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SEPARATION THEOREMS FOR NONCONVEX SETS

IN SPACES WITH NON–SYMMETRIC SEMINORM

G. E. IVANOV AND M. S. LOPUSHANSKI

(Communicated by Z. Páles)

Abstract. The theory of weakly convex sets in Banach spaces with non-symmetric seminorm is
developed. The separation theorem with sphere or (in a general case) with the boundary of a
shifted quasiball for two closed disjoint subsets of a Banach space, one of which is prox-regular
or weakly convex, and the other is the summand of a ball or quasiball is proven.

1. Introduction

The Hahn–Banach theorem on the separation of two convex disjoint sets with a
hyperplane is well-known in functional analysis. The duality theory, based on this
theorem, has many applications in optimization and other branches of mathematics. It
is easy to see that two non-convex disjoint sets in a general case can’t be separated by a
hyperplane. But if one of the sets is prox-regular, and the other is the summand of a ball
of a sufficiently small radius, these sets can be separated with a sphere (see Theorem
1.1 below).

Let E be a real normed vector space. For a set A ⊂ E by int A , A , and ∂A we
denote the interior, the closure, and the boundary of A ⊂ E , respectively. We use 〈p,x〉
to denote the value of the functional p ∈ E∗ at the vector x ∈ E . For r � 0 and a ∈ E
we define the ball with center a and radius r as Br(a) = {x ∈ E : ‖x− a‖ � r} . By
Br denote the ball with centre at the zero element of the space E : Br = Br(0) . The
Minkowski sum of the sets A ⊂ E and B ⊂ E is called the set

A+B = {a+b : a ∈ A, b ∈ B} .

The set C ⊂ E is called the summand of the set M ⊂ E , if there exists a set C1 ⊂ E
such that C+C1 = M .

The distance from x ∈ E to A ⊂ E is determined by the equality

ρ(x,A) = inf
a∈A

‖x−a‖. (1.1)

The metric projection of x ∈ E on A ⊂ E is called the set

P(x,A) = {a ∈ A : ‖x−a‖= ρ(x,A)}. (1.2)
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By ΩR(A) denote the R-tube around A ⊂ E :

ΩR(A) = {x ∈ E : 0 < ρ(x,A) < R}.

The principle notions of our study are prox-regular sets and weakly convex sets.
They date back to the notion of sets with positive reach, introduced by H. Federer [7].
The set A ⊂ R

n is called set with positive reach, if reach(A) > 0, where

reach(A) = sup{R > 0 | P(x,A) is a singleton ∀x ∈ ΩR(A)}.

Clark, Stern and Wolenski [4], extending the notion of positive reach sets on
Hilbert spaces, introduced the notion of proximally smooth sets as the sets A ⊂ E for
which the distance function ρ(·,A) is continuously differentiable on the set ΩR(A) for
some R > 0. R. Poliquin and R.-T. Rockafellar [12] introduced the notion of prox-
regularity in finite dimensional Euclidean space, and then this notion was considered
for sets in a Banach spaces by F. Bernard, L. Thibault and N. Zlateva [2]. A set A ⊂ E
is called uniformly R-prox-regular sets if

P(a+Rz,A) = {a} ∀a ∈ A, ∀z ∈ N(a,A) : ‖z‖ < 1,

where
N(a,A) = {z ∈ E : ∃t > 0 : a ∈ P(a+ tz,A)}

is the cone of proximal normals to the set A at the point a .
The convexity modulus of space E is determined by the equality

δ (t) = inf

{
1− ‖x+ y‖

2
: x,y ∈ B1, ‖x− y‖� t

}
, t ∈ [0,2]. (1.3)

The notion of convexity modulus was introduced by J. Clarkson [5]. The space E
is called uniformly convex, if δ (t) > 0 for all t ∈ (0,2] .

The smoothness modulus of the space E is called (see [6])

β (t) = sup

{‖x+ y‖+‖x− y‖
2

−1 : x,y ∈ E : ‖x‖ = 1, ‖y‖ � t

}
, t � 0. (1.4)

The space E is called uniformly smooth, if limt→+0
β (t)

t = 0.
As shown in [2, Theorem 6.2] a closed set A ⊂ E is uniformly R-prox-regular iff

the distance function ρ(·,A) is continuously differentiable on the set ΩR(A) provided
that the space E is uniformly convex and uniformly smooth with the moduli of power
type. So, in such spaces the notions of the uniform prox-regularity and the proximal
smoothness are equivalent.

THEOREM 1.1. (On separation with a sphere) Let E be a uniformly convex and
uniformly smooth Banach space, 0 < r < R, the set A ⊂ E be closed and uniformly
R-prox-regular, the set C ⊂ E be convex, closed and the summand of the ball Br ,
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int C �= /0 , A∩ int C = /0 . Then there exist points a,c ∈ E such that ‖a−c‖< R− r and
for any x ∈ A,y ∈ int C the inequalities

‖c− y‖< r < R < ‖a− x‖
hold. Geometrically it means that (see Fig. 1)

int C ⊂ int Br(c) ⊂ int BR(a) ⊂ E \A.

Figure 1: to Theorem 1.1.

Theorem 1.1 generalizes Theorem 1.18.2, obtained in monograph [8] for Hilbert
space and correlates with [1, Theorem 2.6] for Banach space with generating unit ball.

