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FRACTIONAL INTEGRAL OPERATORS ON CENTRAL MORREY SPACES

YASUO KOMORI-FURUYA AND ENJI SATO

(Communicated by B. Opic)

Abstract. We consider the boudedness of fractional integral operators on localized (central) Mor-
rey spaces and investigate the relation between the Adams inequality and the Spanne inequality.

1. Introduction

The classical Morrey spaces were introduced by Morrey [10] to investigate the
local behavior of solutions to second order elliptic differential equations. Spanne (see
Peetre [12, Theorem 5.4]) and Adams [ 1] studied the boundedness of fractional integral
operators on Morrey spaces. Garcia-Cuerva and Herrero [6] and Alvarez, Lakey and
Guzman-Partida [2] considered localized (central) Morrey spaces.

We show that a localized Adams inequality does not hold (Proposition 1), but it
holds for radial functions when n > 2 (Theorem 1). We also prove a theorem which
interpolates between Adams inequality and Spanne inequality on central Morrey spaces
(Theorem 2). In sections 5 and 6 we show that our results are optimal by giving coun-
terexamples.

We define fractional integral operators.

lof(x) = /]R )

n|x =yl

DEFINITION 1.

We define Morrey spaces L+ (R") and localized (central) Morrey spaces L7 (0).

DEFINITION 2. Let | <p<eand 0< A < 1.

XER" R>0 \B(x,R)

I/p
" 1
LR = f:f||L,,MRn>=< wp e ), (xR)f(y)l”dy> <t

D40 = 74Ul = (00 oty | o) <
PO A 20 |B(0,R)* JBo.R)

where B(x,R) is the ball centered at x and the radius R. Compare with Definition 4
below.
Mathematics subject classification (2010): 42B20, 42B25.
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In this paper the following three indices g1, g» and u; are very important.

DEFINITION 3.

11 11 A
-2 % g B2

g p n g p nl-2) q p

Spanne and Adams proved the following inequalities.
THEOREM A. (Spanne)
n
Mo f || L1 m mry < CHf||LI’~,7L(R") where 1< p< o

THEOREM B. (Adams)

n(l—2
Moef oo oy < Cllfll oy where 1< p < %

Throughout this paper we will let C denote a positive constant whose value may
change from line to line, but which is independent of essential parameters.

REMARK. Since ||f||zn#1 (gn) < [|fll 424 (gn)~ Theorem B improves Theorem A
when 1 <p<n(l—21)/o.

We also know the following result, see Fu, Lin and Lu [5]. This is a special case of
the theorem by Burenkov, Gogatishvili, Guliyev and Mustafayev [3]. They investigate
more general local Morrey-type spaces.

THEOREM C.

n
o f || a1 a1 (0) < CHf”Lﬂ?L(()) where 1<p< P

However I, is not bounded from LP*(0) to L9 (0), see Proposition 1 below.
We know only following trivial corollary of Theorem B.
THEOREM B’.

n(l1—A4
Mo a0y < Cllf | iy where 1< p< %

The indices q;, g» and u; satisfy the following relation:

l—ul_l—l_l—l o

q1 q2 p n

By Holder’s inequality we have

Az 0y < I AlLzeco) < D ln oy < I ot o
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where | -
- — o
“:___, q1<qg<qy and A<u<py.
q p n

Therefore we estimate ||/o.f||z4.1(0) and we want to obtain a theorem which interpo-
lates between Theorems B’ and C. For this purpose we introduce new function spaces.
The localized (central) Morrey space is localized at the origin. We consider the space
localized at x.

DEFINITION 4.

L) =3 f < 1l :<S“p;/ f(”'pdy)l/p@
IO T o B R)F Jae |

REMARKS. |[f]l1p4(rn) = SUPyegn |/l 152 (- The space LP*(x) is a paticular
case of the space LM;;Z} » introduced by Gogatishvili and Mustafayev [7].
2. Theorems

Our results are the following.

PROPOSITION 1. I is not bounded from LP*(0) to L (0) where I_T“ = % -
S <q<qyand A <p <.

Proof. Let R > 10, xg = (R,0,...,0) € R" and fr(x) = xp(x,,1)(x). Then
HfRHUM(o) < CR"/P.
On the contrary I, f(x) > C if x € B(xg, 1). Therefore
e frll o 0) = CR™™/4.
Since /g < A/p, we have

1, )
lim o fR || a0 (0) e O

R—eo ”fRHLpl(o)

As Proposition 1 shows, a localized Adams inequality does not hold, but we obtain
the following theorem.

