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UL’YANOV–TYPE INEQUALITIES AND EMBEDDINGS BETWEEN

BESOV SPACES: THE CASE OF PARAMETERS WITH LIMIT VALUES

OSCAR DOMÍNGUEZ

(Communicated by Z. Ditzian)

Abstract. In this paper we obtain some limit cases of inequalities of Ul’yanov-type for modulus
of smoothness between Lorentz-Zygmund spaces on Tn . Corresponding embedding theorems
for the Besov spaces are investigated.

1. Introduction

For a periodic function f ∈ Lp(T) , Ul’yanov proved in [40] the weak-type in-
equality

ω( f ,δ )p∗ � C

(∫ δ

0
(t−σ ω( f ,t)p)p∗ dt

t

)1/p∗

(1)

where σ = 1/p− 1/p∗ and 1 � p < p∗ < ∞ . Here ω( f ,δ )p = ω1( f ,δ )p and the
modulus of smoothness of order k ∈ N is given by

ωk( f ,δ )p = sup
|h|�δ

‖Δk
h f‖p (2)

with Δk
h f (x) = Δk−1

h (Δh f (x)) , k > 1, and Δ1
h f (x) = Δh f (x) = f (x + h)− f (x) . It is

known that the estimate (1) also holds for modulus of smoothness of an integer or-
der of functions on the n -dimensional torus Tn (see [18, (2.1)]). The inequality (1)
has important applications in the theory of function spaces, approximation theory and
interpolation theory. See, for example, the papers by DeVore, Riemenschneider and
Sharpley [14], Gol’dman [29], Kolyada [32], Simonov and Tikhonov [35], Trebels [38]
and Haroske and Triebel [31].

The estimate (1) gives optimal embedding results for functions with a certain de-
gree of smoothness. For instance, it is sharp over the class of functions satisfying that
ω( f ,δ )p � Cδ α , 0 < α < 1. However, inequality (1) is not sharp in general even for
functions f ∈C∞(T) since ω( f ,δ )r � Cδ , 1 � r < ∞ . To overcome this obstruction,
one possibility is to make use of modulus of smoothness ωκ( f ,δ )p of fractional order
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κ > 0 (see Section 2 for precise definitions). Thus, a sharp Ul’yanov-type inequality
states that if f ∈ Lp(T) then

ωκ( f ,δ )p∗ � C

(∫ δ

0
(t−σ ωκ+σ ( f ,t)p)p∗ dt

t

)1/p∗

, (3)

where σ = 1/p−1/p∗ and 1 < p < p∗ < ∞ (see [35] and [38]).
As mentioned above, there exists a strong connection between Ul’yanov-type in-

equalities and embedding theorems for smooth function spaces. Since Lorentz-Zyg-
mund spaces Lp,q(logL)γ arise in a natural way in some limit cases of embeddings
(see, for example, the papers [4] and [8]), it is natural to consider sharp Ul’yanov in-
equalities in this setting. Recently, Gogatishvili, Opic, Tikhonov and Trebels obtained
in [26, Theorem 1.2(a)] the following generalization of (3): if f ∈ Lp,r(logL)α−γ(Tn)
then

ωκ( f ,δ )p∗,s;α � C

(∫ δ

0
(t−σ (1− logt)γωκ+σ ( f ,t)p,r;α−γ )s dt

t

)1/s

, δ → 0+,

with σ = n(1/p−1/p∗) , 1 < p < p∗ < ∞ , 1 � r � s � ∞ , α ∈ R and γ � 0. In the
case that γ < 0, the previous estimate only holds in the trivial case that f is constant.
They also studied the limit case p = p∗ [26, Theorem 1.2(b)]. Namely, assume that
1 < r � s < ∞ and γ > 0, then

ωκ( f ,δ )p,s;α � C

(∫ δ

0
((1− logt)γ−1/sωκ( f ,t)p,r;α−γ )s dt

t

)1/s

(4)

+C(1− logδ )γ ωκ( f ,δ )p,r;α−γ ,

when δ → 0+ and if 1 � s < r < ∞ and γ > 1/r−1/s , then

ωκ( f ,δ )p,s;α � C

(∫ δ

0
((1− logt)γ−1/rωκ( f , t)p,r;α−γ )s dt

t

)1/s

(5)

+C(1− logδ )γ+1/s−1/rωκ( f ,δ )p,r;α−γ

when δ → 0+ . As application, they derived in [26, Corollary 3.6] limiting embed-

dings between Besov-type spaces B(p,r;β ),ξ
σ ,γ (Tn) based on Lp,r(logL)β (Tn) with clas-

sical smoothness σ and logarithmic smoothness with exponent γ (detailed in Section
2). Namely, if 1 < p < ∞ , α ∈ R , ξ > 0, and either 1 < r � s < ∞ or 1 � s < r < ∞ .
Put γ +max{1/s−1/r,0}> 0. Then

B(p,r;α−γ),ξ
λ ,μ+γ+max{1/s−1/r,0}(T

n) ↪→ B(p,s;α),ξ
λ ,μ (Tn), λ > 0, μ ∈ R, (6)

and

B(p,r;α−γ),ξ
0,μ+γ+max{1/ξ−1/s,0}+max{1/s−1/r,0}(T

n) ↪→ B(p,s;α),ξ
0,μ (Tn), μ > −1/ξ . (7)
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It is natural to investigate inequalities (4) and (5) in the limit cases when γ = 0
and γ = 1/r−1/s , respectively. Accordingly, we study in this paper such a question.