In the next section we shall consider the class of weakly convex sets with respect
to a non-symmetric seminorm or (in other terms) to a quasiball. In particular, if the
seminorm is a norm (and the quasiball is the unit ball), the class of weakly convex sets
coincides with the class of uniformly R-prox-regular sets with R = 1. The case of
unbounded quasiball is important in investigations of weakly convex functions, whose
epigraphs are weakly convex w.r.t. the epigraph of some convex function. In terms of
such concept of weakly convex functions one can characterize well-posedness of the
infimal convolution problem (see [9]). We shall prove Theorem 2.1 on separation with
the boundary of a shifted quasiball and as a corollary we shall obtain Theorem 1.1 (see
Remark 2.14).

2. Separation Theorems for weakly convex sets w.r.t. a quasiball

A closed convex set M ⊂ E , M �= E such that 0 ∈ int M is called quasiball.
The Minkowski function of the quasiball M ⊂ E is the function μM : E → [0;+∞)

given by the equality

μM(x) = inf{t > 0 : x ∈ tM} ∀x ∈ E.

The function μ : E → R is called sublinear, if it is positive homogeneous:

μ(λx) = λ μ(x) ∀x ∈ E ∀λ � 0



740 G. E. IVANOV AND M. S. LOPUSHANSKI

and subadditive:
μ(x+ y) � μ(x)+ μ(y) ∀x,y ∈ E.

A sublinear non-negative function is called a non-symmetric seminorm.

REMARK 2.1. The continuous function μ : E → [0;+∞) is a non-symmetric semi-
norm iff it is the Minkowski function of a quasiball.

REMARK 2.2. For any quasiball M ⊂ E and for any vector x ∈ E the inequal-
ity μM(x) � 1 is equivalent to the inclusion x ∈ M , and the equality μM(x) = 1 is
equivalent to the inclusion x ∈ ∂M .

Let M ⊂ E be a quasiball. The M-distance from set C ⊂ E to set A ⊂ E is called

ρM(C,A) = inf
a∈A
c∈C

μM(c−a). (2.1)

In particular, the M -distance from point x ∈ E to set A ⊂ E is determined by the
equality

ρM(x,A) = inf
a∈A

μM(x−a). (2.2)

The M-projection of x ∈ E on A ⊂ E is called the set

PM(x,A) = A
⋂

(x−ρM(x,A)M). (2.3)

The cone of proximal normals to set A ⊂ E at the point a ∈ A w.r.t. the quasiball
M ⊂ E is called the cone

NM(a,A) = {z ∈ E : ∃t > 0 : a ∈ PM(a+ tz,A)}. (2.4)

Denote
N1

M(a,A) = {z ∈ NM(a,A) : μM(z) = 1}. (2.5)

The set A ⊂ E is called weakly convex w.r.t. the quasiball M ⊂ E , if

a+ z �∈ A+ int M ∀a ∈ A, ∀z ∈ N1
M(a,A). (2.6)

REMARK 2.3. If R > 0, M = BR , then for any x ∈ E , A ⊂ E the equalities

μM(x) =
‖x‖
R

, ρM(x,A) =
ρ(x,A)

R
, PM(x,A) = P(x,A), NM(x,A) = N(x,A)

hold.

The set M ⊂ E is called strictly convex, if for any distinct points x,y ∈ M the
inclusion x+y

2 ∈ int M holds.

REMARK 2.4. If R > 0 and M = BR is a strongly convex ball, then the class
of sets, weakly convex w.r.t. the quasiball M coincides with the class of uniformly
R-prox-regular sets.
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The set M ⊂ E is called boundedly uniformly convex, if for any positive numbers
R and ε the inequality δM(ε,R) > 0 holds, where

δM(ε,R) = sup

{
δ ∈

[
0,

ε
2

]
: ‖x− y‖� ε ⇒ Bδ

(
x+ y

2

)
⊂ M ∀x,y ∈ M∩BR

}
.

(2.7)

REMARK 2.5. If the set M ⊂ E is boundedly uniformly convex then it is strictly
convex.

REMARK 2.6. If M =Br , then for R� r > 0, ε > 0 the equality δM(ε,R) = δ (ε)
holds. Therefore the ball in the uniformly convex space E is boundedly uniformly
convex.

REMARK 2.7. A boundedly uniformly convex set may not be bounded. For ex-
ample, if E is a uniformly convex space and the set {(x,y) ∈ E ×R : y � ‖x‖2} is
boundedly uniformly convex in the space E ×R with the norm ‖(x,y)‖ = ‖x‖+ |y| .

For any quasiball M ⊂ E denote

σM = inf
x∈∂M

‖x‖. (2.8)

REMARK 2.8. For any quasiball M ⊂ E the inequality σM > 0 and the inclusion
BσM ⊂ M hold.

REMARK 2.9. The Minkowski function of any quasiball M ⊂ E satisfies the Lip-
schitz condition with constant 1

σM
on E . For any set A ⊂ E the function ρM(·,A)

satisfies the Lipschitz condition on E with the same constant.

The quasiball M ⊂ E is called boundedly uniformly smooth, if

lim
t→+0

βM(t,R)
t

= 0 ∀R > σM, (2.9)

where σM is defined by the equality (2.8) and for any t � 0 and R > σM

βM(t,R) = sup

{
μM(x+ ty)+ μM(x− ty)

2
−1 : x ∈ ∂M∩BR, y ∈ B1

}
. (2.10)

REMARK 2.10. If M = Br , then for R > r , t � 0 the equality βM(t,R) = β (t)
holds. Therefore the ball in the uniformly smooth space E is boundedly uniformly
smooth.

The set M ⊂ E is called parabolic, if for any vector b ∈ E the set
(
b+ 1

2M
) \M

is bounded (see [10]).