THEOREM 1. Let n 22. If (i) paa>1or (i) pa<land 0<A <1-—1/n,
then for any radial functions f,

||Iocf||qu‘l(o) < CHfHUM(O)' @
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REMARKS. This is an example of a well known general phenomenon: under suit-
able assumptions of symmetry, notably radial symmetry, classical estimates admit sub-
stantial improvements, see for example [1 1], and [8] in the context of Morrey space.

By the definition of ¢, we always assume that 0 < A < 1 — po/n. We shall show
that the condition A < 1 — 1/n in (ii) is optimal by giving a counterexample in section
5. When n = 1, the inequality (1) does not hold, see the following counterexample.

COUNTEREXAMPLE 1. When n=1, let

Je(x) = X —r—1,-1 () + X 1) (%)
Same as the proof of Proposition 1 we can show

. MMafillzon o)
lim ———————~ =
k= || fiell Lo o)

When we remove the condition that f is radial, we obtain the following theorem
which interpolates between Theorems B’ and C.

THEOREM 2. Let 1 <p < "“;M, g1 <q<q2, A<pu<u and

l-p 1-2 «

q p n
Then
1= (fak) 1 1ax o qqu;q
n(l— ‘]2 q
oo, < 7 (s [ IS ax) ™ @
REMARKS. Note that (2) is same as (3).
S lom < U (s [ 11 ) ®
: sup — .
o [|L4:H(0 ka R>0Rn l¥|<R ka
We also obtain
q92—49
_po 1 po 9492 W
n(1—2) n(1—4)
S lisnioy < U7 (s [ WD a) @

for all xp € R". Using Hf||L,,‘,1(x) < Hf||L,,‘,1(R,,) in (4), we have

oS Lan () < ClLf Ml 1o oy

and we obtain
Hof 1l Lan @y < CIf Nl o gn)-

This is reduced from Theorem B and Holder’s inequality.
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In (2), if we take ¢ = ¢ and u = A, formally, then we have

1ofll a2 2. o) <c|fl A” sup Hfll < C|fll o geny-
Lp:

This is Theorem B’.
If we take ¢ = ¢ in (2), then

1 1

; <l ! e
e v o) < €IS (S0 [ W)™

This inequality is worse than Theorem C. However we shall show in section 6 that the

indices (1 A) and q’;qfq in Theorem 2 are optimal when g > ¢ . Therefore the central

Morrey space L91'#1(0) for Spanne indices ¢g; and y; is a special function space.

3. Proof of Theorem 1

Let M be the Hardy-Littlewood maximal operator

Mf(x) = fO)ldy.

R>0|BXR|/xR

The following Lemma is implicit in [12] and proved in [5, Proposition 1.1].

LEMMA 1.
HMf”UL?L(o) < C”fHLpl(o)

We define some variants of the maximal operator.

DEFINITION 5. For 0 < f3 < n,

1
Mg f(x) = sup B(x.R)| B/ /B(X’R) |f ()| dy.

R>0

DEFINITION 6.

mp ()= sup o [ |f(y)]dy.

R>x| R"7P Jly|<r

For a radial function f(x) = fo(|x|),

1 [x|+R

pf()= S R Jy

Il
O<R< 5

We know the following two lemmas.
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LEMMA 2. ([1], p. 768)
o f ()] < CMp ()P (MF(x))1 =%/ where o < B.
LEMMA 3. ([4], Lemma 3.1) For any radial functions f,

Mgf(x) <Cmgf(x) if B=>1
Mp f(x) < C(mpf(x)+rmpf(x)) if B<1.

By Lemma 3 we obtain the following lemma.

LEMMA 4. Let B = @ For any radial functions f,

C”fHLpl(o) lf B 17
C(”fHLp,k(())‘Fﬁ’lpf X ) lf ﬂ < 1.

Mpg f(x)

<
Mg f(x) <

Proof. By Holder’s inequality,

1

1 1/p
- d < CR—n+I3+n/p +ni/p ( / f y pdy>
R M<|()\ r ||R\()|

< C”fHLM(o)
and we have mp f(x) < CHf||L,,5,1(O). O
LEMMA 5. Let B = If A < 1 —1/n, then for any radial functions f,

ﬁlﬁf(x) < Clfllpao)

Proof. Assume that f(x) = fo(|x|) and R < I)zc—l

1 |x|+R

x|+R 1/p ,
ws [ nlar <R ([T aopan) - w
RYP Jix -k Y| —R

, [x|+R
<cp i ([ et
[x[—R

1 1/p
<CRP-VIP <1—n+nA>/p< / pd)
g BRI Sy T

<Clfla

1/p

since A<1—1/n. O
LEMMA 6. Let B = If?L < 1—1/n, then for any radial functions f,

Mﬁf(x) < Cl Sl pao)
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Proof. By Lemmas 4 and 5 we have the desired result. [

