∈ N
and j �= i , the only difference between these two bounds is that the forms of(

gi ∑
k �=i

|aki|
)(

g j ∑
k �= j

|ak j|
)

and

(
∑
k �=i

|aki|mki

)(
∑
k �= j

|ak j|mk j

)

are different. Thus, if we attempt to compare the bounds in Theorem 2 and Theorem 4,
we need to get the relations between gi and mki (i,k ∈ N,k �= i) . By making use of the
definitions of gi and mki , we have

gi = max
j �=i

⎧⎨
⎩

|ai j|+ ∑
k �=i, j

|aik|pk jh j

aii

⎫⎬
⎭ and mki =

|aki|+ ∑
t �=k,i

|akt |sti
akk

. (24)

Although

gi = max
j �=i

⎧⎨
⎩

|ai j|+ ∑
k �=i, j

|aik|pk jh j

aii

⎫⎬
⎭ � mi = max

j �=i
{mi j} = max

j �=i

⎧⎨
⎩

|ai j|+ ∑
k �=i, j

|aik|sk j

aii

⎫⎬
⎭ ,

it is not necessarily that gi � mki (k �= i) . Therefore, we can not conclude that which
bound in Theorem 2 and Theorem 4 is better because there is no way to compare the
relations between gi and mki (k �= i) in theory. Example 3 is also implemented to
illustrate this fact.

In the following, we compare the bounds in Theorems 2 and 4 with that in Theorem
3, respectively. From Remark 5 and Remark 6, we can get

min
i∈N

⎧⎪⎨
⎪⎩

aii − ∑
j �=i

|a ji|g ji

aii− ∑
k �=i

akiaik
akk

⎫⎪⎬
⎪⎭ � min

i∈N

{
1− 1

aii
∑
j �=i

|a ji|mji

}
(25)

and

min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2 +4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

� min
i∈N

{
1− 1

aii
∑
j �=i

|a ji|mji

}
,
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whereas we can not prove that the bound in Theorem 4 is sharper than that in Theorem
3. Furthermore, in a manner similar to that done for Remark 6 and by Lemma 5, it is
not difficult to verify that

min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2 +4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

� min
i∈N

⎧⎪⎨
⎪⎩

aii−gi ∑
j �=i

|a ji|

aii− ∑
k �=i

akiaik
akk

⎫⎪⎬
⎪⎭ .

However, we can not determine the relations between gi and g ji ( j �= i) , so we also
can not see that which bound in Theorem 2 and Theorem 3 is better.

From the above discussions, it can be seen that we can not conclude that which
bound in Theorems 2-4 is the best. Numerical results of Example 3 are provided to
confirm this fact. Nevertheless, as observed in the results of Example 3, the bound in
Theorem 2 outperforms that in Theorem 4 for many cases and the bounds in Theorem 2
and Theorem 4 are better than that in Theorem 3 for almost cases. However, we see that
the bounds in Theorems 3-4 hold under weaker conditions compared with Theorem 2.
What is more, when we derive the bounds in Theorems 2 and 4, we need to compute
the inverse of the matrix A , but it is not necessarily for Theorem 3. This implies that
the bound in Theorem 3 needs less basic arithmetic operations than those of Theorems
2 and 4 as the size of A is large. On the other hand, the bound in Theorem 3 is only
depending on the entries of the matrix A . So, it is more easily computed than those in
Theorems 2 and 4.

4. Numerical examples

EXAMPLE 1. Consider the following nonsingular M-matrix [14]:

A =

⎛
⎜⎜⎝

4 −1 −1 −1
−2 5 −1 −1
0 −2 4 −1
−1 −1 −1 4

⎞
⎟⎟⎠ .

Since Ae = e and AT e = e , A−1 is doubly stochastic. By calculations we have

A−1 =

⎛
⎜⎜⎝

0.4 0.2 0.2 0.2
0.2333 0.3667 0.2 0.2
0.1667 0.2333 0.4 0.2

0.2 0.2 0.2 0.4

⎞
⎟⎟⎠ .
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(1) Estimate the upper bounds for the entries of A−1 = (bi j)n×n . By Theorem 2.1
(a) of [9], we have

A−1 �

⎛
⎜⎜⎝

1 0.6250 0.6375 0.6375
0.7000 1 0.6500 0.6500
0.5875 0.6875 1 0.6500
0.6375 0.6250 0.6375 1

⎞
⎟⎟⎠◦

⎛
⎜⎜⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎞
⎟⎟⎠ .

By Lemma 2.2 of [14], we have

A−1 �

⎛
⎜⎜⎝

1 0.5781 0.5718 0.5750
0.6450 1 0.5825 0.5850
0.5093 0.6562 1 0.5750
0.5718 0.5781 0.5718 1

⎞
⎟⎟⎠◦

⎛
⎜⎜⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎞
⎟⎟⎠ .