REMARK 2.11. If a set M ⊂ E is bounded, it is parabolic.
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The term “parabolic” is due to the observation that the epigraph of the parabola
y = x2 is parabolic while the epigraph of the hyperbola y = 1

x , x > 0 is not parabolic.
The set A ⊂ E is called closed w.r.t. the quasiball M or M-closed, if for any

x ∈ E \A the inequality ρM(x,A) > 0 holds.
The set A ⊂ E is called M-quasibounded, if it is M -closed and for any R � 0 the

inequality κ(R) < +∞ holds, where

κ(R) = sup
{‖z‖ : z ∈ N1

M(a,A), a ∈ A∩BR
}

. (2.11)

REMARK 2.12. If the quasiball M is bounded, then any closed set A ⊂ E is M -
quasibounded.

Let M ⊂ E be a quasiball. By W C (M) denote the class of closed subsets of the
space E which are weakly convex w.r.t. the quasiball M , and by S C (M) the class of
convex closed subsets of the space E which are summands of the quasiball M .

THEOREM 2.1. (On separation with the boundary of a shifted quasiball) Let
M ⊂ E be a parabolic and boundedly uniformly convex quasiball. Let r ∈ (0,1) ,
A ∈ W C (M) , C ∈ S C (−rM) . In addition, let at least one of the following condi-
tions hold:

1) ρM(C,A) > 0 or
2) int C �= /0 , A∩ int C = /0 , the quasiball M is boundedly uniformly smooth, the

set A is M -quasibounded.
Then there exist a,c ∈ E such that μM(c−a) � 1− r and for any x ∈ A, y ∈ int C

μM(c− y) < r < 1 � μM(a− x).

According to Remark 2.2 geometrically it means that (see Fig. 2)

int C ⊂ c− int rM ⊂ a− int M ⊂ E \A.

Figure 2: to Theorem 2.1. Figure 3: to Remark 2.13.
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REMARK 2.13. The assumption of M -quasiboundedness of the set A in item 2)
of Theorem 2.1 is essential. Indeed, let us consider in Euclidean space E = R

2 the
quasiball M = {(x,y)∈R

2 : y � x2−1} and the sets A= {(x,y)∈R
2 : y� 2x2−1, x �

0} , C = {(x,y) ∈ R
2 : y � 1−2x2, x � 0} . Then for r = 1

2 the assumptions of item 2
of Theorem 2.1 hold except for the M -quasiboundedness of the set A . And the sets A
and C cannot be separated with the boundary of the shifted quasiball M (see Fig. 3).

REMARK 2.14. Due to Remarks 2.4, 2.6, 2.10–2.12 Theorem 1.1 follows from
Theorems 2.1.

3. Auxiliary results

The support function of the set M ⊂ E is called the function

s(p,M) = sup
x∈M

〈p,x〉, p ∈ E∗. (3.1)

LEMMA 3.1. Let M ⊂ E be a quasiball, p ∈ E∗ , s(p,M) < +∞ . Then

〈p,x〉 � μM(x)s(p,M) ∀x ∈ E, ∀p ∈ E∗.

Proof. Fix an arbitrary vector x∈E and the functional p∈E∗ such that s(p,M) <
+∞ . If μM(x) = 0, then for any t > 0 due to Remark 2.2 the inclusion x

t ∈ M holds.
As sup

t>0

〈
p, x

t

〉
� s(p,M) < +∞ , then 〈p,x〉 � 0, and the desired inequality holds. Let

μM(x) > 0. Then the vector x1 = x
μM(x) satisfies the inclusion x1 ∈ M and, therefore,

〈p,x〉
μM(x) = 〈p,x1〉 � s(p,M) . �

LEMMA 3.2. ([11, Lemma 3.1]) Let the set C⊂E be the summand of the strongly
convex quasiball M ⊂ E . Then

C− c⊂ M− z ∀c ∈C, ∀z ∈ N1
M(c,C).

Further the following properties of weakly convex sets will be needed.

LEMMA 3.3. ([9, Lemma 5.4]) Let M ⊂ E be a parabolic and a boundedly
uniformly convex quasiball. Let A ∈ W C (M) and let there exist x ∈ E such that
ρM(x,A) > 0 . Then A+ int M �= E .

THEOREM 3.1. ([9, Theorem 2.5]) Let M ⊂ E be a parabolic and boundedly
uniformly convex quasiball. Let A ∈ W C (RM) , R > 0 . Let x ∈ E be such that 0 <
ρM(x,A) < R. Then PM(x,A) is a singleton.

Given a function f : A → R∪{+∞} , let us consider the problem

min
x∈E

f (x). (3.2)
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A sequence {xk} ⊂ E is said to be a minimizing sequence if

lim
k→∞

f (xk) = inf
x∈E

f (x).

The problem (3.2) is called well posed, if every minimizing sequence of this prob-
lem converges.

Due to the continuity of the Minkowski function, if the problem

min
a∈A, c∈C

μM(c−a) (3.3)

is well-posed, then the minimizing sequences converge to its solution and the minimum
is attained at a single pair (a,c) .

THEOREM 3.2. ([11, Theorem 4.1]) Let the quasiball M in a Banach space E
be parabolic and boundedly uniformly convex. Let the set A ⊂ E be closed an weakly
convex with respect to the quasiball M . Let the set C ⊂ E be the summand of the
quasiball −rM , with 0 < r < 1 . Let 0 < ρM(C,A) < 1− r . Then the problem (3.3) is
well posed.

