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INEQUALITIES ON THE STANDARD TRIANGLE

LOZKO MILEV AND NIKOLA NAIDENOV

(Communicated by M. A. Hernandez Cifre)

Abstract. An actual problem in the theory of approximations is to extend the univariate inequal-
ity of Bernstein to the multivariate setting. This question is satisfactorily settled in the case of a
centrally symmetric convex body. In spite of the presence of good estimates, exact inequalities
of Bernstein’s type for nonsymmetric convex bodies are not known.

We prove that the approach based on the Krein-Milman theorem can be applied to maxi-
mize the nonlinear functional, which corresponds to the estimate of Bernstein-Szegő type for the
gradients of arbitrary polynomials on convex bodies.

As applications we prove exact Bernstein-Szegő inequalities for some classes of bivariate
polynomials on the standard triangle Δ . Note that in a certain sense Δ is the least symmetric
convex body in R

2 .

1. Introduction and statement of the results

Denote by πd
n the set of all real algebraic polynomials of d variables and of

total degree not exceeding n . Let K be a compact set in R
d and let ‖ f‖C(K) :=

maxX∈K | f (X)| be the uniform norm on K of a continuous function f : K ⊂ R
d −→ R .

We use the notation Bn(K) for the unit ball of πd
n with respect to ‖ · ‖C(K) , i.e.,

Bn(K) = {p ∈ πd
n : ‖p‖C(K) � 1} .

An interesting generalization of the Bernstein inequality is obtained by Szegő (see
[3] or [2]). It states that

|p′(x)| � n

√
‖p‖2

C[a,b]− p2(x)√
(x−a)(b− x)

, for every x ∈ (a,b),and p ∈ π1
n . (1)

The above inequality is sharp since it is satisfied as equality for every x ∈ (a,b)
if p = Tn , where Tn is the Chebyshev polynomial of degree n for the interval [a,b] .
Recall that Tn(t) := Tn(l(t)) , where l denotes the linear transformation from [a,b] to
[−1,1] and Tn(t) := cos(narccost) , t ∈ [−1,1] . Moreover, if for a fixed x ∈ (a,b) , a
polynomial p ∈ π1

n provides equality in (1) then either p = cTn or p is an arbitrary
polynomial such that |p(x)| = ‖p‖C[a,b] .
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The multivariate extensions of the Bernstein-Szegő inequalities to convex bodies
in R

d (compact convex sets with nonempty interior) are challenging problems in the
theory of approximations.

There are only a few exact Bernstein-type inequalities in the multivariate case.
The sets K in these inequalities are centrally symmetric convex bodies. We refer to the
papers [8], [1], [6].

To the best of our knowledge, there are not exact inequalities of Bernstein type for
nonsymmetric convex bodies.

Let K be a convex body in R
d . For every X ∈ intK we denote by

BSn(K;X) :=
1
n

sup

⎧⎨
⎩ |Dp(X)|2√

‖p‖2
C(K)− p2(X)

: p ∈ πd
n , |p(X)| < ‖p‖C(K)

⎫⎬
⎭ ,

the Bernstein-Szegő factor for K . Note that Dp(X) stands for the gradient of p at the
point X . The above definition implies the following Bernstein-Szegő estimate:

|Dp(X)|2 � nBSn(K;X)
√

‖p‖2
C(K)− p2(X),

for all X ∈ intK and p ∈ πd
n .

Using the method of proof of [4, Theorem 1] and applying the univariate Bernstein-
Szegő inequality instead of Bernstein inequality, one can prove the estimate

BSn(K;X) � 2
√

2

w(K)
√

1−α2(K;X)
, (2)

where w(K) is the minimal distance between two parallel supporting hyperplanes of K
and α(K;X) denotes the generalized Minkowski functional (see e.g. [4, p. 137]). In
fact, the estimate (2) first appeared in [6, Theorem 2.7]. It can be improved when K is
the standard triangle in R

2 , see [6, Theorem 4.6].
The first goal of the present paper is to prove a general representation of BSn(K;X)

by using the extreme points of the unit ball in the polynomial space under consideration.
Our approach is based on the Krein-Milman theorem. The main difficulty is that the
domain of definition of the corresponding functional (see below) is not convex.