Proof of Theorem 1. Let B = @ Note that oo < . We have by Lemmas 2
and 6
e ()] < IS o) (M ()P

Since (1 —a/B)g2 = p, we have by Lemma 1

1 . 1/42 /B 1 » l/qz
— I 2d <C / M d
(Rnl /|;C|<R‘ Otf(x)| )C) ||fHLpl (R"A | | R f(x) )C)

<ClFIZE o Mt

<CUSgR o 1 1202 o = Ul paey O

4. Proof of Theorem 2

The following Lemmas 7 and 8 are trivial from the definitions.

LEMMA 7.

BR[Oy < BRI

LEMMA 8.
|B(x,R)|*/"! / FO)|dy < |B(x,R)[*/"Mf(x).
(x.R)

X,

Proof of Theorem 2. We follow the argument in Hedberg [9, p. 506]. By Lemmas
7 and 8, we have

laf@|< Y, /

J=—00

<C Z |B(x72j)|°‘/"_l/ | f)ldy

B(x,27)

B(x.2)) Ix yl” *

f*—oo

<C Z |Bx2/)|°‘/”Mf +C Z (x, 2J ‘Oc/n (1- A/p”fHLM
J=—o0 Jj=N+1

Minimizing this inequality we obtain
n(l1-21) —po/n(1—
o f )] < CUA S ™ f ) ro/mOA),

We take s such that
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Note that s > 1, and let t = 5/(s— 1). By Holder’s inequality and Lemma 1, we have

1
W/ Lo f (x)|? dx

‘B 0 R |A/g » l/s / pqocl l/t
i by M JOnryas) ([ a

i g\ U
<cIMAIEL, ( pe ). R||fzp,x<x)dx)

q92—4q

at 1 Ernak “
<c||me SUP i e RIIfHLM dx . O

5. A Counterexample for Theorem 1

In this section we shall show the condition A < 1 —1/n in (ii) of Theorem 1 is
optimal by giving a counterexample. For this purpose we use the next lemma.

LEMMA 9. ([11], Lemma 4.1) Let n>2, ¥ € ! and

= [ AWy,
.

where f:[—1,1] — R" and (x',y’) denotes the inner product of X' and y'. Then

1 n—3
)= wn,gilf(t)(l —2 ar,

where wy,_o denotes the area of s§n2,

COUNTEREXAMPLE 2. Let n >2 and A > 1 — l/n We take 0 < o0 < 1 suffi-

ciently small and p > 1 sufficiently near 1 such that “ ( A5 nd (l—l) > 0.
We define f(x) = fo(|x|) where

B 1!
Jolr) = 223 () r =177 <log |r— 1|> '
Then f € LP*(0) but Iof ¢ L92*(0).

Proof. Itis easy to show f € LP*(0). We show that Io.f ¢ L% (1 < |x| <4/3).
We write x = |x|x’.

/
IO(f C/ fO n 1 —n+adr/ 1 dy —
s

((%)2—2";—'(x/7y/)+1> 2

= C/wao(r)ra_ll‘x‘/,(x/)dr
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where

1) —/ dy
’ s (52— 2s(x, ) + 1)"2

By Lemma 9

drt.

_ 253
J_Y(x/) —Wn—Z‘/_l ((lt—)

2—2st+1) 2

CLAIM.

J()=C(1—5)%" where 0<s<1.

If 1 < |x| < 3, then we have by Claim

3/2 -1 oa—1
Im]‘()c)ZC/|| ro Y r—17/p (logﬁ) ( —M) dr
x| r—

.

3/2 1 -1
=C r—1|1/1’<log ) (r—|x)* tar

I r—1]

3/2 1 -1
>C /[ |r—1"YPr—11%"dr (log ——
—1
I [

- L\
>C(|x|-1) 1/1’+O‘<logx_l) :

Since ¢2(—1/p+a) < —1,wehave Iof ¢ L (1 <|x|<4/3). O

Proof of Claim. When 0 < s < 1/2, Jy(x') > C. Therefore it suffices to show (5)
for 1/2<s< 1.