LEMMA 3.4. Let M ⊂ E be a parabolic and boundedly uniformly convex qua-
siball. Let the set C ⊂ E be the summand of the quasiball −rM and let there exist a
vector c1 ∈E such that c1+C⊂−rM . Let the set A∈W C (RM) be M-quasibounded,
where 0 < r < R. Let ρM(C,A) = 0 , A

⋂
int C = /0 and int C �= /0 . Then the set A

⋂
C

is a singleton.

Lemma 3.4 is implied by Theorem 4.2 from [11].

LEMMA 3.5. ([10, Lemma 5.1]) Let the set M ⊂ E be convex and parabolic,
0 < λ1 < λ2 , x1,x2 ∈ E , then the set (λ1M + x1)\ (λ2 int M + x2) is bounded.

LEMMA 3.6. Let M ⊂ E be a quasiball, A∈W C (M) , a0 ∈ ∂A, z∈ N1
M(a0,A)∩

BR , where R > σM . Let p ∈ E∗ , 〈p,z〉 = s(p,M) = 1 . Then

〈p,a−a0〉 � 2βM(‖a−a0‖,R) ∀a ∈ A,

where βM is the modulus of smoothness of M , determined by the equality (2.10).

Proof. Fix an arbitrary a∈ A . As z∈N1
M(a0,A)∩BR , A∈W C (M) , then accord-

ing to (2.6) we have a0 + z �∈ A+ int M . Therefore, a0 + z− a �∈ int M , i.e. μM(a0 +
z−a) � 1. Using the equality (2.10) and the inclusion z ∈ N1

M(a0,A) ⊂ ∂M , we get

βM(‖a−a0‖,R) � μM(z+a0−a)+ μM(z+a−a0)
2

−1 � μM(z+a−a0)−1
2

. (3.4)

On the other hand, Lemma 3.1 and the equality s(p,M) = 1 imply that 〈p,z+a−a0〉�
μM(z+a−a0) . This together with the equality 〈p,z〉= 1 and the inequality (3.4) yields
the required inequality. �
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REMARK 3.1. For any R > σM the function βM(·,R) is a convex function as the
supremum of convex functions. This and the equality βM(0,R) = 0 and the inequality

βM(t,R) � 0 imply that the function t �→ βM(t,R)
t non-strictly increases for any R > σM .

LEMMA 3.7. Let M ⊂ E be a parabolic and boundedly uniformly convex qua-
siball. Let the M-quasibounded set A ∈ W C (M) contain the points x0 , x1 such
that for any λ ∈ (0,1) the inequality ‖x1− x0‖min{λ ,1−λ} < σM holds, where the
number σM is defined by equality (2.8). Let xλ = (1− λ )x0 + λx1 , a ∈ PM(xλ ,A) ,
R � max{σM +1,κ(‖a‖)} , κ = κ(‖a‖)

σM
, where the function κ(·) is defined by equality

(2.11). Then the inequality

ρM(xλ ,A) � 4λ (1−λ )βM((1+κ)‖x1− x0‖,R)

holds.

Proof. If ρM(xλ ,A) = 0, then the required inequality holds trivially. Let us sup-
pose that ρM(xλ ,A) > 0. According to inequalities (2.4), (2.5) the vector z = xλ−a

ρM(xλ ,A)

satisfies the inclusion z ∈ N1
M(a,A) . According to equality (2.11) we get

‖z‖ � κ(‖a‖) � R. (3.5)

As z ∈ ∂M , then, according to the Hahn–Banach separation theorem, there exists a
functional p ∈ E∗ such that 〈p,z〉 = s(p,M) = 1. Lemma 3.6 implies that

〈p,x0−a〉� 2βM(‖x0−a‖,R), 〈p,x1−a〉� 2βM(‖x1−a‖,R).

Therefore,

〈p,xλ −a〉 = (1−λ )〈p,x0−a〉+ λ 〈p,x1−a〉 (3.6)

� 2(1−λ )βM(‖x0−a‖,R)+2λ βM(‖x1−a‖,R).

According to Remark 2.9, we get

ρM(xλ ,A) � min{μM(xλ − x0),μM(xλ − x1)}
� min{‖xλ − x0‖,‖xλ − x1‖}

σM
=

‖x1− x0‖
σM

min{λ ,1−λ}< 1,

and, using inequality (3.5), we have

‖xλ −a‖ � κ(‖a‖)ρM(xλ ,A) � κ‖x1− x0‖min{λ ,1−λ}.
Therefore,

‖x0−a‖ � ‖x0− xλ‖+‖xλ −a‖� λ (1+κ)‖x1− x0‖,
‖x1−a‖� ‖x1− xλ‖+‖xλ −a‖� (1−λ )(1+κ)‖x1− x0‖.

This and inequalities (3.6) imply that

〈p,xλ −a〉� 2(1−λ )βM(λ (1+κ)‖x1− x0‖,R)+2λ βM((1−λ )(1+κ)‖x1− x0‖,R).
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Using Remark 3.1, we obtain the inequality

〈p,xλ −a〉� 4λ (1−λ )βM((1+κ)‖x1− x0‖,R). (3.7)

As 〈p,z〉 = 1, then 〈p,xλ − a〉 = ρM(xλ ,A) . This and inequalities (3.7) imply the
required inequality. �

LEMMA 3.8. Let M ⊂ E be a parabolic and boundedly uniformly convex quasi-
ball. Let the set A ∈ W C (M) , be M-closed, a0 ∈ ∂A. Then

η := sup
{
‖a‖ : a ∈ PM(x,A), x ∈ B 1

4 σM
(a0)

}
< +∞. (3.8)

Proof. Let x ∈ B 1
4 σM

(a0) , a ∈ PM(x,A) . Then

μM(a0−a) � μM(x−a)+ μM(a0− x) = ρM(x,A)+ μM(a0− x)
� μM(x−a0)+ μM(a0− x).

