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FRACTIONAL INTEGRAL OPERATORS ON CENTRAL MORREY SPACES

YASUO KOMORI-FURUYA AND ENJI SATO

(Communicated by B. Opic)

Abstract. We consider the boudedness of fractional integral operators on localized (central) Mor-
rey spaces and investigate the relation between the Adams inequality and the Spanne inequality.

1. Introduction

The classical Morrey spaces were introduced by Morrey [10] to investigate the
local behavior of solutions to second order elliptic differential equations. Spanne (see
Peetre [12, Theorem 5.4]) and Adams [1] studied the boundedness of fractional integral
operators on Morrey spaces. Garcı́a-Cuerva and Herrero [6] and Alvarez, Lakey and
Guzman-Partida [2] considered localized (central) Morrey spaces.

We show that a localized Adams inequality does not hold (Proposition 1), but it
holds for radial functions when n � 2 (Theorem 1). We also prove a theorem which
interpolates between Adams inequality and Spanne inequality on central Morrey spaces
(Theorem 2). In sections 5 and 6 we show that our results are optimal by giving coun-
terexamples.

We define fractional integral operators.

DEFINITION 1.

Iα f (x) =
∫

Rn

f (y)
|x− y|n−α dy.

We define Morrey spaces Lp,λ (Rn) and localized (central) Morrey spaces Lp,λ (0) .

DEFINITION 2. Let 1 < p < ∞ and 0 < λ < 1.

Lp,λ (Rn) =

⎧⎨⎩ f : ‖ f‖Lp,λ (Rn) =

(
sup

x∈Rn,R>0

1

|B(x,R)|λ
∫

B(x,R)
| f (y)|p dy

)1/p

< ∞

⎫⎬⎭ ,

Lp,λ (0) =

{
f : ‖ f‖Lp,λ (0) =

(
sup
R>0

1

|B(0,R)|λ
∫

B(0,R)
| f (y)|p dy

)1/p

< ∞

}
where B(x,R) is the ball centered at x and the radius R . Compare with Definition 4
below.
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In this paper the following three indices q1 , q2 and μ1 are very important.

DEFINITION 3.

1
q1

=
1
p
− α

n
,

1
q2

=
1
p
− α

n(1−λ )
and

μ1

q1
=

λ
p

.

Spanne and Adams proved the following inequalities.

THEOREM A. (Spanne)

‖Iα f‖Lq1 ,μ1 (Rn) � C‖ f‖Lp,λ (Rn) where 1 < p <
n
α

.

THEOREM B. (Adams)

‖Iα f‖Lq2 ,λ (Rn) � C‖ f‖Lp,λ (Rn) where 1 < p <
n(1−λ )

α
.

Throughout this paper we will let C denote a positive constant whose value may
change from line to line, but which is independent of essential parameters.

REMARK . Since ‖ f‖Lq1,μ1 (Rn) � ‖ f‖Lq2,λ (Rn) , Theorem B improves Theorem A

when 1 < p < n(1−λ )/α .

We also know the following result, see Fu, Lin and Lu [5]. This is a special case of
the theorem by Burenkov, Gogatishvili, Guliyev and Mustafayev [3]. They investigate
more general local Morrey-type spaces.

THEOREM C.

‖Iα f‖Lq1,μ1 (0) � C‖ f‖Lp,λ (0) where 1 < p <
n
α

.

However Iα is not bounded from Lp,λ (0) to Lq2,λ (0) , see Proposition 1 below.
We know only following trivial corollary of Theorem B.

THEOREM B’ .

‖Iα f‖Lq2 ,λ (0) � C‖ f‖Lp,λ (Rn) where 1 < p <
n(1−λ )

α
.

The indices q1 , q2 and μ1 satisfy the following relation:

1− μ1

q1
=

1−λ
q2

=
1−λ

p
− α

n
.

By Hölder’s inequality we have

‖ f‖Lq1,μ1 (0) � ‖ f‖Lq,μ (0) � ‖ f‖Lq2,λ (0) � ‖ f‖Lq2,λ (Rn)
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where
1− μ

q
=

1−λ
p

− α
n

, q1 < q < q2 and λ < μ < μ1.