To get this aim we shall use generalized Lorentz-Zygmund spaces
Lp,q(logL)γ (log logL)β introduced by Edmunds, Gurka and Opic [20, 21]. These
spaces allow one more tier than the Lorentz-Zygmund spaces and they have been useful
to solve some limiting problems in connection with double exponential integrability of
the Bessel potential [20, 21], fine interpolation theorems for quasilinear operators [24]
or Hausdorff-Young type estimates for functions in spaces close to L1 [10].

We show that if 1 < r � s < ∞ , then

ωκ( f ,δ )p,s;α ,1/s � C

(∫ δ

0
((1− logt)−1/sωκ( f , t)p,r;α)s dt

t

)1/s

(8)

+C(1+ log(1− logδ ))1/sωκ( f ,δ )p,r;α

when δ → 0+ and if 1 � s < r < ∞ , then

ωκ( f ,δ )p,s;α ,1/r � C

(∫ δ

0
((1− logt)−1/sωκ( f ,t)p,r;α+1/s−1/r)

s dt
t

)1/s

(9)

+C(1+ log(1− logδ ))1/sωκ( f ,δ )p,r;α+1/s−1/r

when δ → 0+ . Note that there are differences between (4) (respectively, (5)) and
the corresponding limit inequality (8) (respectively, (9)). To be more precise, we
have an additional double logarithmic integrability on the left-hand side of (8) and
(9) which arises when introducing the term (1+ log(1− logδ ))1/s on their right-hand
sides. To establish these estimates we follow an approach based on limiting interpola-
tion (see [11], [12], [8]), on the characterizations of the K -functional associated to the
couple formed by Lp,q(logL)γ (log logL)β and the Riesz-potential space Hp,q;γ,β

λ and
Nikolskii-type inequalities for trigonometric polynomials.

As application, we derive limiting embeddings corresponding to (6) and (7) when
γ +max{1/s−1/r,0}= 0. Namely, if 1 < p < ∞ , α ∈ R , ξ > 0, and either 1 < r �
s < ∞ or 1 � s < r < ∞ , then

B(p,r;α+max{1/s−1/r,0}),ξ
λ ,μ,1/s (Tn) ↪→ B(p,s;α ,1/max{r,s}),ξ

λ ,μ (Tn), λ > 0, μ ∈ R, (10)

and
B(p,r;α+max{1/s−1/r,0}),ξ

0,μ+max{1/ξ−1/s,0},1/s (Tn) ↪→ B(p,s;α ,1/max{r,s}),ξ
0,μ (Tn), μ > −1/ξ . (11)

Note that the double logarithmic components in smoothness on the left-hand side of
(10) and (11) lead to double logarithmic integrability on their right-hand sides. Further-
more, we also obtain the limit case of (11) when μ = −1/ξ . We show that

B(p,r;α+max{1/s−1/r,0}),ξ
0,−1/ξ+max{1/ξ−1/s,0},1/s+max{1/ξ−1/s,0}(T

n) ↪→ B(p,s;α ,1/max{r,s}),ξ
0,−1/ξ (Tn).

The plan of the paper is as follows. In Section 2 we review the interpolation
methods that we use in the paper, equivalence results for the modulus of smoothness,
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K -functionals and realization functionals, and we introduce the function spaces that we
consider here. Section 3 is devoted to Ul’yanov-type inequalities in the case of parame-
ters with limit values. Needed versions of Nikolskii-type inequalities for trigonometric
polynomials are also given. Finally, in Section 4 we establish limiting embeddings
between Besov-type spaces.

2. Preliminaries

In what follows, if X ,Y are non-negative quantities depending on certain param-
eters, we write X � Y if there is a constant c > 0 independent of the parameters in X
and Y such that X � cY . If X � Y and Y � X , we write X ∼Y .

Let (A0,A1) be a couple of Banach spaces with A1 ↪→ A0 , that is, the embedding
from A1 into A0 is continuous. For t > 0, Peetre’s K -functional is defined by

K(t,a) = K(t,a;A0,A1) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 +a1,a j ∈ Aj}, a ∈ A0.

For 0 < θ < 1 and 1 � q < ∞ , the real interpolation space (A0,A1)θ ,q is the set of all
elements a ∈ A0 having a finite norm

‖a‖(A0,A1)θ ,q
=
(∫ ∞

0
(t−θ K(t,a))q dt

t

)1/q

.

See [3, 39, 2].
The following extension of the real interpolation method is useful. Let b be a

slowly varying function on (0,∞) (see, for example, [19]). Define the interpolation
space (A0,A1)θ ,q,b by

(A0,A1)θ ,q,b =

{
a ∈ A0 : ‖a‖(A0,A1)θ ,q,b

=
(∫ ∞

0
(t−θ b(t)K(t,a))q dt

t

)1/q

< ∞

}
.

See [30, 27]. Under suitable assumptions on b and q , spaces (A0,A1)θ ,q,b are well-
defined even if θ = 0 or θ = 1. Put �(t) = 1 + | log t| and ��(t) = �(�(t)) = 1 +
log(1 + | logt|) . In the particular case that b(t) = �γ(t),γ ∈ R (respectively, b(t) =
�γ(t)��β (t) , γ,β ∈ R) we simply write (A0,A1)θ ,q,γ (respectively, (A0,A1)θ ,q,γ,β ) in-
stead of (A0,A1)θ ,q,b . For A = (α0,α∞) ∈ R2 , let

�A(t) =

{
�α0(t) for t ∈ (0,1],

�α∞(t) for t ∈ (1,∞).