The last inequality is implied by the fact that a0 ∈ ∂A . As {x−a0,a0 − x} ⊂ B 1
4 σM

⊂
1
4M , then μM(x−a0) � 1

4 and μM(a0−x) � 1
4 . Therefore, μM(a0−a) � 1

2 , and, thus,
a ∈ A∩ (

a0− 1
2M

)
. Therefore, it is sufficient to show that the set A∩ (

a0− 1
2M

)
is

bounded.
As the set A is M -closed and A �= E , there exists x0 ∈ E such that ρM(x0,A) > 0.

Lemma 3.3 implies that there exists w ∈ E \ (A + int M) . Therefore, A ⊂ E \ (w−
int M) , and, thus, A∩(

a0− 1
2M

)⊂ (
a0− 1

2M
)\ (w− int M) . Using the parabolicity of

the set M , by Lemma 3.5 we obtain the boundedness of the set A∩ (
a0− 1

2M
)
. �

4. Convexity of the contingent cone

The contingent cone to the set A ⊂ E at a0 ∈ E was introduced by Bouligand [3]
and is determined by the equality

T (a0,A) =
⋂
ε>0

⋂
δ>0

⋃
t∈(0,δ ]

(
1
t
(A−a0)+Bε

)
.

REMARK 4.1. The vector v belongs to T (a0,A) iff there exist sequences {vk} ⊂
E and {tk} ⊂ (0,+∞) such that limk→∞ vk = v , limk→∞ tk = 0 and a0 + tkvk ∈ A for all
k ∈ N .

LEMMA 4.1. Let M ⊂ E be parabolic, boundedly uniformly convex and bound-
edly uniformly smooth, the set A ∈ W C (M) is M -quasibounded, a0 ∈ ∂A. Then the
cone T (a0,A) is convex.
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Proof. Let u,v ∈ T (a0,A) . We have to prove the inclusion

u+ v∈ T (a0,A). (4.1)

According to Remark 4.1, there exist sequences {uk} ⊂ E , {vk} ⊂ E , {tk} ⊂ (0,+∞)
and {τk} ⊂ (0,+∞) such that

lim
k→∞

uk = u, lim
k→∞

vk = v, lim
k→∞

tk = 0, lim
k→∞

τk = 0, (4.2)

a0 + tkuk ∈ A and a0 + τkvk ∈ A for all k ∈ N . For any k ∈ N denote

ξk =
tkτk

tk + τk
, yk = a0 + ξk(uk + vk), ρk = ρM(yk,A).

If for any index k0 there exists an index k � k0 such that yk ∈ A , then Remark 4.1 and
relation (4.2) imply inclusion (4.1). Therefore, we will suppose that yk �∈ A for all k ,
starting with k0 . Due to the M -quasiboundedness of the set A , we obtain the inequality
ρk > 0 for all k � k0 .

As 0 < ξk < tk → 0, τk → 0 for k → ∞ , and the sequences {uk} and {vk} are
bounded, then yk → a0 and ρk → 0 as k → ∞ . Therefore there exists an index k1 � k0

such that

ρk < 1, yk ∈ B 1
4 σM

(a0), ‖tkuk − τkvk‖ < σM ∀k � k1.

Theorem 3.1 implies that for any k � k1 there exists a point ak ∈ PM(yk,A) . According
to relation (3.8) we have supk�k1

‖ak‖ � η < +∞ . For any fixed k � k1 Lemma 3.7,
applied to x0 = a0 + tkuk , x1 = a0 + τkvk , λ = tk

tk+τk
, implies that

ρk � 4ξkεk, (4.3)

where

εk =
βM

(
(1+κ)‖tkuk − τkvk‖,R

)
tk + τk

, κ =
κ(η)
σM

, R = max{σM +1,κ(η)}.

Using relation (2.9) and the boundedness of sequences {uk} and {vk} , we obtain that

lim
k→∞

εk = 0. (4.4)

For k � k1 denote zk = yk−ak
ρk

. As ak ∈ PM(yk,A) , then zk ∈ N1
M(ak,A) . This and the

M -quasiboundedness of A imply that supk�k1
‖zk‖ = C < +∞ . Using inequality (4.3),

for any k � k1 we get

‖yk −ak‖ = ‖zk‖ρk � Cρk � 4Cξkεk.

Denoting wk = ak−a0
ξk

, we obtain the inequality ‖uk +vk−wk‖� 4Cεk as k � k1 . Using

(4.4) and (4.2), we get wk → u + v as k → ∞ . As ak = a0 + ξkwk ∈ A , then relation
(4.1) holds. �
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5. Other properties of the contingent cone

LEMMA 5.1. Let the set A ⊂ E and the convex set C ⊂ E be such that 0 ∈ A∩C,
int C �= /0 , A∩ intC = /0 . Then T (0,A)∩ intC = /0 .