Therefore we estimate ‖Iα f‖Lq,μ (0) and we want to obtain a theorem which interpo-
lates between Theorems B’ and C. For this purpose we introduce new function spaces.
The localized (central) Morrey space is localized at the origin. We consider the space
localized at x .

DEFINITION 4.

Lp,λ (x) =

{
f : ‖ f‖Lp,λ (x) =

(
sup
R>0

1

|B(x,R)|λ
∫

B(x,R)
| f (y)|p dy

)1/p

< ∞

}
.

REMARKS . ‖ f‖Lp,λ (Rn) = supx∈Rn ‖ f‖Lp,λ (x). The space Lp,λ (x) is a paticular

case of the space LM{x}
pθ ,ω introduced by Gogatishvili and Mustafayev [7].

2. Theorems

Our results are the following.

PROPOSITION 1. Iα is not bounded from Lp,λ (0) to Lq,μ(0) where 1−μ
q = 1−λ

p −
α
n , q1 < q � q2 and λ � μ < μ1 .

Proof. Let R > 10, xR = (R,0, . . . ,0) ∈ R
n and fR(x) = χB(xR,1)(x) . Then

‖ fR‖Lp,λ (0) � CR−nλ/p.

On the contrary Iα f (x) � C if x ∈ B(xR,1) . Therefore

‖Iα fR‖Lq,μ (0) � CR−nμ/q.

Since μ/q < λ/p , we have

lim
R→∞

‖Iα fR‖Lq,μ (0)

‖ fR‖Lp,λ (0)
= ∞. �

As Proposition 1 shows, a localized Adams inequality does not hold, but we obtain
the following theorem.

THEOREM 1. Let n � 2 . If (i) pα � 1 or (ii) pα < 1 and 0 < λ � 1−1/n,
then for any radial functions f ,

‖Iα f‖Lq2 ,λ (0) � C‖ f‖Lp,λ (0). (1)
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REMARKS . This is an example of a well known general phenomenon: under suit-
able assumptions of symmetry, notably radial symmetry, classical estimates admit sub-
stantial improvements, see for example [11], and [8] in the context of Morrey space.

By the definition of q2 , we always assume that 0 < λ < 1− pα/n . We shall show
that the condition λ � 1−1/n in (ii) is optimal by giving a counterexample in section
5. When n = 1, the inequality (1) does not hold, see the following counterexample.

COUNTEREXAMPLE 1. When n = 1 , let

fk(x) = χ[−k−1,−k](x)+ χ[k,k+1](x).

Same as the proof of Proposition 1 we can show

lim
k→∞

‖Iα fk‖Lq,μ (0)

‖ fk‖Lp,λ (0)
= ∞.

When we remove the condition that f is radial, we obtain the following theorem
which interpolates between Theorems B’ and C.

THEOREM 2. Let 1 < p < n(1−λ )
α , q1 < q < q2 , λ < μ < μ1 and

1− μ
q

=
1−λ

p
− α

n
.

Then

‖Iα f‖Lq,μ (0) � C‖ f‖1− pα
n(1−λ)

Lp,λ (0)

(
sup
R>0

1
Rn

∫
|x|<R

‖ f‖
pα

n(1−λ)
qq2

q2−q

Lp,λ (x)
dx

) q2−q
qq2

. (2)

REMARKS . Note that (2) is same as (3).

‖Iα f‖Lq,μ (0) � C‖ f‖
p
q2
Lp,λ (0)

(
sup
R>0

1
Rn

∫
|x|<R

‖ f‖
pqα

n(μ−λ)

Lp,λ (x)
dx

) 1
q− 1

q2
. (3)

We also obtain

‖Iα f‖Lq,μ (x0) � C‖ f‖1− pα
n(1−λ)

Lp,λ (x0)

(
sup
R>0

1
Rn

∫
|x−x0|<R

‖ f‖
pα

n(1−λ)
qq2

q2−q

Lp,λ (x)
dx

) q2−q
qq2

(4)

for all x0 ∈ R
n . Using ‖ f‖Lp,λ (x) � ‖ f‖Lp,λ (Rn) in (4), we have

‖Iα f‖Lq,μ (x0) � C‖ f‖Lp,λ (Rn),

and we obtain
‖Iα f‖Lq,μ (Rn) � C‖ f‖Lp,λ (Rn).