In the special case b(t) = �A(t) , the space (A0,A1)θ ,q,b coincides with the logarithmic
space (A0,A1)θ ,q,A considered in [23, 25].

For η ∈ R , the limit interpolation space (A0,A1)(0,η),q is formed by all a∈ A0 for
which

‖a‖(A0,A1)(0,η),q
=
(∫ 1

0
(�η(t)K(t,a))q dt

t

)1/q

< ∞
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(see [11, 8]). Note that (A0,A1)(0,η),q = A0 if η < −1/q and so, the only case of
interest is when η � −1/q .

It is clear that any of these three interpolation methods has the interpolation prop-
erty for bounded linear operators.

The following reiteration formula (with a slightly different notation) was proved
in [8, Lemma 2.5] by using the connection between limiting interpolation spaces
(A0,A1)(0,η),q and logarithmic spaces (A0,A1)θ ,q,A with θ = 0 [22, Proposition 1],
and reiteration results for logarithmic spaces [23, Theorems 5.9*, 4.7*, 5.7 and 4.7].

Let η > −1/q , then

(A0,A1)θ ,q,η+1/min{p,q} ↪→ ((A0,A1)θ ,p,A1)(0,η),q ↪→ (A0,A1)θ ,q,η+1/max{p,q}.

The limit case when η =−1/q in the previous formula was obtained very recently
in [10, Lemma 3.1]. In this case, we have that

(A0,A1)θ ,q,−1/q+1/min{p,q},1/min{p,q} ↪→ ((A0,A1)θ ,p,A1)(0,−1/q),q (12)

↪→ (A0,A1)θ ,q,−1/q+1/max{p,q},1/max{p,q}.

Let T
n be the n -dimensional torus. Let 1 � p,q < ∞ and γ,β ∈ R . The general-

ized Lorentz-Zygmund space Lp,q(logL)γ (log logL)β (Tn) is the set of all measurable
functions f on Tn such that

‖ f‖p,q;γ,β =
(∫ 1

0
(t1/p�γ (t)��β (t) f ∗(t))q dt

t

)1/q

is finite. See [20, 21] (see also [19, 3.4.1]). Here f ∗ denotes the non-increasing rear-
rangement of f . The generalized Lorentz-Zygmundspaces are rearrangement-invariant
spaces if p > 1. If β = 0 we get the Lorentz-Zygmund space Lp,q(logL)γ (Tn) . In the
special case when γ = 0, we obtain the Lorentz space Lp,q(Tn) , which coincides with
the Lebesgue space Lp(Tn) if p = q .

Next we recall some notions of the theory of multiple Fourier series. See [36, 34].
To every f ∈ L1(Tn) we assign the Fourier series

f (x) ∼ ∑
m∈Zn

f̂me2π imx

where
f̂m =

∫
Tn

f (x)e−2π imxdx, m ∈ Z
n,

are the Fourier coefficients of f . For N ∈ N0 = N∪ {0} , we denote by TN the set
formed by all trigonometric polynomials of degree less than or equal to N . To be more
precise,

TN =

{
∑

|m|�N

cme2π imx : cm ∈ C

}
.

The N -th error of approximation of f ∈ Lp,q(logL)γ (loglogL)β (Tn) by elements from
TN is given by

EN( f )p,q;γ,β = inf{‖ f −g‖p,q;γ,β : g ∈ TN}.
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Let λ > 0. The periodic Riesz-potential space Hp,q;γ,β
λ (Tn) is formed by all f ∈

Lp,q(logL)γ (log logL)β (Tn) such that

| f |
Hp,q;γ,β

λ
= ‖(−Δ)λ/2 f‖p,q;γ,β < ∞.

Here (−Δ)λ/2 denotes the Riesz potential operator which is given by

(−Δ)λ/2 f (x) ∼ ∑
m∈Zn

|m|λ f̂me2π imx.

The modulus of smoothness of fractional order κ > 0 of f ∈ Lp(Tn) is given by
[5, 41]

ωκ( f ,δ )p = sup
|h|�δ

‖Δκ
h f‖p, δ > 0,

where

Δκ
h f (x) =

∞

∑
ν=0

(−1)ν
(

κ
ν

)
f (x+ νh)

is the κ -th difference of f with step h at the point x . Here,(
κ
ν

)
=

κ(κ −1) · · ·(κ −ν +1)
ν!

for ν > 1,

(κ
1

)
= κ and

(κ
0

)
= 1. It is clear that if κ ∈ N then we have the classical modulus of

smoothness given in (2). Analogously, we can define the modulus of smoothness of
f ∈ Lp,q(logL)γ (loglogL)β (Tn) by

ωκ( f ,δ )p,q;γ,β = sup
|h|�δ

‖Δκ
h f‖p,q;γ,β , δ > 0.