Proof. Suppose the contrary: there exists a vector v ∈ T (0,A)∩ int C . As v ∈
int C , there exists δ > 0 such that Bδ (v) ⊂ int C . As v ∈ T (0,A) , there exists u ∈
Bδ (v) and t ∈ (0,1) such that tu ∈ A . On the other hand, the inclusions u ∈ Bδ (v) ⊂
int C , 0∈C and the convexity of C imply that tu∈ int C . This contradicts the assump-
tion A∩ intC = /0 . �

LEMMA 5.2. Let M ⊂ E be a parabolic, boundedly uniformly convex and bound-
edly uniformly smooth quasiball. Let the set A ∈ W C (M) be M-quasibounded and
0 ∈ ∂A. Then there exist positive numbers δ ,C1,C2 and number R > σM such that for
any non-zero vector a∈ A∩Bδ there exists a non-zero vector v∈ T (0,A) that satisfies
the inequality

‖v−a‖� C1βM

(
C2‖a‖,R

)
, (5.1)

where the function βM(·) is defined by equality (2.10).

Proof. Using the function κ(·) , defined by formula (2.11) and the number η ,
given by the equality (3.8), denote

κ =
κ(η)
σM

, R = max{σM +1,κ(η)}. (5.2)

For any t > 0 define γM(t) = βM((1+κ)t,R)
t . Remark 3.1 implies that function γM(·)

non-strictly increases. Relation (2.9) implies that lim
t→+0

γM(t) = 0.

Therefore there exists a positive number δ � min
{σM

2 ,η
}

such that

8RγM(δ ) � 1. (5.3)

Fix an arbitrary non-zero vector a ∈ A∩Bδ . Suppose that a0 = a , δ0 = ‖a0‖ . As
lim

t→+0
γM(t) = 0, then for any k ∈ N there exists a number δk ∈ (0,δ ] such that

γM(δk) � γM(δ0)
2k . (5.4)

Let for some k ∈ N∪{0} be given a vector ak ∈ A such that

0 < ‖ak‖ � δk. (5.5)

Fix any λk ∈ (0,1) such that
2λk‖ak‖ < δk+1. (5.6)

As ‖λkak‖ <
δk+1

2 � δ
2 � σM

4 , Remark 2.9 implies the inequalities ρM(λkak,A) �
‖λkak‖

σM
< 1

4 . Therefore, according to Theorem 3.1, there exists ak+1 ∈ PM(λkak,A) .
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Inequality ‖λkak‖ < σM
4 and equality (3.8) imply the inequality ‖ak+1‖ � η . From

Lemma 3.7, applied to x0 = 0, x1 = ak , λ = λk , a = ak+1 , and equality γM(t) =
βM((1+κ)t,R)

t , we obtain

ρM(λkak,A) � 4λkβM((1+κ)‖ak‖,R) = 4λk‖ak‖γM(‖ak‖). (5.7)

Equality (2.11) implies that ‖λkak − ak+1‖ � κ(η)μM(λkak − ak+1) � RμM(λkak −
ak+1) . This, inequality (5.7), and the equality μM(λkak − ak+1) = ρM(λkak,A) imply
that

‖λkak −ak+1‖ � RμM(λkak −ak+1) � 4Rλk‖ak‖γM(‖ak‖). (5.8)

As, according to Remark 3.1, the inequality γM(‖ak‖) � γM(δ ) holds, inequality (5.3)

implies that ‖λkak − ak+1‖ � λk‖ak‖
2 . Therefore, using inequality (5.6), we obtain the

chain of inequalities

0 <
1
2

λk‖ak‖ � ‖ak+1‖ � 3
2

λk‖ak‖ < δk+1.

Therefore, 0 < ‖ak+1‖ � δk+1 and we may continue the process of constructing the
sequence ak . Thus, the recursively constructed sequence {ak}∞

k=0 ⊂ A is such that for
any k ∈ N∪{0} inequalities (5.5) and (5.8) hold.

For any k ∈ N∪{0} the chain of inequalities∥∥∥∥ ak+1

‖ak+1‖ − ak

‖ak‖
∥∥∥∥ �

∥∥∥∥ ak+1

‖ak+1‖ − ak+1

λk‖ak‖
∥∥∥∥+

∥∥∥∥ ak+1

λk‖ak‖ − ak

‖ak‖
∥∥∥∥ � 2‖λkak −ak+1‖

λk‖ak‖ ,

relations (5.4), (5.5), (5.8) and Remark 3.1 imply that∥∥∥∥ ak+1

‖ak+1‖ − ak

‖ak‖
∥∥∥∥ � 8RγM(‖ak‖) � 8RγM(δk) � 8RγM(δ0)

2k
.

Therefore,
∥∥∥∥ am

‖am‖ − an

‖an‖
∥∥∥∥ �

m−1

∑
k=n

∥∥∥∥ ak+1

‖ak+1‖ − ak

‖ak‖
∥∥∥∥ � RγM(δ0)

2n−4 ∀n ∈ N∪{0}, ∀m > n.

Thus, the sequence
{

ak
‖ak‖

}
is a Cauchy sequence and, therefore, converges to some

v0 ∈ E . Moreover,

∥∥∥∥v0− a
δ0

∥∥∥∥ � 16RγM(δ0) =
16RβM

(
(1+κ)δ0,R

)
δ0

.

Therefore, vector v = δ0v0 satisfies inequality (5.1) as C1 = 16R , C2 = 1 + κ . As
ak ∈ A , ak

‖ak‖ → v0 , ‖ak‖ → 0 when k → ∞ , we have that v0 ∈ T (0,A) and, therefore,
v ∈ T (0,A) . �

Remind that the effective domain of a function f : E → R∪{+∞} is

dom f = {x ∈ E | f (x) ∈ R}.
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LEMMA 5.3. ([10, Lemma 5.2]) Let the set M ⊂ E be parabolic. Then
1) for any functional p ∈ dom s(·,M) \ {0} the set {x ∈ M : 〈p,x〉 � −1} is

bounded;
2) the set dom s(·,M)\ {0} is open.