If we apply Lemma 4, we obtain

A−1 �

⎛
⎜⎜⎝

1 0.5479 0.5021 0.5035
0.5934 1 0.5013 0.5026
0.4263 0.6383 1 0.5041
0.5104 0.5479 0.5021 1

⎞
⎟⎟⎠◦

⎛
⎜⎜⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎞
⎟⎟⎠ .

By combining the result of Lemma 4 with the results of Theorem 2.1 (a) of [9] and
Lemma 2.2 of [14] we see that the result of Lemma 4 is the best.

By Theorem 2.3 and Lemma 3.2 of [9], we can get the following bounds for the
diagonal entries of A−1 :

0.3419 � b11 � 0.5882, 0.3404 � b22 � 0.5128,

0.3419 � b33 � 0.6061, 0.3404 � b44 � 0.5882.

By some calculations with Lemma 2.3 and Theorem 3.1 of [14], we get

0.3668 � b11 � 0.4397, 0.3556 � b22 � 0.3832,

0.3668 � b33 � 0.4419, 0.3656 � b44 � 0.4415.

Now from Lemma 5 and Theorem 1, we obtain

0.3952 � b11 � 0.4049, 0.3658 � b22 � 0.3679,

0.3991 � b33 � 0.4007, 0.3984 � b44 � 0.4016.

(2) Lower bounds for τ(A◦A−1) . By Theorem 3.1 of [9], we have

τ(A◦A−1) � min
i∈N

{
aii− siRi

1+ ∑
j �=i

s ji

}
= 0.6624.

By Theorem 3.2 of [10], we have

τ(A◦A−1) � min
i∈N

{
aii − tiRi

1+ ∑
j �=i

t ji

}
= 0.7999.
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By Theorem 3.1 of [11], we have

τ(A◦A−1) � min
i∈N

{
aii−uiRi

1+ ∑
j �=i

u ji

}
= 0.8250.

By Corollary 2.5 of [12], we have

τ(A◦A−1) � 1−ρ2(JA) = 0.4145.

By Corollary 2 of [13], we have

τ(A◦A−1) � min
i∈N

⎧⎪⎨
⎪⎩

aii −wi ∑
j �=i

|a ji|

1+ ∑
j �=i

w ji

⎫⎪⎬
⎪⎭ = 0.8321.

By Theorem 3.2 of [14], we have

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii −a j jb j j)2

+4

(
mi ∑

k �=i

|aki|bii

)(
mj ∑

k �= j

|ak j|b j j

)] 1
2
}

= 0.8456.

By Theorem 2, we obtain

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
gi ∑

k �=i

|aki|bii

)(
g j ∑

k �= j

|ak j|b j j

)] 1
2
}

= 0.8904.

By Theorem 4, we obtain

τ(A◦A−1) � min
i�= j

1
2

{
aiibii +a j jb j j −

[
(aiibii−a j jb j j)2

+4

(
bii ∑

k �=i

|aki|mki

)(
b j j ∑

k �= j

|ak j|mk j

)] 1
2
}

= 0.8811.

This numerical example shows that the bounds in Theorem 2 and Theorem 4 are better
than the corresponding ones in [9, 10, 11, 12, 13, 14].

EXAMPLE 2. Next we conduct an experiment to demonstrate the lower bounds
referred. We randomly construct a 4× 4 symmetric nonsingular M-matrix A where
each entry is generated by uniform distribution (−1,0) , and we adjust the diagonal
entries of the matrix A such that Ae = e and AT e = e , where e =(1,1,1,1)T . Therefore
A−1 is doubly stochastic. We compare the lower bounds in Theorems 2-4 with (1)–(6),
Theorem 3.5 in [9] and Theorem 3.4 in [14]. Their differences are denoted by symbols:
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• The bounds in Theorems 2–4 — the bound in (1): plus symbol in blue color;

• The bounds in Theorems 2–4 — the bound in (2): star symbol in black color;

• The bounds in Theorems 2–4 — the bound in (3): circle symbol in red color;

• The bounds in Theorems 2–4 — the bound in (4): diamond symbol in magenta
color;

• The bounds in Theorems 2–4 — the bound in (5): inverse triangle symbol in
green color;

• The bounds in Theorems 2–4 — the bound in (6): square symbol in cyan color;

• The bounds in Theorems 2–4 — the bound in Theorem 3.5 in [9]: hexagonal
symbol in yellow color;

• The bounds in Theorems 2–4 — the bound in Theorem 3.4 in [14]: pentastar
symbol in black color.
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Figure 1: The randomly generated results for Theorem 2 (left), Theorem 4 (middle) and Theorem
3 (right) compared with (1)–(6), Theorem 3.5 in [9] and Theorem 3.4 in [14].