This is reduced from Theorem B and Hölder’s inequality.
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In (2), if we take q = q2 and μ = λ , formally, then we have

‖Iα f‖Lq2 ,λ (0) � C‖ f‖1− pα
n(1−λ)

Lp,λ (0)
sup
x∈Rn

‖ f‖
pα

n(1−λ)

Lp,λ (x)
� C‖ f‖Lp,λ (Rn).

This is Theorem B’.
If we take q = q1 in (2), then

‖Iα f‖Lq1 ,μ1 (0) � C‖ f‖
p

q2
Lp,λ (0)

(
sup
R>0

1
Rn

∫
|x|<R

‖ f‖
p
λ
Lp,λ (x)

dx

) 1
q1

− 1
q2

.

This inequality is worse than Theorem C. However we shall show in section 6 that the
indices pα

n(1−λ ) and qq2
q2−q in Theorem 2 are optimal when q > q1 . Therefore the central

Morrey space Lq1,μ1(0) for Spanne indices q1 and μ1 is a special function space.

3. Proof of Theorem 1

Let M be the Hardy–Littlewood maximal operator

M f (x) = sup
R>0

1
|B(x,R)|

∫
B(x,R)

| f (y)|dy.

The following Lemma is implicit in [12] and proved in [5, Proposition 1.1].

LEMMA 1.
‖M f‖Lp,λ (0) � C‖ f‖Lp,λ (0).

We define some variants of the maximal operator.

DEFINITION 5. For 0 < β < n ,

Mβ f (x) = sup
R>0

1

|B(x,R)|1−β/n

∫
B(x,R)

| f (y)|dy.

DEFINITION 6.

mβ f (x) = sup
R>|x|

1

Rn−β

∫
|y|<R

| f (y)|dy.

For a radial function f (x) = f0(|x|) ,

m̃β f (x) = sup
0<R<

|x|
2

1

R1−β

∫ |x|+R

|x|−R
| f0(t)|dt.

We know the following two lemmas.
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LEMMA 2. ([1], p. 768)

|Iα f (x)| � C(Mβ f (x))α/β (M f (x))1−α/β where α < β .

LEMMA 3. ([4], Lemma 3.1) For any radial functions f ,

Mβ f (x) � Cmβ f (x) if β � 1,

Mβ f (x) � C
(
mβ f (x)+ m̃β f (x)

)
if β < 1.

By Lemma 3 we obtain the following lemma.

LEMMA 4. Let β = n(1−λ )
p . For any radial functions f ,

Mβ f (x) � C‖ f‖Lp,λ (0) if β � 1,

Mβ f (x) � C
(‖ f‖Lp,λ (0) + m̃β f (x)

)
if β < 1.

Proof. By Hölder’s inequality,

1

Rn−β

∫
|y|<R

| f (y)|dy � CR−n+β+n/p′+nλ/p
(

1

Rnλ

∫
|y|<R

| f (y)|p dy

)1/p

� C‖ f‖Lp,λ (0),

and we have mβ f (x) � C‖ f‖Lp,λ (0). �

LEMMA 5. Let β = n(1−λ )
p . If λ � 1−1/n, then for any radial functions f ,

m̃β f (x) � C‖ f‖Lp,λ (0).

Proof. Assume that f (x) = f0(|x|) and R < |x|
2 .

1

R1−β

∫ |x|+R

|x|−R
| f0(t)|dt �CRβ−1

(∫ |x|+R

|x|−R
| f0(t)|p dt

)1/p

R1/p′

�CRβ−1+1/p′|x|(1−n)/p
(∫ |x|+R

|x|−R
| f0(t)|ptn−1 dt

)1/p

�CRβ−1/p|x|(1−n+nλ )/p
(

1

(2|x|)nλ

∫
|y|�2|x|

| f (y)|p dy

)1/p

�C‖ f‖Lp,λ (0),

since λ � 1−1/n . �

LEMMA 6. Let β = n(1−λ )
p . If λ � 1−1/n, then for any radial functions f ,

Mβ f (x) � C‖ f‖Lp,λ (0).
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Proof. By Lemmas 4 and 5 we have the desired result. �

Proof of Theorem 1. Let β = n(1−λ )
p . Note that α < β . We have by Lemmas 2

and 6
|Iα f (x)| � C‖ f‖α/β

Lp,λ (0)
(M f (x))1−α/β .