LEMMA 5.4. ([9, Lemma 4.5(ii)]) If in the space E there exists a parabolic
boundedly uniformly convex quasiball, then the space E is reflexive.

LEMMA 5.5. ([9, Lemma 7.2]) Let M ⊂ E be a boundedly uniformly convex
and parabolic quasiball. Let the functional p ∈ E∗ \ {0} and the bounded sequence
{wk} ⊂ ∂M be such that limk→∞〈p,wk〉 = s(p,M) < +∞ . Then the sequence {wk}
converges.

LEMMA 5.6. Let M ⊂E be a parabolic, boundedly uniformly convex, and bound-
edly uniformly smooth quasiball, let the set A∈W C (M) be M-quasibounded, 0∈ ∂A.
Let the functional p ∈ E∗ satisfy the equality s(p,T (0,A)) = 0 . Then

1) s(p,M) < +∞;
2) if z ∈ ∂M satisfies the equalities 〈p,z〉 = s(p,M) = 1 , then 0 ∈ PM(z,A) .

Proof. Fix an arbitrary z∈M such that 〈p,z〉> 0. If for any k0 there exists a num-
ber k � k0 such that z

k ∈ A , then z∈ T (0,A) . Therefore, 0 < 〈p,z〉� s(p,T (0,A)) = 0.
The contradiction obtained proves the existence of a number k0 such that z

k �∈ A for all
k � k0 . This and the M -quasiboundedness of set A imply that ρM

(
z
k ,A

)
> 0 as k � k0 .

As 0 ∈ A , we get

ρM

( z
k
,A

)
� μM

( z
k

)
� 1

k
∀k ∈ N. (5.9)

Theorem 3.1 implies that for any k > k0 there exists ak ∈ PM
(

z
k ,A

)
. For any k > k0

denote

wk =
z
k −ak

μM
(

z
k −ak

) . (5.10)

Choose an index k1 > k0 such that ‖z‖
k1

< σM
4 . Then, according to equality (3.8), we get

supk�k1
‖ak‖ � η . Equality (2.11) and the M -quasiboundedness of set A imply that

‖wk‖ � κ(η) < +∞ ∀k � k1.

This and relations (5.9), (5.10), and equality μM
(

z
k −ak

)
= ρM

(
z
k ,A

)
imply that

∥∥∥ z
k
−ak

∥∥∥ � κ(η)
k

∀k � k1. (5.11)

Therefore,

‖ak‖ �
∥∥∥ z

k
−ak

∥∥∥+
‖z‖
k

� κ(η)+‖z‖
k

→ 0, k → ∞. (5.12)
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Lemma 5.2 implies that there exist an index k2 � k1 , positive numbers C1,C2 and
number R > σM such that, for any k � k2 there exists a vector vk ∈ T (0,A) that satisfies
the inequality

‖ak − vk‖ � εk := C1βM(C2‖ak‖,R). (5.13)

Relations (2.9), (5.12) imply that

kεk = C1kβM

(
C2‖ak‖,R

)
� C1kβM

(
C2(κ(η)+‖z‖)

k
,R

)
→ 0, k → ∞. (5.14)

As vk ∈ T (0,A) , we obtain that 〈p,vk〉 � s(p,T (0,A)) = 0. Therefore, according to
inequality (5.13), we have

〈p,ak〉 � 〈p,ak − vk〉 � ‖p‖ · ‖ak− vk‖ � εk‖p‖ ∀k � k2.

Thus, 〈
p,

z
k

〉
�

〈
p,

z
k
−ak

〉
+ εk‖p‖ ∀k � k2. (5.15)

Using inequality (5.11), we obtain the inequalities

〈p,z〉 �
(∥∥∥ z

k
−ak

∥∥∥+ εk

)
k‖p‖ � (κ(η)+ kεk)‖p‖ ∀k � k2.

Passing to the limit as k → ∞ , taking into account relations (5.14), we obtain that

〈p,z〉 � κ(η)‖p‖, (5.16)

where κ(·) and the number η are defined by equalities (2.11) and (3.8) accordingly,
and, therefore, κ(η) does not depend on point z . If 〈p,z〉 � 0, then inequality (5.16)
also holds. Thus, inequality (5.16) holds for any z∈M . Therefore, s(p,M) � κ(η)‖p‖
< +∞ . This proves the first assertion of the Lemma.

Let us prove the second assertion. Let z ∈ ∂M satisfy the equalities 〈p,z〉 =
s(p,M) = 1. Using inequality (5.15), we have

〈
p,

z
k
−ak

〉
�

〈
p,

z
k

〉
− εk‖p‖ =

1− kεk‖p‖
k

∀k � k2.

Relation (5.14) implies that there exists an index k3 � k2 such that kεk‖p‖ < 1 for all
k � k3 . Using the equality μM

(
z
k −ak

)
= ρM

(
z
k ,A

)
and the relations (5.9), (5.10), we

obtain that

s(p,M) � 〈p,wk〉 =

〈
p, z

k −ak
〉

μM
(

z
k −ak

) � 1− kεk‖p‖
k μM

(
z
k −ak

) � 1− kεk‖p‖ ∀k � k2.

As wk ∈ M then, according to (5.14), we have

s(p,M) � 〈p,wk〉 � 1− kεk‖p‖→ 1 = s(p,M), k → ∞.