In Figure 1, we show the results of 300 generated matrices for Example 2. The
x -axis refers to these 300 random generated cases. From the first figure in Figure 1, we
observe that all symbols are above the x -axis, i.e., the bound in Theorem 2 are better
than those in (1)–(6), Theorem 3.5 in [9] and Theorem 3.4 in [14]. In the meanwhile,
the percentage of different kinds of symbols which are above the x -axis are listed in
Table 1. We use ‘plus’, ‘star’, ‘circle’, ‘square’, ‘diamond’, ‘triangle’, ‘hexagonal’ and
‘pentastar’ to denote the symbols mentioned in the above. As observed in the third line
of Table 1, almost all symbols are above the x -axis except the star, circle and inverse
triangle symbols. This means that the bound in Theorem 4 outperforms those in (1),
(4) and (6), Theorem 3.5 in [9] and Theorem 3.4 in [14]. For the star symbol in black
color, there are 99.3% of cases above the x -axis, and for the circle symbol in red color
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and the inverse triangle symbol in green color, there are 97.3% and 91.7% of cases
above the x -axis, respectively. From the observations in Table 1, we can conclude that
the bound in Theorem 4 is sharper than the bounds in (2)–(3) and (5) for most cases.
Additionally, from the results of the fourth line in Table 1, it can be clearly seen that the
plus symbol in blue color, the diamond symbol in magenta color, the hexagonal symbol
in yellow color and the pentastar symbol in black color are above the x -axis, i.e., the
bound in Theorem 3 is tighter than those in (1), (4), Theorem 3.5 in [9] and Theorem
3.4 in [14]. For the star symbol in black color and the circle symbol in red color, there
are 86.3% and 63% of cases above the x -axis, respectively. This implies that the
bound in Theorem 3 is sharper than the bounds in (2)–(3) for many cases, whereas for
the square symbol in cyan color and the inverse triangle symbol in green color, there
are only 20.3% and 39% of cases above the x -axis, respectively. Hence the bounds in
(5)–(6) are often better than that in Theorem 3. From all the observations above we can
conclude that the proposed lower bounds for τ(A◦A−1) are competitive and effective
compared with some existing ones, especially the bound in Theorem 2.

Table 1: The percentage of different kinds of symbols which are above the x -axis.

plus star circle square diamond triangle hexagonal pentastar

left 100% 100% 100% 100% 100% 100% 100% 100%

middle 100% 99.3% 97.3% 100% 100% 91.7% 100% 100%

right 100% 86.3% 63% 20.3% 100% 39% 100% 100%

EXAMPLE 3. In the following, we establish another experiment to compare the
lower bounds derived in this paper. We randomly construct a 5×5 symmetric nonsin-
gular M-matrix A where each entry is generated by uniform distribution (−1,0) , and
we adjust the diagonal entries of the matrix A such that Ae = e and AT e = e , where
e = (1,1,1,1,1)T . Therefore A−1 is doubly stochastic. We compare the lower bounds
for τ(A◦A−1) in Theorems 2-4. Their differences are denoted by symbols:

• The bound in Theorem 2 — the bound in Theorem 4: plus symbol in blue color;

• The bound in Theorem 2 — the bound in Theorem 3: star symbol in black color;

• The bound in Theorem 4 — the bound in Theorem 3: circle symbol in red color.

The numerical results for Example 3 are showed in Figure 2. The x -axis of Figure
2 refers to these 300 random generated cases. As seen from Figure 2, for the plus
symbol in blue color, there are 71.7% of cases above the x -axis. This indicates that the
bound in Theorem 2 outperforms that in Theorem 4 for many cases. Besides, for the
star symbol in black color and the circle symbol in red color, there are 97% and 99.7%
of cases above the x -axis, respectively. These observations imply that the bounds in
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Figure 2: The randomly generated results for Theorems 2-4 developed in this paper.

Theorem 2 and Theorem 4 are better than that in Theorem 3 for almost cases. However,
it is worthy noting that we can not determine which bound in Theorems 2-4 is the best
and these numerical results are in accordance with the discussions given in Remark 8.

5. Conclusions

In this paper, by constructing new compression factors, we establish new lower
bounds for τ(A◦A−1) which are better than the existing ones in [9, 10, 11, 12, 13, 14].
Numerical results given in Section 4 (Table 1 and Figures 1–2) show that the results
obtained by the new bounds are more sharper than those derived in [9, 10, 11, 12, 13,
14]. Numerical results also present the feasibility and effectiveness of the new bounds
when they are used to estimate τ(A◦A−1) .

However, we do not give the error analysis, i.e., how accurately these bounds can
be computed. At present, it is very difficult for us to do this. We will continue to
investigate this problem in the future.
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