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Abstract. In this paper, we prove that the function

r → Y (r) =
Ka(r)

sin(πa)r′2 log(eR(a)/2/r′)
− 1

r′2

is strictly increasing from (0,1) onto (π/[R(a)sin(πa)]−1,a(1−a)) for all a∈ (0,1/2] , where
r′ =

√
1− r2 , Ka(r) is the generalized elliptic integral of the first kind, R(a) = −2γ −ψ(a)−

ψ(1− a) , ψ is the classical psi function and γ = 0.57721566 · · · is the Euler-Mascheroni con-
stant.

1. Introduction

For real numbers a , b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function is defined by

F(a,b;c;x) =2 F1(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
, (−1 < x < 1), (1.1)

where (a)n is the shifted factorial function defined by (a)n = a(a+ 1)(a+ 2) · · ·(a+
n−1) = Γ(a+n)/Γ(a) for n = 1,2, · · · and (a)0 = 1 for a �= 0, Γ(x) =

∫ ∞
0 tx−1e−t dt

(x > 0) is the classical gamma function and the double inequality

1
(x+a)1−a <

Γ(x+a)
Γ(x+1)

<
1

x1−a (1.2)

holds for all a ∈ (0,1) and x > 0 (See [1, 2]).
The following asymptotic formula for the Gaussian hypergeometric function can

be found in the literature [3, 1.48]:

B(a,b)F(a,b;a+b;x)+ log(1−x) = R(a,b)+O((1−x) log(1−x)) (x→ 1), (1.3)
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where
R(a,b) = −ψ(a)−ψ(b)−2γ,

B(p,q) =
∫ 1
0 t p−1(1− t)q−1dt = Γ(p)Γ(q)/Γ(p+ q) (p,q > 0) is the classical Beta

function, ψ(x) = Γ′(x)/Γ(x) is the psi function and γ = limn→∞(∑n
k=1 1/k− logn) =

0.57721566 . . . is the Euler-Mascheroni constant.
It is well known that the Gaussian hypergeometric function F(a,b;c;x) has many

important properties and applications in mathematics, physics and engineering. In par-
ticular, many important functions are the special or limiting cases of the Gaussian hy-
pergeometric function.

Let a ∈ (0,1) and r ∈ (0,1) . Then the generalized elliptic integral Ka(r) [4, 5]
of the first kind is defined by

Ka(r) =
π
2

F(a,1−a;1;r2). (1.4)

Clearly, Ka(0+) = π/2 and Ka(1−) = ∞ . If a = 1/2, then Ka(r) reduces to
the complete elliptic integral K1/2(r) ≡ K (r) of the first kind. Recently, the general-
ized elliptic integral Ka(r) has attracted the attention of many researchers. From the
symmetry of (1.4), we assume that a ∈ (0,1/2] in what follows.

Carlson and Gustafson [6] proved that the inequality

K (r)
log

( 4
r′
) <

4
3+ r2

holds for all r ∈ (0,1) , where and in what follows r′ =
√

1− r2 .
Anderson et. al. [7] conjectured that

K (r)
log

( 4
r′
) >

9
8+ r2

for all r ∈ (0,1) . It was proved by Rühnau in [8].
In [9, 10], the authors proved that the double inequality

1+ λ r′2 <
K (r)
log

(
4
r′
) < 1+ μr′2

holds for all r ∈ (0,1) if and only if λ � π/(4log2)−1 and μ � 1/4.
Wang et. al. [11] proved that the double inequality

1+ αr′2 <
Ka(r)

sin(πa) log
(

eR(a)/2

r′
) < 1+ β r′2 (1.5)

holds for all a ∈ (0,1/2] and r ∈ (0,1) if and only if α � π/[R(a)sin(πa)]− 1 and
β � a(1−a) and the two-sided inequality

R2(x)
(1+ x− x2)R(x)−1

<
π

sin(πx)
<

(
1+ x− x2)R(x) (1.6)
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takes place for all x ∈ (0,1/2] , where

R(x) = R(x,1− x) = −2γ −ψ(x)−ψ(1− x). (1.7)

In [12], the authors proved that the function

J(r) =
r′2Ka(r)

Ka(r)
sin(πa) − log

(
eR(a)/2

r′
) (1.8)

is strictly decreasing from (0,1) onto (sin(πa)/[a(1−a)],π sin(πa)/[π−R(a)sin(πa)])
for all a ∈ (0,1/2] .

The main purpose of this paper is to prove that the function

Y (r) =
Ka(r)

sin(πa)r′2 log(eR(a)/2/r′)
− 1

r′2
(1.9)

is strictly increasing from (0,1) onto (π/[R(a)sin(πa)]−1,a(1−a)) for all a∈ (0,1/2] .

2. Lemmas

In order to prove our main result we need several lemmas, which we present in
this section.