Consider the generalized de la Vallée-Poussin means Vt defined by

Vt f (x) = ∑
|m|�2/t

χ(t|m|) f̂me2π imx, t > 0,

where χ ∈C∞[0,∞) with χ(u) = 1 for 0 � u � 1 and χ(u) = 0 for u � 2.
The K -functional associated to the couple

(Lp,q(logL)γ (log logL)β (Tn),Hp,q;γ,β
λ (Tn))

plays an important role in our arguments. The following characterizations hold

K(tλ , f ;Lp,q(logL)γ (loglogL)β (Tn),Hp,q;γ,β
λ (Tn)) (13)

∼ ‖ f −Vt f‖p,q;γ,β + tλ |Vt f |Hp,q;γ,β
λ

∼ ωλ ( f ,t)p,q;γ,β

for 1 < p < ∞ . These equivalences were shown in [26, Lemma 3.1] for Lorentz-
Zygmund spaces, but the method of proof carries over to generalized Lorentz-Zygmund
spaces.
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Let σ � 0, 1 � p,r < ∞ , ξ > 0 and β ,γ,δ ,η ∈ R . The Besov-type space

B(p,r;β ,η),ξ
σ ,γ,δ (Tn) consists of all f ∈ Lp,r(logL)β (loglogL)η (Tn) having a finite semi-

norm

| f |
B(p,r;β ,η),ξ

σ ,γ,δ
=
(∫ 1

0
(t−σ �γ(t)��δ (t)ωλ ( f ,t)p,r;β ,η )ξ dt

t

)1/ξ

where λ > σ . It becomes a Banach space when equipped with the norm

‖ f‖
B

(p,r;β ,η),ξ
σ ,γ,δ

= ‖ f‖p,r;β ,η + | f |
B

(p,r;β ,η),ξ
σ ,γ,δ

.

The notation is justified by the fact that the definition is independent of λ (see [26,
pages 1030 and 1041] and [9, Theorem 3.1]). If η = 0 (respectively, δ = 0) then we

simply write B(p,r;β ),ξ
σ ,γ,δ (Tn) (respectively, B(p,r;β ,η),ξ

σ ,γ (Tn)) to denote the corresponding
Besov space. In the case that σ = 0, we get Besov-type spaces involving only log-
arithmic smoothness �γ(t)��δ (t) (see [14], [6], [7], [8], [9], [10] and the references
within). Note that in this limit case, we are only interested when γ � −1/ξ , otherwise

B(p,r;β ,η),ξ
0,γ,δ (Tn) = Lp,r(logL)β (loglogL)η (Tn) .

3. Ul’yanov-type inequalities

We start with a limit case left open in [26, Lemma 3.5].

LEMMA 1. Let 1 < p,r < ∞ , 1 � s < ∞ and α ∈ R . Then,

B(p,r;α),s
0,−1/s (Tn) ↪→ Lp,s(logL)−1/s+α+1/max{r,s}(loglogL)1/max{r,s}(Tn).

In particular, we have

B(p,r;α),s
0,−1/s (Tn) ↪→ Lp,s(logL)α (loglogL)1/s(Tn) if 1 < r � s < ∞,

and

B(p,r;α+1/s−1/r),s
0,−1/s (Tn) ↪→ Lp,s(logL)α (loglogL)1/r(Tn) if 1 � s < r < ∞.

Proof. Let W 1Lp,r(logL)α (Tn) be the Sobolev space built upon Lp,r(logL)α(Tn)
(see [19, 3.6.1]). It follows from

K(t, f ;Lp,r(logL)α(Tn),W 1Lp,r(logL)α (Tn))
∼ t‖ f‖p,r;α + ω1( f ,t)p,r;α , 0 < t < 1,

(see [28, (1.6)]) that

B(p,r;α),s
0,−1/s (Tn) = (Lp,r(logL)α (Tn),W 1Lp,r(logL)α(Tn))(0,−1/s),s. (14)
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If n � 2, choose p1 such that

max

{
1,

np
n+ p

}
< p1 < min{p,n}.

Since Lp,r(logL)α (Tn) ↪→ Lp1(Tn) (see [1, Theorem 9.1]) we derive that
W 1Lp,r(logL)α(Tn) ↪→W 1Lp1(Tn) . By the Sobolev embedding theorem

W 1Lp1(Tn) ↪→ Lp∗1(Tn), 1/p∗1 = 1/p1−1/n,

and then,
W 1Lp,r(logL)α (Tn) ↪→ Lp∗1(Tn).

If n = 1, it is clear that W 1L1(T) ↪→C(T) and as a consequence,

W 1Lp,r(logL)α(T) ↪→W 1L1(T) ↪→ Lp∗1(T)

for any p∗1 ∈ [1,∞) . Hence, there exists p∗1 such that p < p∗1 and W 1Lp,r(logL)α(Tn) ↪→
Lp∗1(Tn) .

Let θ be given by the equation 1/p = 1− θ + θ/p∗1 and put α0 = α/(1− θ ) .
Using the characterization (14) and the reiteration formula (12), we obtain that

B(p,r;α),s
0,−1/s (Tn) ↪→ (Lp,r(logL)α (Tn),Lp∗1(Tn))(0,−1/s),s

= ((L1,1(logL)α0(Tn),Lp∗1(Tn))θ ,r,L
p∗1(Tn))(0,−1/s),s

↪→ (L1,1(logL)α0(Tn),Lp∗1(Tn))θ ,s,−1/s+1/max{r,s},1/max{r,s}
= Lp,s(logL)−1/s+α+1/max{r,s}(log logL)1/max{r,s}(Tn)

where in the last equivalence we have used [27, Lemma 5.5]. �

REMARK 1. In the case of Besov spaces based on Lebesgue spaces on the one-
dimensional torus T , that is, when p = r and α = 0, the embedding given by the
previous result was shown in [10, Theorem 4.2].