Let us denote by En(K) the set of all extreme points of Bn(K) . Recall that a point
p of a convex set B is said to be extreme if the equality p = λ p1 + (1− λ )p2 for
some p1, p2 ∈ B and λ ∈ (0,1) implies p = p1 = p2 . According to the Krein-Milman
theorem, Bn(K) is the convex hull of En(K) . As a consequence we have the equality

max
p∈Bn(K)

f (p) = max
p∈En(K)

f (p), (3)

provided f is a convex function defined on Bn(K) .
We introduce the nonlinear functional

F(p) := Fn(p) := Fn(p;X) :=
1
n

|Dp(X)|2√
‖p‖2

C(K)− p2(X)
.
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The domain of definition of F is

S := {p ∈ πd
n : |p(X)| < ‖p‖C(K)}.

In Section 2 we prove the following result.

THEOREM 1. Let K be a convex body in R
d . For every X ∈ intK we have

BSn(K;X) = sup
p∈En(K)∩S

F(p).

As it is discussed in [4], there is a precise mathematical background which allows
us to say that in R

d the least symmetric convex body is the standard simplex

Δd :=

{
(x1, . . . ,xd) ∈ R

d : 0 � xi � 1, i = 1, . . . ,d,
d

∑
i=1

xi � 1

}
.

Therefore, it is of interest to deal with this special case. For example, the exact
yield of the inscribed ellipse method for the simplex was found in [6].

Since the dimension of πd
n grows rapidly in both the parameters n and d , we shall

obtain some exact inequalities for d = 2.
We shall use the abbreviated notations Δ := Δ2 and ‖ · ‖ := ‖ · ‖C(Δ) . We also set

M(x,y) := max

{
1√

x(1− x)
,

1√
y(1− y)

,

√
2√

(x+ y)(1− x− y)

}
,

for every (x,y) ∈ intΔ .

THEOREM 2. For every (x,y) ∈ intΔ we have BS1(Δ;x,y) = M(x,y) . The ex-
tremal polynomials belong to the set {cpi}3

i=1 , where c ∈ R \ {0} , and p1(x,y) :=
1−2x , p2(x,y) := 1−2y, p3(x,y) := 1−2(x+ y) .

REMARK 1. The explicit expression for BS1(Δ;x,y) given in Theorem 2, was
announced without proof in [5].

Let us define the functions ϕ and ψ and the domains Di , i = 1,2,3, as

ϕ(x) :=
1
2

+ x−
√

2x2 +
1
4
, x ∈ [0,1],

ψ(y) :=
1
2

+ y−
√

2y2 +
1
4
, y ∈ [0,1],

D1 := {(x,y) : y ∈ (0,1), 0 < x < ψ(y)},
D2 := {(x,y) : x ∈ (0,1), 0 < y < ϕ(x)},

D3 := intΔ\ {D1∪D2}.
The next corollary gives the explicit form of the Bernstein-Szegő factor BS1(Δ;x,y)

depending on the point (x,y) ∈ intΔ .
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COROLLARY 1. We have

BS1(Δ;x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
x(1−x)

, if (x,y) ∈ D1;

1√
y(1−y)

, if (x,y) ∈ D2;
√

2√
(x+y)(1−x−y)

, if (x,y) ∈ D3.

REMARK 2. It follows from the proof of Corollary 1 that if p ∈ S , ‖p‖ = 1,
and F(p) = BS1(Δ;x,y) then p = ±pi , provided (x,y) ∈ intDi , i = 1,2,3, and p ∈
{±pi,±p3} , provided (x,y) ∈ Di ∩D3 , i = 1,2 (here A denotes the closure of the set
A ; see Figure 1).

O A

B

D3D1

D2

Figure 1: The areas where F(pi) , i = 1,2,3 , are maximal.

We set Rn := {p∈ π2
n : p(x,y) = P(ax+by+c),P∈ π1

n} . The following theorem
gives a sharp inequality of Bernstein-Szegő type for polynomials lying in Rn .

THEOREM 3. For every (x,y) ∈ intΔ and p ∈ Rn we have the inequality

|Dp(x,y)|2 � nM(x,y)
√
‖p‖2− p2(x,y). (4)

The equality is attained if and only if |p(x,y)| = ‖p‖ or p = cqi , provided (x,y) ∈
intDi , i = 1,2,3 , or p∈{cqi,cq3} , provided (x,y)∈Di∩D3 , i = 1,2 , where q1(x,y) :=
Tn(2x−1) , q2(x,y) := Tn(2y−1) and q3(x,y) := Tn(2(x+ y)−1) .