LEMMA 2.1. (See [3, Theorem 1.25]) Let −∞ < a < b < ∞ , f ,g : [a,b] → R be
continuous on [a,b] and differentiable on (a,b) , and g′(x) �= 0 on (a,b) . If f ′(x)/g′(x)
is increasing (decreasing) on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

,
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.2. (See [13]) Let A(t) = ∑∞
k=0 aktk and B(t) = ∑∞

k=0 bktk be two real
power series converging on (−r,r) (r > 0 ) with bk > 0 for all k . If the non-constant
sequence {ak/bk} is increasing (decreasing) for all k , then the function A(t)/B(t) is
strictly increasing (decreasing) on (0,r) .

LEMMA 2.3. (See [14, Theorem 2.1]) Let A(t) = ∑∞
k=0 aktk and B(t) = ∑∞

k=0 bktk

be two real power series converging on (−r,r) and bk > 0 for all k , and HA,B(t) =
A′(t)B(t)/B′(t)−A(t) . Suppose that for certain m ∈ N , the non-constant sequence
{ak/bk} is increasing (decreasing) for 0 � k � m and decreasing (increasing) for k �
m. Then the function A(t)/B(t) is strictly increasing (decreasing) on (0,r) if and only
if HA,B(r−) � (�)0 . Moreover, if HA,B(r−) < (>)0 , then there exists t0 ∈ (0,r) such
that the function A(t)/B(t) is strictly increasing (decreasing) on (0,t0) and strictly
decreasing (increasing) on (t0,r) .
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LEMMA 2.4. (See [15, Theorem 9]) Let a < b, f and g be two differentiable
functions on (a,b) , and Hf ,g(x) = f ′(x)g(x)/g′(x)− f (x) . If f (b−) = g(b−) = 0 ,
g′(x) < 0 for x ∈ (a,b) , Hf ,g(a+) < 0 , and there exists c ∈ (a,b) such that f ′(x)/g′(x)
is strictly decreasing on (a,c) and strictly increasing on (c,b) , then f (x)/g(x) is
strictly increasing on (a,b) .

LEMMA 2.5. Let Y (r) be defined by (1.9). Then

lim
r→1−

Y (r) = a(1−a).

Proof. From (1.9) we clearly see that Y (r) can be rewritten as

Y (r) =
Ka(r)
sin(πa) − log eR(a)/2

r′

r′2Ka(r)
2Ka(r)

R(a)− log(1− r2)
. (2.1)

It follows from (1.3), (1.4) and the monotonicity of the function J(r) given by
(1.8) together with the identity Γ(a)Γ(1−a) = π/sin(πa) that

lim
r→1−

Ka(r)
sin(πa) − log eR(a)/2

r′

r′2Ka(r)
=

a(1−a)
sin(πa)

, (2.2)

lim
r→1−

2Ka(r)
R(a)− log(1− r2)

=
π

B(a,1−a)
=

πΓ(1)
Γ(a)Γ(1−a)

= sin(πa). (2.3)

Therefore, Lemma 2.5 follows easily from (2.1)–(2.3). �

LEMMA 2.6. Let {un}∞
n=1 and {vn}∞

n=1 be defined by

un = 1− Γ(a+n)Γ(1−a+n)
n!(n−1)!

, v1 = R(a)−1, vn =
1

n−1
(n � 2).

Then the the sequence {un/vn} is strictly increasing for n � 2 and a ∈ (0,1/2] .

Proof. Let a ∈ (0,1/2] , n � 2 and

hn =

(
n+1+a−a2

)
Γ(n+a)Γ(n+1−a)

(n+1)!(n−1)!
.

Then simple computations lead to

un+1

vn+1
− un

vn
= 1−hn, (2.4)

hn+1

hn
−1 =

a(1−a)(2−a)(a+1)
n(n+2)(n+1+a−a2)

> 0. (2.5)
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It follows from (1.2) that

n(n+1+a−a2)
(n+1)2 < hn =

n(n+1+a−a2)
n+1

Γ(n+a)
Γ(n+1)

Γ(n+1−a)
Γ(n+1)

<
n(n+1+a−a2)

n(n+1)
,

lim
n→∞

hn = 1. (2.6)

Therefore, Lemma 2.6 follows easily from (2.4)-(2.6). �

LEMMA 2.7. Let R(x) be defined by (1.7). Then

R(x) � 4log2

for all x ∈ (0,1/2] .

Proof. It follows from the function x �→ ξ (x) = 1/[x(1− x)]− R(x) is strictly
increasing form (0,1/2] onto (1,4−4log2] given in [11, Lemma 2.1] and the function
1/[x(1− x)] is strictly decreasing from (0,1/2] onto [4,∞) that R(x) = 1/[x(1− x)]−
ξ (x) is strictly decreasing from (0,1/2] onto [4log2,∞) . �

3. Main results

THEOREM 3.1. Let Y (r) be defined by (1.9). Then Y (r) is strictly increasing
from (0,1) onto (π/[R(a)sin(πa)]−1,a(1−a)) for all a ∈ (0,1/2] .