Let 1 < p < ∞ , 1 � r,s � ∞ and α ∈R . The following Nikolskii-type inequalities
were proved in [26, Lemma 3.4 and (3.16)],

‖g‖p,s;α � �γ(N)‖g‖p,r;α−γ if r � s and γ > 0, (15)

and
‖g‖p,s;α � �γ+1/s−1/r(N)‖g‖p,r;α−γ if s < r and γ > 1/r−1/s, (16)

for all g ∈ TN . Next we establish the corresponding estimates in the limit cases of (15)
and (16). More precisely, when γ = 0 in (15) and γ = 1/r−1/s in (16).

LEMMA 2. Let 1 < p < ∞ , 1 � r � s < ∞ and α ∈ R . Then,

‖g‖p,s;α ,1/s � ��1/s(N)‖g‖p,r;α

for all g ∈ TN .



UL’YANOV INEQUALITIES 763

Proof. We have that (see [17] and [33])

g∗(0) � cg∗(N−n) (17)

where the constant c is independent of g and N (but depends on the dimension n ).
Then

‖g‖s
p,s;α ,1/s =

∫ N−n

0
(t1/p�α(t)��1/s(t)g∗(t))s dt

t

+
∫ 1

N−n
(t1/p�α(t)��1/s(t)g∗(t))s dt

t
= I1 + I2.

Using (17) and [19, Proposition 3.4.33/(v)], we derive

I1 � g∗(0)s
∫ N−n

0
(t1/p�α(t)��1/s(t))s dt

t

� g∗(N−n)sN−ns/p�αs(N)��(N)

∼ g∗(N−n)s��(N)

(∫ N−n

0
(t1/p�α(t))r dt

t

)s/r

� ��(N)

(∫ N−n

0
(t1/p�α(t)g∗(t))r dt

t

)s/r

� ��(N)‖g‖s
p,r;α .

As for I2 , we have that

I2 � sup
N−n�u�1

��(u)
∫ 1

N−n
(t1/p�α(t)g∗(t))s dt

t

� ��(N)‖g‖s
p,s;α � ��(N)‖g‖s

p,r;α

where in the last estimate we have used the fact that Lp,r(logL)α(Tn) ↪→ Lp,s(logL)α (Tn)
because r � s . Consequently,

‖g‖s
p,s;α ,1/s � ��(N)‖g‖s

p,r;α . �

LEMMA 3. Let 1 < p < ∞ , 1 � s < r < ∞ and α ∈ R . Then,

‖g‖p,s;α ,1/r � ��1/s(N)‖g‖p,r;α+1/s−1/r

for all g ∈ TN .

Proof. We have that

‖g‖s
p,s;α ,1/r =

∫ N−n

0
(t1/p�α(t)��1/r(t)g∗(t))s dt

t

+
∫ 1

N−n
(t1/p�α(t)��1/r(t)g∗(t))s dt

t
= I1 + I2.
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We estimate I1 by using (17),

I1 � g∗(0)s
∫ N−n

0
(t1/p�α(t)��1/r(t))s dt

t

� g∗(N−n)sN−ns/p�αs(N)��s/r(N)

∼ g∗(N−n)s�(1/r−1/s)s(N)��s/r(N)

(∫ N−n

0
(t1/p�α+1/s−1/r(t))r dt

t

)s/r

� �(1/r−1/s)s(N)��s/r(N)

(∫ N−n

0
(t1/p�α+1/s−1/r(t)g∗(t))r dt

t

)s/r

� �(1/r−1/s)s(N)��s/r(N)‖g‖s
p,r;α+1/s−1/r

� ��(N)‖g‖s
p,r;α+1/s−1/r

since s < r . Finally, by Hölder’s inequality,

I2 =
∫ 1

N−n
(t1/p−1/r�α+1/s−1/r(t)g∗(t))s(t1/r−1/s�1/r−1/s(t)��1/r(t))sdt

�
(∫ 1

N−n
(t1/p−1/r�α+1/s−1/r(t)g∗(t))rdt

)s/r

×
(∫ 1

N−n
(t1/r−1/s�1/r−1/s(t)��1/r(t))

sr
r−s dt

)1−s/r

�
(∫ 1

N−n
��

s
r−s (t)

dt
t�(t)

)1−s/r

‖g‖s
p,r;α+1/s−1/r

� ��(N)‖g‖s
p,r;α+1/s−1/r. �

Now we can state the main result of this section.

THEOREM 1. Let κ > 0 , 1 < p < ∞ and α ∈ R .

(i) If 1 < r � s < ∞ then

ωκ( f ,δ )p,s;α ,1/s �
(∫ δ

0
(�−1/s(t)ωκ( f , t)p,r;α )s dt

t

)1/s

(18)

+ ��1/s(δ )ωκ( f ,δ )p,r;α

for all f ∈ Lp,r(logL)α (Tn) when δ → 0+ .

(ii) If 1 � s < r < ∞ then

ωκ( f ,δ )p,s;α ,1/r �
(∫ δ

0
(�−1/s(t)ωκ( f , t)p,r;α+1/s−1/r)

s dt
t

)1/s

(19)

+ ��1/s(δ )ωκ( f ,δ )p,r;α+1/s−1/r

for all f ∈ Lp,r(logL)α+1/s−1/r(Tn) when δ → 0+ .
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Proof. (i) Assume first that r � s . For N ∈ N , by (13),

ωκ( f ,1/N)p,s;α ,1/s ∼ ‖ f −V1/N f‖p,s;α ,1/s +N−κ |V1/N f |
H

p,s;α,1/s
κ

(20)

= I + II.