2. Proof of Theorem 1

We shall need the following lemmas. From now on, ‖ · ‖C(K) will be denoted by
‖ · ‖ .

LEMMA 1. Let us fix a point X ∈ intK . Then

sup
p∈S

F(p) = sup
p∈S1

F1(p), (5)
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where

F1(p) :=
1
n

|Dp(X)|2√
1− p2(X)

,

and
S1 := {p ∈ πd

n : |p(X)| < 1,‖p‖C(K) � 1}
is the domain of definition of F1 .

Proof. Let us denote by B1
n(K;X) the supremum in the right-hand side of (5). We

have to prove that BSn(K;X) = B1
n(K;X) .

For every p ∈ S the polynomial q := p
‖p‖ belongs to S1 . The homogeneity of F

and ‖q‖ = 1 imply F(p) = F(q) = F1(q) � B1
n(K;X) . Taking the supremum over all

p ∈ S we get BSn(K;X) � B1
n(K;X) .

It remains to prove the converse inequality. Let q be an arbitrary polynomial from
S1 . There are two cases.

Case 1. q∈ S . It is easily seen that the function f (λ ) :=
1√

λ 2−q2(X)
decreases

for λ > |q(X)| , which gives F1(q) � F(q) � BSn(K;X) .
Case 2. q /∈ S , i.e. ‖q‖= |q(X)|< 1. Since q attains its norm at the interior point

X , we have Dq(X) = 0 , hence 0 = F1(q) � BSn(K;X) .
Thus, F1(q) � BSn(K;X) for every q∈ S1 , which implies B1

n(K;X) � BSn(K;X) .
The proof of Lemma 1 is completed. �

Let us define the functional

Φ(p) := (F1(p))2 =
1
n2

|Dp(X)|22
1− p2(X)

, p ∈ S1.

LEMMA 2. Φ is a convex functional on intBn(K) .

Proof. Let p1, p2 ∈ intBn(K) . Without loss of generality we can assume that p1 
=
p2 . It is sufficient to prove that g(λ ) := Φ(λ p1 +(1−λ )p2) , λ ∈ [0,1] is a convex
function. The coordinate representation of the gradient yields g(λ ) = 1

n2 ∑d
i=1 hi(λ ) ,

where

hi(λ ) =
[λAi +(1−λ )Bi]2

1− [λA+(1−λ )B]2
,

and

A := p1(X), B := p2(X), Ai :=
∂ p1

∂xi
(X), Bi :=

∂ p2

∂xi
(X), i = 1, . . . ,d.

The claim will be established if we show that h′′i (λ ) � 0, for every i = 1, . . . ,d and
λ ∈ [0,1] . A computation gives

h′′i (λ ) =
2M(λ )

(1−U2)3 ,
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where

M(λ ) := 4V 2U2
i U2 +4VViUUi(1−U2)+V 2U2

i (1−U2)+V 2
i (1−U2)2,

and
U := λA+(1−λ )B, Ui := λAi +(1−λ )Bi, i = 1, . . . ,d,

V := A−B, Vi := Ai−Bi, i = 1, . . . ,d.

Note that 1−U2 > 0 because of ‖pi‖ < 1, i = 1,2. Setting Z := (1−U2)Vi and
Y := 2UUiV , we get

M(λ ) = (Z +Y )2 +V 2U2
i (1−U2) � 0,

which finishes the proof. �

Furthermore, we shall need the functional Φ = clΦ , defined by

Φ(p) := liminf
q→p,

q∈intBn(K)

Φ(q), p ∈ Bn(K).

Because of the convexity of Φ (Lemma 2), Φ is a convex functional on Bn(K)
(see [7], p. 52). The definition of Φ implies that it is a continuous function on S1 , hence
Φ(p) = Φ(p) for p ∈ S1 . The next lemma provides information about the values of Φ
at the remaining points of Bn(K) .

LEMMA 3. Φ(p0) = 0 , for every p0 ∈ Bn(K)\ S1 .

Proof. Since Φ(p) � 0 for every p ∈ S1 , we have Φ(p0) � 0. Let us consider the
polynomials pε(Y ) := (1− ε)p0(Y ) for ε ∈ (0,1) . It follows from |p0(X)| = 1 that
1− p2

ε(X) = ε(2− ε) > 0. Note also that p0 attains its norm at the point X ∈ intK
which implies Dp0(X) = 0 . As a consequence, Dpε(X) = (1− ε)Dp0(X) = 0 .