Since (1−α/β )q2 = p , we have by Lemma 1(
1

Rnλ

∫
|x|<R

|Iα f (x)|q2 dx

)1/q2

� C‖ f‖α/β
Lp,λ (0)

(
1

Rnλ

∫
|x|<R

M f (x)p dx

)1/q2

� C‖ f‖α/β
Lp,λ (0)

‖M f‖p/q2

Lp,λ (0)

� C‖ f‖α/β
Lp,λ (0)

‖ f‖p/q2

Lp,λ (0)
= C‖ f‖Lp,λ (0). �

4. Proof of Theorem 2

The following Lemmas 7 and 8 are trivial from the definitions.

LEMMA 7.

|B(x,R)|α/n−1
∫

B(x,R)
| f (y)|dy � |B(x,R)|α/n−(1−λ )/p‖ f‖Lp,λ (x).

LEMMA 8.

|B(x,R)|α/n−1
∫

B(x,R)
| f (y)|dy � |B(x,R)|α/nM f (x).

Proof of Theorem 2. We follow the argument in Hedberg [9, p. 506]. By Lemmas
7 and 8, we have

|Iα f (x)| �
∞

∑
j=−∞

∫
B(x,2 j)

| f (y)|
|x− y|n−α dy

� C
∞

∑
j=−∞

|B(x,2 j)|α/n−1
∫

B(x,2 j)
| f (y)|dy

� C
N

∑
j=−∞

|B(x,2 j)|α/nM f (x)+C
∞

∑
j=N+1

|B(x,2 j)|α/n−(1−λ )/p‖ f‖Lp,λ (x).

Minimizing this inequality we obtain

|Iα f (x)| � C‖ f‖pα/n(1−λ )
Lp,λ (x)

M f (x)1−pα/n(1−λ ).

We take s such that (
1− pα

n(1−λ )

)
qs = p.
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Note that s > 1, and let t = s/(s−1) . By Hölder’s inequality and Lemma 1, we have

1
|B(0,R)|μ

∫
B(0,R)

|Iα f (x)|q dx

�C
|B(0,R)|λ/s

|B(0,R)|μ
(

1

|B(0,R)|λ
∫

B(0,R)
(M f (x))p dx

)1/s(∫
B(0,R)

‖ f‖
pqαt

n(1−λ)

Lp,λ (x)
dx

)1/t

�C‖M f‖p/s
Lp,λ (0)

(
sup
R>0

1
Rn

∫
|x|<R

‖ f‖
pqαt

n(1−λ)

Lp,λ (x)
dx

)1/t

�C‖ f‖(1− pα
n(1−λ) )q

Lp,λ (0)

(
sup
R>0

1
Rn

∫
|x|<R

‖ f‖
pα

n(1−λ)
qq2

q2−q

Lp,λ (x)
dx

) q2−q
q2

. �

5. A Counterexample for Theorem 1

In this section we shall show the condition λ � 1− 1/n in (ii) of Theorem 1 is
optimal by giving a counterexample. For this purpose we use the next lemma.

LEMMA 9. ([11], Lemma 4.1) Let n � 2 , x′ ∈ Sn−1 and

J(x′) =
∫

Sn−1
f ((x′,y′))dy′,

where f : [−1,1]→ R
n and (x′,y′) denotes the inner product of x′ and y′ . Then

J(x′) = wn−2

∫ 1

−1
f (t)(1− t2)

n−3
2 dt,

where wn−2 denotes the area of Sn−2 .

COUNTEREXAMPLE 2. Let n � 2 and λ > 1− 1/n. We take 0 < α < 1 suffi-

ciently small and p > 1 sufficiently near 1 such that n(1−λ )
α > 1 and 1

p − α
n(1−λ ) > 0 .

We define f (x) = f0(|x|) where

f0(r) = χ[1/2,3/2](r)|r−1|−1/p
(

log
1

|r−1|
)−1

.

Then f ∈ Lp,λ (0) but Iα f /∈ Lq2,λ (0) .

Proof. It is easy to show f ∈ Lp,λ (0) . We show that Iα f /∈ Lq2 (1 < |x| < 4/3) .
We write x = |x|x′ .