Applying the estimate given by Lemma 2 for (−Δ)κ/2V1/N f ∈ T2N we obtain that

|V1/N f |
H

p,s;α,1/s
κ

= ‖(−Δ)κ/2V1/N f‖p,s;α ,1/s

� ��1/s(N)‖(−Δ)κ/2V1/N f‖p,r;α

= ��1/s(N)|V1/N f |Hp,r;α
κ

.

Then, using again (13) we derive

II � N−κ��1/s(N)|V1/N f |Hp,r;α
κ

(21)

� ��1/s(N)ωκ ( f ,1/N)p,r;α .

We proceed to estimate I . Under the assumptions on the parameters, it follows from
Lemma 1 that

‖ f‖p,s;α ,1/s � ‖ f‖p,r;α +
(∫ 1

0
(�−1/s(t)ω1( f ,t)p,r;α )s dt

t

)1/s

∼ ‖ f‖p,r;α +

(
∞

∑
j=1

(�−1/s( j)Ej( f )p,r;α )s 1
j

)1/s

(22)

where the last equivalence is a consequence of Jackson and Bernstein inequalities in
Lorentz-Zygmund spaces (see [26, (3.5)], [16, Theorem 2.1] and [15, Theorem 2.3]) in
the same way as it is done in [26, page 1043]. For f ∈ Lp,r(logL)α(Tn) , we denote by
T p,r;α
N ( f ) ∈ TN the best approximant of f by elements from TN (see [13, Theorem

3.1.1]). Set g = f −T p,r;α
N ( f ) . By construction,

Ej(g)p,r;α � ‖g‖p,r;α = ‖ f −T p,r;α
N ( f )‖p,r;α = EN( f )p,r;α (23)

for 0 � j � N . Next we show that

Ej(g)p,r;α = Ej( f )p,r;α if j � N. (24)

Indeed, for arbitrary t ∈ T j , we have that

‖g− t‖p,r;α = ‖ f − (T p,r;α
N ( f )+ t)‖p,r;α � Ej( f )p,r;α .

Taking the infimum we derive that Ej(g)p,r;α � Ej( f )p,r;α . Conversely,

‖ f − t‖p,r;α = ‖g+T p,r;α
N ( f )− t‖p,r;α � Ej(g)p,r;α
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which implies that Ej( f )p,r;α � Ej(g)p,r;α . By (22)-(24) and Jackson inequality given
in [16, Theorem 2.1], we get

EN( f )p,s;α ,1/s � ‖ f −T p,r;α
N ( f )‖p,s;α ,1/s

� ‖ f −T p,r;α
N ( f )‖p,r;α +

(
∞

∑
j=1

(�−1/s( j)Ej( f −T p,r;α
N ( f ))p,r;α )s 1

j

)1/s

� EN( f )p,r;α +

(
N

∑
j=1

�−1( j)
1
j

)1/s

EN( f )p,r;α +

(
∞

∑
j=N+1

(�−1/s( j)Ej( f )p,r;α )s 1
j

)1/s

∼ ��1/s(N)EN( f )p,r;α +

(
∞

∑
j=N+1

(�−1/s( j)Ej( f )p,r;α )s 1
j

)1/s

� ��1/s(N)ωκ( f ,1/N)p,r;α +

(
∞

∑
j=N+1

(�−1/s( j)ωκ ( f ,1/ j)p,r;α )s 1
j

)1/s

∼ ��1/s(N)ωκ( f ,1/N)p,r;α +
(∫ 1/N

0
(�−1/s(t)ωκ( f ,t)p,r;α )s dt

t

)1/s

where the latter estimate is due to the monotonicity properties of the modulus of smooth-
ness. We use the fact that the de la Vallée-Poussin sum satisfies

‖Vt f‖p,s;α ,β � C‖ f‖p,s;α ,β for all f ∈ Lp,s(logL)α(log logL)β (Tn)

with constant C > 0 independent of f and t , and V1/Nt = t for all t ∈ TN . Therefore,
we obtain

‖ f −V1/N f‖p,s;α ,1/s � ‖ f −T p,s;α ,1/s
N ( f )‖p,s;α ,1/s +‖T p,s;α ,1/s

N ( f )−V1/N f‖p,s;α ,1/s

= ‖ f −T p,s;α ,1/s
N ( f )‖p,s;α ,1/s +‖V1/N(T p,s;α ,1/s

N ( f )− f )‖p,s;α ,1/s

� ‖ f −T p,s;α ,1/s
N ( f )‖p,s;α ,1/s

= EN( f )p,s;α ,1/s

� ��1/s(N)ωκ ( f ,1/N)p,r;α+
(∫ 1/N

0
(�−1/s(t)ωκ( f , t)p,r;α )s dt

t

)1/s

.

Inserting this estimate and (21) in (20), one has

ωκ( f ,1/N)p,s;α ,1/s �
(∫ 1/N

0
(�−1/s(t)ωκ( f ,t)p,r;α )s dt

t

)1/s

+ ��1/s(N)ωκ ( f ,1/N)p,r;α .