Thus, the definition of Φ gives Φ(pε) = 0 for every ε ∈ (0,1) , and hence
limε→0 Φ(pε ) = 0. Lemma 3 is proved. �

Proof of Theorem 1. Using Lemma 1 and the definition of Φ , we get

BSn(K;X) = sup
p∈S1

F1(p) =
{

sup
p∈S1

Φ(p)
} 1

2
. (6)

We claim that

sup
p∈S1

Φ(p) = sup
p∈Bn(K)

Φ(p) = sup
p∈En(K)

Φ(p) = sup
p∈En(K)∩S1

Φ(p). (7)

Indeed, let us set

A := sup
p∈S1

Φ(p), A := sup
p∈Bn(K)

Φ(p), C := sup
p∈En(K)

Φ(p),
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and
C := sup

p∈En(K)∩S1
Φ(p).

The inequality A � A follows from the fact that Φ is a continuation of Φ from
S1 to Bn(K) . Let us suppose that A < A . Then there exists a polynomial p0 ∈ Bn(K)
such that A < Φ(p0) . The definition of A excludes the possibility p0 ∈ S1 , hence
p0 ∈ Bn(K)\ S1 and, by Lemma 3, we have Φ(p0) = 0, a contradiction.

The second equality in (7) is a consequence of (3). Finally, again by Lemma 3, we
clearly get C = C . This completes the proof of (7).

It follows from (6) and (7) that

BSn(K;X) =
{

sup
p∈En(K)∩S1

Φ(p)
} 1

2 = sup
p∈En(K)∩S1

F1(p).

Since ‖p‖ = 1 for every p ∈ En(K) , we have En(K) ∩ S1 = En(K) ∩ S =: D and
F1(p) = F(p) , for every p ∈ D . Theorem 1 is proved. �

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. We shall apply Theorem 1. Our first goal is to find E1(Δ) ,
i.e., the set of all extreme points of B1(Δ) . We claim that a polynomial p ∈ π2

1 belongs
to E1(Δ) if and only if p satisfies the conditions:

|p(O)| = |p(A)| = |p(B)| = 1, (8)

where O(0,0) , A(1,0) , and B(0,1) are the vertices of Δ . Indeed, let p ∈ E1(Δ) . On
the contrary, we assume that (8) are not satisfied and, without loss of generality, let
|p(O)| < 1. There is an unique λ ∈ (0,1) such that p(O) = λ · 1 + (1− λ ) · (−1) .
Then we define the first-degree polynomials q1 and q2 by the conditions:

qi(O) = (−1)i−1, qi(A) = p(A), qi(B) = p(B), for i = 1,2.

Clearly qi ∈ B1(Δ) , i = 1,2, and since p = λq1 +(1−λ )q2 we conclude that p is not
an extreme point of B1(Δ) , a contradiction.

Let us suppose now that p ∈ π2
1 and satisfies (8). It is sufficient to prove that

the equality p = λq1 + (1− λ )q2 , with some q1,q2 ∈ B1(Δ) and λ ∈ (0,1) implies
q1 = q2 = p . Let us set q := q1 − q2 and f±ε := p± εq . The representation f±ε =
(λ ± ε)q1 +(1−λ ∓ ε)q2 shows that f±ε ∈ B1(Δ) for every sufficiently small ε > 0.
If X ∈ {O,A,B} then the inequality | f±ε (X)|� 1 leads to q(X) = 0, and hence q ≡ 0,
which finishes the proof of the assertion.

Using (8) we find that E1(Δ) = {±p0,±p1,±p2,±p3} , where p0(x,y) := 1,
p1(x,y) := 1−2x , p2(x,y) := 1−2y , p3(x,y) := 1−2(x+ y) . Note that E1(Δ)∩S
= {±p1,±p2,±p3} . Then, by Theorem 1 we conclude that

BS1(Δ;x,y) = max
i=1,2,3

F1(pi) = max

{
1√

x(1− x)
,

1√
y(1− y)

,

√
2√

(x+ y)(1− x− y)

}
,
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for every (x,y) ∈ intΔ.
Since F1(cp) = F1(p) , it remains to prove that every extremal polynomial for F1

from S such that ‖p‖ = 1 belongs to the set {±p1,±p2,±p3} .
Note first that for n = 1 the domain of definition of Φ is S1 = B1(Δ) \ {±1} ,

because X ∈ intΔ . A careful examination of the proof of Lemma 2 shows that, if n = 1,
then Φ is strictly convex on the segment [r1,r2] , provided r1 
= r2 are nonconstant
polynomials from S1 . In fact, the assertion of Lemma 2 remains true for S1 ⊃ intBn(K) .