S P L Gl
/—( = /((l—s

(&)

n—o dt
—2st41)"2 )2+2s(1—z))T
n—3
1— z
>C/ f) — t—C/ S —E—
(1—s5)2+1-1) T Ea
_) 3 _ a2
;c/ L - dt>c(l s) Eias) =C(1-5*1 DO
(1-97  (1=s)241)7 (1—y)

6. Examples for Theorem 2

In this section we shall prove that Theorem 2 improves known results and is opti-
mal by giving examples For simplicity we consider the one dimensional case, that is,
L1 _ 1 —1_ _a
o= p o« == 5 >0,
1-— 11— I-4 1-2
M1 H _ —a,
q1 q q2

and ¢ < g<qa.
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DEFINITION 7. We define

q92—4

1_& l po 499 W
200 =115 (son e [ W15 ax) ™

The following propositions show that Z(f) controls |[Ze.f{|4.(o)

PROPOSITION 2. Let fu(x) = Xjpnt1)(x). Then
Iofull1a.
tim oo full Lot 0) e ©)
oo ”fn”UiJL(o)
[ efullzan o)

lim —0, )
e ||fn||m/l(]R1)
. o fullLan) . [ e fall o (0)
0 < liminf 2O iy qup LA ILHO) ®)
e 2 et Z(f)

Proof. (6) is proved in Proposition 1 and the proof of (7) is easy. The third in-
equality of (8) is obtained from Theorem 2. We shall prove the first inequality of (8).

Let A= f’o‘l qqz . Note that

anHLpl(o) ~nHP

) 9
and
1full gy = (e —n|+1)74/7.
Therefore
1 1 n 1 1
: dx~-, 10
swp s [ Il 4 [ e (10)
since AA/p > 1. By (9) and (10), we have
1-2_1
Z(f)~n o d. (11)
Since Io f,(x) ~ (]x—n|+1)* ! and (1 —«)g > 1, we have
Mocfoll a0y 2 n /4. (12)

By (11) and (12), we obtain the desired result. [
We show that the index £5

7 in Definition 7 is optimal when g > ¢ .

DEFINITION 8. For 0 < B < 1, we define

1 Bagy qqu?
sup — Y .
( ) ||f‘ Lpl R>1?)R x| <R Hf| L[)?L
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PROPOSITION 3. Let fu(X) = X{pnt1)(X)-

po . Mafullar o)
1 —<B<1 then lim ———= =0. 13
prl 1 po . ||Iafn||Lq‘H(0)
If =(-—— | <B<—— then lim —————= — oo, 14
7 2 a) <<=z AT ()

Proof. Let B= 52’1—3;. Then BA/p > 1 in either cases. Same as (10) we have
1 /m 1 1
sup — 1 dxm—/ ik~
20 R Ji<r H nHLpl nJo (|x_n|_|_1)Bl/p n

and

ZB(fn) ~n p(l B)——+_

By (12) and (15) we can prove (13) and (14) simultaneously.

15)

PROPOSITION 4. Assume that 0 < B < % (l — %> Then there exists a function

f such that

G) feLP*(0)  and (i) Zg(f) <eo  but (i) Inf ¢ LP"(0).

Proof. We write }1 = q% — & where € > 0 and define

1
flx) = m%{o«@}(x)-

To prove (i) is easy. We prove (iii). Since Iaf(x) >Clx—1]7(1/P=8%) where 0 < x < 1

and (1/p—e—a)g=1,wehave Iof ¢ L] . Hence Iof ¢ L"*(0).
For the proof of (ii) we use the following elementary lemma.

LEMMA 10. Let g(x) = |x|‘Ax{|x|<1}(x) where (1—A4)/p <A <1/p. Then
L\
x| 7 i <1,
181122 () ng{ | A
P

Note that g ¢ LP*(0).
Proof. Tf |x| < 1

C —A l/p ;)L,A
iy < | — t| 7P dt =C
lelhoa < (g [ W rar) " =l

C o\ )
||g||LpJL(x) g <W‘/|t|<1 ‘l‘| Pd[) :C|x| p . ‘:l

If x| > 1
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Using Lemma 10 we have

A
x—1]7 7 if x—1|< 1,

£l oy S € X A
A6 x—1]"» i 1> L

Since ( +8) 8992 - _1 we can prove (ii). O

q2—9

We shall also show that the index % is optimal by giving a counterexample.

DEFINITION 9. For 1 < A < oo, we define
" 1_% 1 Apa 1/A
Z = | sup = .
D=1l (3 [ 155 )

PROPOSITION 5. Let fu(x) = Xjppi1)(X). If A< ‘”2 then

o 2o foll 01 0) _
n—ee ZA(fn)

Proof. Same as (10), we have

o 1 1 1
up o Al de—/O (—Aﬂdxz;,

and by (9), we have

2 (fy) mn P A

By using (12), we obtain the desired result. [J
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