Iα f (x) = C
∫ ∞

0
f0(r)rn−1r−n+α dr

∫
Sn−1

dy′(( |x|
r

)2 −2 |x|
r (x′,y′)+1

) n−α
2

= C
∫ ∞

0
f0(r)rα−1J|x|/r(x

′)dr
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where

Js(x′) =
∫

Sn−1

dy′

(s2 −2s(x′,y′)+1)
n−α

2
.

By Lemma 9

Js(x′) = wn−2

∫ 1

−1

(1− t2)
n−3
2

(s2−2st +1)
n−α

2
dt.

CLAIM .
Js(x′) � C(1− s)α−1 where 0 < s < 1. (5)

If 1 < |x| < 4
3 , then we have by Claim

Iα f (x) � C
∫ 3/2

|x|
rα−1|r−1|−1/p

(
log

1
|r−1|

)−1(
1− |x|

r

)α−1

dr

= C
∫ 3/2

|x|
|r−1|−1/p

(
log

1
|r−1|

)−1

(r−|x|)α−1 dr

� C
∫ 3/2

|x|
|r−1|−1/p|r−1|α−1 dr

(
log

1
|x|−1

)−1

� C(|x|−1)−1/p+α
(

log
1

|x|−1

)−1

.

Since q2(−1/p+ α) < −1, we have Iα f /∈ Lq2 (1 < |x| < 4/3) . �
Proof of Claim. When 0 < s � 1/2, Js(x′) � C . Therefore it suffices to show (5)

for 1/2 < s < 1.∫ 1

−1

(1− t2)
n−3
2

(s2 −2st +1)
n−α

2
dt =

∫ 1

−1

(1− t2)
n−3
2

((1− s)2 +2s(1− t))
n−α

2
dt

�C
∫ 1

0

(1− t)
n−3
2

((1− s)2 +1− t)
n−α

2
dt = C

∫ 1

0

t
n−3
2

((1− s)2 + t)
n−α

2
dt

�C
∫ 2(1−s)2

(1−s)2

t
n−3
2

((1− s)2 + t)
n−α

2
dt � C

(1− s)n−3(1− s)2

(1− s)n−α = C(1− s)α−1. �

6. Examples for Theorem 2

In this section we shall prove that Theorem 2 improves known results and is opti-
mal by giving examples. For simplicity we consider the one dimensional case, that is,
1
q1

= 1
p −α , 1

q2
= 1

p − α
1−α > 0,

1− μ1

q1
=

1− μ
q

=
1−λ
q2

=
1−λ

p
−α,

and q1 < q < q2 .
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DEFINITION 7. We define

Z( f ) = ‖ f‖1− pα
1−λ

Lp,λ (0)

(
sup
R>0

1
R

∫
|x|<R

‖ f‖
pα

1−λ
qq2

q2−q

Lp,λ (x)
dx

) q2−q
qq2

.

The following propositions show that Z( f ) controls ‖Iα f‖Lq,μ (0) .

PROPOSITION 2. Let fn(x) = χ[n,n+1](x) . Then

lim
n→∞

‖Iα fn‖Lq,μ (0)

‖ fn‖Lp,λ (0)
= ∞, (6)

lim
n→∞

‖Iα fn‖Lq,μ (0)

‖ fn‖Lp,λ (R1)
= 0, (7)

0 < liminf
n→∞

‖Iα fn‖Lq,μ (0)

Z( fn)
� limsup

n→∞

‖Iα fn‖Lq,μ (0)

Z( fn)
< ∞. (8)

Proof. (6) is proved in Proposition 1 and the proof of (7) is easy. The third in-
equality of (8) is obtained from Theorem 2. We shall prove the first inequality of (8).
Let A = pα

1−λ
qq2

q2−q . Note that

‖ fn‖Lp,λ (0) ≈ n−λ/p, (9)

and

‖ fn‖Lp,λ (x) ≈ (|x−n|+1)−λ/p.

Therefore

sup
R>0

1
R

∫
|x|<R

‖ fn‖A
Lp,λ (x) dx ≈ 1

n

∫ n

0

1

(|x−n|+1)Aλ/p
dx ≈ 1

n
, (10)

since Aλ/p > 1. By (9) and (10), we have

Z( fn) ≈ n
1−λ
q2

− 1
q . (11)

Since Iα fn(x) ≈ (|x−n|+1)α−1 and (1−α)q > 1, we have

‖Iα fn‖Lq,μ (0) ≈ n−μ/q. (12)

By (11) and (12), we obtain the desired result. �
We show that the index pα

1−λ in Definition 7 is optimal when q > q1 .