According to Lemma 5.3(1), the sequence {wk} is bounded. Therefore, in view of
Lemma 5.5, this sequence converges to some vector w ∈ E . In addition, w ∈ M and
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〈p,w〉 = s(p,M) = 〈p,z〉 . Taking into consideration the strict convexity of M , we
obtain the equality w = z . Thus,

lim
k→∞

wk = z. (5.17)

As ak ∈ PM
(

z
k ,A

)
, according to equalities (2.4), (2.5) we have wk ∈ N1

M(ak,A) . Thus,
taking into consideration the inclusion A ∈ W C (M) and formula (2.6), we have ak +
wk �∈ A + int M , i.e. ρM(ak + wk,A) = 1. Using (5.12), (5.17), and the continuity of
function ρM(·,A) , we obtain the equality ρM(z,A) = 1, i.e. 0 ∈ PM(z,A) . �

For any set X ⊂ E and any functional p ∈ E∗ consider the set

Exp(p,X) = {x ∈ X : 〈p,x〉 = s(p,X)}. (5.18)

REMARK 5.1. Definition (5.18) and formula s(p,X1 + X2) = s(p,X1)+ s(p,X2)
imply that

Exp(p,X1 +X2) = Exp(p,X1)+Exp(p,X2) ∀X1,X2 ⊂ E, ∀p ∈ E∗.

6. Proof of Theorem 2.1

1) Let ρM(C,A) > 0.
a) First, suppose that ρM(C,A) < 1− r . By Theorem 3.2 the minimum (3.3) is

attained at a single pair of points a0 ∈ A,c0 ∈C . Therefore,

a0 ∈ PM(c0,A), c0 ∈ P−M(a0,C).

Denote w = c0−a0
μM(c0−a0)

. As A ∈ W C (M) , then, according to (2.6), we have

a0 +w �∈ A+ int M.

Lemma 3.2 implies that
C ⊂ c0− r(M−w).

Let c = c0 + rw, a = a0 +w . Then μM(a− x) � 1 for all x ∈ A and μM(c− y) � r
for all y ∈C . It remains to prove that μM(a− c) < (1− r) . The definition of vector w
implies that

μM(a− c) = μM(a0− c0 +(1− r)w) = μM ((1− r− μM(c0−a0))w)
= 1− r− μM(c0 −a0) < 1− r.

b) Let now ρM(C,A) � 1− r . Inclusion C ∈ S C (−rM) implies that there exists
a set C′ ⊂ E such that C+C′ = −rM . Fix c0 ∈C′ and for any t ∈ [0,1] consider the
set Ct = C+ t(C′ − c0) . Suppose that ρM(C1,A) � 1− r . As C1 =Ct |t=1 = −c0− rM ,
then ρM(−c0 − rM,A) � 1− r . Therefore, (−c0− rM)∩ (A+(1− r) int M) = /0 , and,
thus, −c0 �∈ A+ int M . Denoting a = c = −c0 , we obtain the inclusions we needed to
prove. Let, at last, ρM(C1,A) < 1− r . As function t �→ ρM(Ct ,A) is continuous and
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ρM(C0,A) = ρM(C,A) � 1− r > 0, there exists τ ∈ (0,1] such that 0 < ρM(Cτ ,A) <
1− r . Note that Cτ ∈ S C (−rM) . In view of the assertion, proven in part a), there
exist a,c ∈ E such that

int Cτ ⊂ c− int rM ⊂ a− int M ⊂ E \A.

As C ⊂Cτ , we obtain the inclusions to be proven.
2) Let the assumptions of item 2) of Theorem 2.1 hold. If ρM(C,A) > 0, then

the desired result was obtained in the previous part. Therefore, let us suppose that
ρM(C,A) = 0. Lemma 3.4 implies that A∩C consists of a single element. Without loss
of generality, let us consider that A∩C = {0} . Lemma 5.1 implies that T (0,A)∩int C =
/0 . According to Lemma 4.1, the cone T (0,A) is convex. The Hahn–Banach separa-
tion theorem yields a non-zero functional p∈ E∗ such that s(p,T (0,A)) �−s(−p,C) .
Using equality A∩C = {0} we get s(p,T (0,A)) = 0 and s(−p,C) = 0. According
to Lemma 5.6(1) the inequality s(p,M) < +∞ holds, i.e. p ∈ dom s(·,M) . Lemma
5.3(2) implies the inclusion p ∈ int dom s(·,M) . Using Lemma 5.4 we obtain the re-
flexivity of space E . Thus the function s(·,M) has a non-empty subdifferential at p .
This means that there exists a vector z ∈ ∂M such that 〈p,z〉 = s(p,M) . According to
Lemma 5.6(2) we have 0 ∈ PM(z,A) . Therefore

z− int M ⊂ E \A. (6.1)

As C ∈ S C (−rM) , there exists a set C1 ⊂ E such that C +C1 = −rM . As z ∈ M ,
〈p,z〉 = s(p,M) , and the set M is strictly convex then, according to equality (5.18), we
have Exp(p,M) = {z} , i.e. Exp(−p,−rM)= {−rz} . Thus, by Remark 5.1 there exists
a single pair of points c0 ∈ Exp(−p,C) , c1 ∈ Exp(−p,C1) such that c0 + c1 = −rz .
As 0 ∈ C and s(−p,C) = 0, then 0 ∈ Exp(−p,C) . Therefore, c0 = 0. Thus, −rz =
c0 +c1 = c1 ∈C1 , and, therefore, C−rz⊂C+C1 =−rM . Thus, using inclusions (6.1)
and the fact that z ∈ M , we obtain that

int C ⊂ rz− int rM ⊂ z− int M ⊂ E \A.

Denoting c = rz , a = z we obtain the desired statement.
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