This establishes (i).
(ii) Suppose now that s < r . By (13) we have

ωκ( f ,1/N)p,s;α ,1/r ∼ ‖ f −V1/N f‖p,s;α ,1/r +N−κ |V1/N f |
H

p,s;α,1/r
κ

(25)

= I + II.
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The same argument as in (i) but now applying Lemma 3 instead of Lemma 2 yields that

II � ��1/s(N)ωκ ( f ,1/N)p,r;α+1/s−1/r. (26)

Let us estimate I . Using Lemma 1, we derive

‖ f‖p,s;α ,1/r � ‖ f‖p,r;α+1/s−1/r +

(
∞

∑
j=1

(�−1/s( j)Ej( f )p,r;α+1/s−1/r)
s 1
j

)1/s

. (27)

The estimate (27) together with the corresponding formulae to (23) and (24) in
Lp,r(logL)α+1/s−1/r(Tn) imply that

EN( f )p,s;α ,1/r � ‖ f −T p,r;α+1/s−1/r
N ( f )‖p,s;α ,1/r

� ‖ f −T p,r;α+1/s−1/r
N ( f )‖p,r;α+1/s−1/r

+

(
∞

∑
j=1

(�−1/s( j)Ej( f −T p,r;α+1/s−1/r
N ( f ))p,r;α+1/s−1/r)

s 1
j

)1/s

� EN( f )p,r;α+1/s−1/r +

(
N

∑
j=1

�−1( j)
1
j

)1/s

EN( f )p,r;α+1/s−1/r

+

(
∞

∑
j=N+1

(�−1/s( j)Ej( f )p,r;α+1/s−1/r)
s 1
j

)1/s

∼ ��1/s(N)EN( f )p,r;α+1/s−1/r

+

(
∞

∑
j=N+1

(�−1/s( j)Ej( f )p,r;α+1/s−1/r)
s 1
j

)1/s

� ��1/s(N)ωκ ( f ,1/N)p,r;α+1/s−1/r

+
(∫ 1/N

0
(�−1/s(t)ωκ( f ,t)p,r;α+1/s−1/r)

s dt
t

)1/s

.

Consequently,

‖ f −V1/N f‖p,s;α ,1/r � EN( f )p,s;α ,1/r

� ��1/s(N)ωκ( f ,1/N)p,r;α+1/s−1/r

+
(∫ 1/N

0
(�−1/s(t)ωκ( f ,t)p,r;α+1/s−1/r)

s dt
t

)1/s

.

Applying this estimate in (25) together with (26), we get

ωκ( f ,1/N)p,s;α ,1/r �
(∫ 1/N

0
(�−1/s(t)ωκ( f ,t)p,r;α+1/s−1/r)

s dt
t

)1/s

+ ��1/s(N)ωκ ( f ,1/N)p,r;α+1/s−1/r. �
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REMARK 2. The two terms on the right-hand side of the inequality (18) are inde-
pendent of each other. Put p = r and α = 0. Let β < −1/s . There exist f0 ∈ Lp(T)
and δ0 > 0, such that

ωκ( f0, t)p ∼ ��−1/s(t)���β (t)

= (1+ log(1+ | logt|))−1/s(1+ log(1+ log(1+ | logt|)))β , 0 < t < δ0,

(see [37, Theorem 2.5]). Then, it is clear that the second term in (18) is equivalent to
���β (δ ) , while the integral term satisfies(∫ δ

0
���β s(t)

dt
t�(t)��(t)

)1/s

∼ ���β+1/s(δ ).

On the other hand, there are f1 ∈ Lp(T) and δ1 > 0 such that ωκ( f1,t)p ∼ tκ , 0 < t <

δ1 . Therefore, the integral term behaves like δ κ�−1/s(δ ) , while the second one like
δ κ��1/s(δ ) .

Analogously, putting p = r and α = 1/r−1/s , we can show the independence of
the two terms on the right-hand side of (19).

4. Embedding theorems for Besov spaces

In this section we give an application of Theorem 1 to embeddings between Besov
spaces. The following result is a limit case of [26, Corollary 3.6] which was left open.

THEOREM 2. Suppose that 1 < p < ∞ , ξ > 0 , α ∈ R , and either 1 < r � s < ∞
or 1 � s < r < ∞ . Then

B(p,r;α+max{1/s−1/r,0}),ξ
λ ,μ,1/s (Tn) ↪→ B(p,s;α ,1/max{r,s}),ξ

λ ,μ (Tn),λ > 0,μ ∈ R, (28)

B(p,r;α+max{1/s−1/r,0}),ξ
0,μ+max{1/ξ−1/s,0},1/s (Tn) ↪→ B(p,s;α ,1/max{r,s}),ξ

0,μ (Tn),μ > −1/ξ , (29)

and

B(p,r;α+max{1/s−1/r,0}),ξ
0,−1/ξ+max{1/ξ−1/s,0},1/s+max{1/ξ−1/s,0}(T

n) ↪→ B(p,s;α ,1/max{r,s}),ξ
0,−1/ξ (Tn). (30)

Proof. By Theorem 1 we have that

| f |
B(p,s;α,1/max{r,s}),ξ

λ ,μ
=
(∫ 1

0
(t−λ �μ(t)ωκ( f ,t)p,s;α ,1/max{r,s})ξ dt

t

)1/ξ

�

⎛⎝∫ 1

0

[
t−λ �μ(t)

(∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)1/s
]ξ

dt
t

⎞⎠1/ξ

+
(∫ 1

0
[t−λ �μ(t)��1/s(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0}]ξ

dt
t

)1/ξ
= I + II.
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Assume that λ > 0 and μ ∈ R . Since ωκ( f ,u)p,r;α+max{1/s−1/r,0}/uκ is equivalent to
a decreasing function we can still apply the extension of the Hardy inequality given in
[1, Theorem 6.4] to derive that

I =

(∫ 1

0

(
t−λ s�μs(t)

∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)ξ/s dt
t

)1/ξ

�
(∫ 1

0

(
t−λ s�μs−1(t)

∫ t

0
[ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)ξ/s dt
t

)1/ξ

�
(∫ 1

0

(
t1−λ s�μs−1(t)[ωκ( f ,t)p,r;α+max{1/s−1/r,0}]s

1
t

)ξ/s dt
t

)1/ξ

=
(∫ 1

0
(t−λ �μ−1/s(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0})ξ dt

t

)1/ξ

� II = | f |
B

(p,r;α+max{1/s−1/r,0}),ξ
λ ,μ ,1/s

.

This establishes the embedding (28).
Next we prove (29). Let λ = 0 and μ >−1/ξ . Assume first that ξ � s . Applying

Hardy’s inequality given in [1, Theorem 6.5] we obtain

I =

(∫ 1

0

(
�μs(t)

∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)ξ/s dt
t

)1/ξ

�
(∫ 1

0

(
t�1+μs(t)[�−1/s(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0}]s

1
t

)ξ/s dt
t

)1/ξ

=
(∫ 1

0
(�μ(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0})ξ dt

t

)1/ξ

� II = | f |
B

(p,r;α+max{1/s−1/r,0}),ξ
0,μ ,1/s

.

Suppose now ξ < s . Let K(t, f ) = K(t, f ;Lp,r(logL)α+max{1/s−1/r,0}(Tn),
Hp,r;α+max{1/s−1/r,0}

κ (Tn)) . For t > 0, we denote by χ(0,t) the characteristic function of

the interval (0, t) . Then, using the equivalence (13), the embedding L1/κ ,ξ (logL)−1/s(Tn)
↪→ L1/κ ,s(logL)−1/s(Tn) (see [1, Theorem 9.3]) and that K(uκ , f )/uκ is a decreasing
function, we get

I =

(∫ 1

0
�μξ (t)

(∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)ξ/s dt
t

)1/ξ

∼
(∫ 1

0
�μξ (t)

(∫ t

0
[�−1/s(u)K(uκ , f )]s

du
u

)ξ/s dt
t

)1/ξ



770 O. DOMÍNGUEZ

=

(∫ 1

0
�μξ (t)

∥∥∥∥K(uκ , f )
uκ χ(0,t)(u)

∥∥∥∥ξ

1/κ ,s;−1/s

dt
t

)1/ξ

�
(∫ 1

0
�μξ (t)

∥∥∥∥K(uκ , f )
uκ χ(0,t)(u)

∥∥∥∥ξ

1/κ ,ξ ;−1/s

dt
t

)1/ξ

=
(∫ 1

0
�μξ (t)

∫ t

0
[�−1/s(u)K(uκ , f )]ξ

du
u

dt
t

)1/ξ

∼
(∫ 1

0
�μξ (t)

∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ

du
u

dt
t

)1/ξ

=
(∫ 1

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ

∫ 1

u
�μξ (t)

dt
t

du
u

)1/ξ

�
(∫ 1

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ �μξ+1(u)

du
u

)1/ξ

� | f |
B(p,r;α+max{1/s−1/r,0}),ξ

0,μ+1/ξ−1/s,1/s

because μ >−1/ξ . In addition, since ξ < s , it is clear that II � | f |
B

(p,r;α+max{1/s−1/r,0}),ξ
0,μ+1/ξ−1/s,1/s

.

Finally, let us show (30). Let λ = 0 and μ = −1/ξ . If ξ � s , we use Hardy’s
inequality given in [24, Lemma 3.3] to derive

I =

(∫ 1

0

(∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]s

du
u

)ξ/s dt
t�(t)

)1/ξ

�
(∫ 1

0

(
t�(t)��(t)[�−1/s(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0}]s

1
t

)ξ/s dt
t�(t)

)1/ξ

=
(∫ 1

0
(��1/s(t)ωκ( f ,t)p,r;α+max{1/s−1/r,0})ξ dt

t�(t)

)1/ξ

= | f |
B

(p,r;α+max{1/s−1/r,0}),ξ
0,−1/ξ ,1/s

= II.

Assume now that ξ < s . Using the equivalence (13) and an embedding result between
Lorentz-Zygmund spaces, we get

I �
(∫ 1

0

∫ t

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ

du
u

dt
t�(t)

)1/ξ

=
(∫ 1

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ

∫ 1

u

dt
t�(t)

du
u

)1/ξ

�
(∫ 1

0
[�−1/s(u)ωκ( f ,u)p,r;α+max{1/s−1/r,0}]ξ ��(u)

du
u

)1/ξ

= | f |
B(p,r;α+max{1/s−1/r,0}),ξ

0,−1/s,1/ξ
.
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On the other hand, it is not hard to check that II � | f |
B(p,r;α+max{1/s−1/r,0}),ξ

0,−1/s,1/ξ
since ξ < s .

The proof is complete.
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