Proof. Let {un}∞
n=1 and {vn}∞

n=1 be defined as in Lemma 2.6, x = r2 ∈ (0,1) ,
f (x) = πF(a,1−a;1;x)/sin(πa)− [R(a)− log(1− x)] , g(x) = (1− x)[R(a)− log(1−
x)] , D+ = {a|u2/v2−u1/v1 � 0} and D− = {a|u2/v2−u1/v1 < 0} . Then from (1.1),
(1.4), (1.9) and the identity Γ(a)Γ(1−a) = π/sin(πa) we clearly see that

Y (r) =
f (x)
g(x)

, (3.1)

lim
x→1−

f (x) = lim
x→1−

g(x) = 0, (3.2)

lim
x→0+

f (x)
g(x)

=
π

R(a)sin(πa)
−1, (3.3)

f ′(x) =
π

sin(πa)

∞

∑
n=1

(a)n(1−a)n

n!(n−1)!
xn−1− 1

1− x
(3.4)

=
∞

∑
n=1

[
Γ(a+n)Γ(1−a+n)

n!(n−1)!
−1

]
xn−1 = −

∞

∑
n=1

unx
n−1,

g′(x) = 1−R+ log(1− x) = −(R−1)−
∞

∑
n=2

xn−1

n−1
= −

∞

∑
n=1

vnx
n−1, (3.5)
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f ′(x)
g′(x)

= ∑∞
n=1 unxn−1

∑∞
n=1 vnxn−1 . (3.6)

We divide the proof into two cases.
Case 1 a ∈ D+ . Then from Lemma 2.6 we know that the non-constant se-

quence {un/vn}∞
n=1 is increasing, and Lemma 2.2 and (3.6) lead to the conclusion that

f ′(x)/g′(x) is strictly increasing on (0,1) . It follows from Lemma 2.1 and (3.2) to-
gether with the monotonicity of f ′(x)/g′(x) that f (x)/g(x) is strictly increasing on
(0,1) . Therefore, the desired result follows from Lemma 2.5, (3.1) and (3.3) together
with the monotonicity of f (x)/g(x) .

Case 2 a∈D− . Then Lemma 2.6 implies that the non-constant sequence {un/vn}
is decreasing for 1 � n � 2 and increasing for n � 2.

We claim that Hf ′,g′(1−) = limx→1− [ f ′′(x)g′(x)/g′′(x)− f ′(x)] > 0 for all a ∈
(0,1/2] . Indeed, if there exists a0 ∈ (0,1/2] such that Hf ′,g′(1−) � 0, then Lemma
2.3 and (3.6) together with the piecewise monotonicity of the sequence {un/vn}∞

n=1
lead to the conclusion that f ′(x)/g′(x) is strictly decreasing on (0,1) . It follows from
Lemmas 2.1 and 2.5 together with (3.1)-(3.3) and the monotonicity of f ′(x)/g′(x) that
f (x)/g(x) is strictly decreasing on (0,1) and

a0(1−a0) < Y (r) <
π

R(a0)sin(πa0)
−1. (3.7)

We clearly see that inequality (3.7) contradicts with the second inequality of (1.6).
From Lemma 2.3 and Hf ′,g′(1−) > 0 together with (3.6) and the piecewise mono-

tonicity of the sequence {un/vn}∞
n=1 we know that there exists x0 ∈ (0,1) such that

f ′(x)/g′(x) is strictly decreasing on (0,x0) and strictly increasing on (x0,1) .
It follows from (1.1), (1.6), (3.4), (3.5) and Lemma 2.7 that

g′(x) = −[R(a)−1]− log
1

1− x
< 0 (3.8)

for a ∈ (0,1/2] and

lim
x→0+

Hf ,g(x) = lim
x→0+

[
f ′(x)
g′(x)

g(x)− f (x)
]

(3.9)

= lim
x→0+

⎡
⎣ π

sin(πa) ∑∞
n=1

(a)n(1−a)n
n!(n−1)! xn−1− 1

1−x

1−R(a)+ log(1− x)
(1− x)(R(a)− log(1− x))

⎤
⎦

− lim
x→0+

[
π

sin(πa)

∞

∑
n=0

(a)n(1−a)n

(n!)2 xn− (R(a)− log(1− x))

]

=
R(a)

(
πa(1−a)
sin(πa) −1

)
1−R(a)

−
(

π
sin(πa)

−R(a)
)

= −
(
1+a−a2

)
R(a)−1

R(a)−1

[
π

sin(πa)
− R2(a)

(1+a−a2)R(a)−1

]
< 0.
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From Lemma 2.4, (3.2), (3.8), (3.9) and the piecewise monotonicity of f ′(x)/g′(x)
we know that f (x)/g(x) is strictly increasing on (0,1) . Therefore, Theorem 3.1 fol-
lows from Lemma 2.5, (3.1) and (3.3) together with the monotonicity of f ′(x)/g′(x) .

�
Theorem 3.1 leads to Corollary 3.2 immediately.

COROLLARY 3.2. The double inequality (1.5) holds for all a ∈ (0,1/2] and r ∈
(0,1) if and only if α � π/[R(a)sin(πa)]−1 and β � a(1−a) .
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