DEFINITION 8. For 0 < B � 1, we define

ZB( f ) = ‖ f‖1−B
Lp,λ (0)

(
sup
R>0

1
R

∫
|x|<R

‖ f‖
Bqq2
q2−q

Lp,λ (x)
dx

) q2−q
qq2

.
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PROPOSITION 3. Let fn(x) = χ[n,n+1](x) .

If
pα

1−λ
< B � 1 then lim

n→∞

‖Iα fn‖Lq,μ (0)

ZB( fn)
= 0. (13)

If
p
λ

(1
q
− 1

q2

)
< B <

pα
1−λ

then lim
n→∞

‖Iα fn‖Lq,μ (0)

ZB( fn)
= ∞. (14)

Proof. Let B̃ = Bqq2
q2−q . Then B̃λ/p > 1 in either cases. Same as (10) we have

sup
R>0

1
R

∫
|x|<R

‖ fn‖B̃
Lp,λ (x) dx ≈ 1

n

∫ n

0

1

(|x−n|+1)B̃λ/p
dx ≈ 1

n
,

and

ZB( fn) ≈ n
− λ

p (1−B)− 1
q + 1

q2 . (15)

By (12) and (15) we can prove (13) and (14) simultaneously. �

PROPOSITION 4. Assume that 0 < B � p
λ

(
1
q − 1

q2

)
. Then there exists a function

f such that

(i) f ∈ Lp,λ (0) and (ii) ZB( f ) < ∞ but (iii) Iα f /∈ Lq,μ(0).

Proof. We write 1
q = 1

q1
− ε where ε > 0 and define

f (x) =
1

|x−1|1/p−ε χ{0<x<2}(x).

To prove (i) is easy. We prove (iii). Since Iα f (x) �C|x−1|−(1/p−ε−α) where 0 < x < 1
and (1/p− ε−α)q = 1, we have Iα f /∈ Lq

loc . Hence Iα f /∈ Lq,μ(0) .
For the proof of (ii) we use the following elementary lemma.

LEMMA 10. Let g(x) = |x|−Aχ{|x|<1}(x) where (1−λ )/p < A < 1/p. Then

‖g‖Lp,λ (x) � C×
{
|x| 1−λ

p −A if |x| � 1,

|x|− λ
p if |x| > 1.

Note that g /∈ Lp,λ (0) .

Proof. If |x| � 1,

‖g‖Lp,λ (x) �
(

C

|x|λ
∫
|t|�|x|

|t|−Ap dt

)1/p

= C|x| 1−λ
p −A.

If |x| � 1,

‖g‖Lp,λ (x) �
(

C

|x|λ
∫
|t|�1

|t|−Apdt

)1/p

= C|x| −λ
p . �
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Using Lemma 10 we have

‖ f‖Lp,λ (x) � C×
{
|x−1| −λ

p +ε if |x−1|� 1,

|x−1|− λ
p if |x−1|> 1.

Since
(−λ

p + ε
) Bqq2

q2−q > −1 we can prove (ii). �

We shall also show that the index qq2
q2−q is optimal by giving a counterexample.

DEFINITION 9. For 1 � A < ∞ , we define

ZA( f ) = ‖ f‖1− pα
1−λ

Lp,λ (0)

(
sup
R>0

1
R

∫
|x|<R

‖ f‖
Apα
1−λ
Lp,λ (x)

dx

)1/A

.

PROPOSITION 5. Let fn(x) = χ[n,n+1](x) . If A < qq2
q2−q then

lim
n→∞

‖Iα fn‖Lq,μ (0)

ZA( fn)
= ∞.

Proof. Same as (10), we have

sup
R>0

1
R

∫
|x|<R

‖ fn‖
Apα
1−λ
Lp,λ (x)

dx ≈ 1
n

∫ n

0

1

(|x−n|+1)
Apα
1−λ

dx ≈ 1
n
,

and by (9), we have

ZA( fn) ≈ n−
λ
p (1− pα

1−λ )n−
1
A

By using (12), we obtain the desired result. �
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