On the contrary, let us suppose that there is a polynomial p ∈ (S ∩ ∂B1(Δ)) \
{±pi}3

1 such that Φ(p) = BS2
1(Δ;x,y) . Since p0 /∈ S it follows that p /∈ E1(Δ) . Then

p can be represented in the form p = λ r1 +(1−λ )r2 , where r1,r2 ∈ B1(Δ) , r1 
= r2 ,
and λ ∈ (0,1) .

Case 1. r1 and r2 are nonconstant polynomials. The strict convexity of Φ implies
Φ(p) < λ Φ(r1)+ (1−λ )Φ(r2) � BS2

1(Δ;x,y) , which is a contradiction.
Case 2. ri ≡ ci , for i = 1,2, where c1 < c2 are constants. Then p ≡ c ∈ (c1,c2)

and thus p cannot be extremal.
Case 3. r1 ≡ c1 , while r2 is not a constant. Let us consider the polynomial

r̃1 := (1− ε)r1 + εr2 , provided ε > 0 is sufficiently small. Since p ∈ (r̃1,r2) and
Dr̃1(X) 
= 0 , we conclude, by Case 1, that p is not extremal, a contradiction.

Theorem 2 is proved. �

Proof of Corollary 1. Let (x,y) ∈ intΔ . It is easily seen that F1(p1) < F1(p2) if
and only if (x,y) ∈ int�OAO1 , where O1 is the midpoint of the side [AB] . Next we
compare F1(p2) and F1(p3) on �OAO1 . The condition F1(p2) � F1(p3) is equiva-
lent to y2 − (2x+ 1)y+ x− x2 � 0, i.e., y ∈ [y1,y2] , where y1 := ϕ(x) , y2 := 1

2 + x+√
2x2 + 1

4 . Since 0 � ϕ(x) � min{x,1− x} � y2(x) , for every x ∈ [0,1] , we conclude
that the graph of ϕ lies inside �OAO1 , while the graph of y2 does not intersect it.
Therefore, p2 is extremal for (x,y) ∈ D2 and p3 – for (x,y) ∈ int�OAO1 \D2 . The
proof for �OBO1 is similar. �

Proof of Theorem 3. Let us fix the point (x∗,y∗) ∈ intΔ . If a polynomial p ∈ Rn

satisfies |p(x∗,y∗)| = ‖p‖ then Dp(x∗,y∗) = 0 , hence (4) holds true. In what follows,
we assume that |p(x∗,y∗)| < ‖p‖ , so that (4) is equivalent to

Fn(p) � M(x∗,y∗). (9)

Since Fn(cp) = Fn(p) , we shall suppose that ‖p‖ = 1. By definition of Rn , let
p(x,y) = P(αx+ βy+ γ) , where P = P(t) ∈ π1

n . If

a := min
(x,y)∈Δ

{αx+ βy+ γ}, b := max
(x,y)∈Δ

{αx+ βy+ γ},

then ‖P‖C[a,b] = ‖p‖ = 1. Clearly, |Dp(x,y)|2 =
√

α2 + β 2 |P′(αx+βy+ γ)| . Apply-
ing (1), we get

|Dp(x∗,y∗)|2 � n
√

α2 + β 2
√

1−P2(t∗)√
(b− t∗)(t∗ −a)

, (10)
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where t∗ := αx∗ + βy∗ + γ . Note that t∗ ∈ (a,b) since a linear function attains its
maximum and minimum only on the boundary of Δ . Dividing the both sides of (10) by
n
√

1−P2(t∗) we obtain the equivalent inequality

Fn(p) �
√

α2 + β 2√
(b− t∗)(t∗ −a)

. (11)

Recall that Tn gives equality in the inequality of Bernstein-Szegő for the interval (a,b) .
In particular, for n = 1 this implies

1√
(b− t∗)(t∗ −a)

=
|T ′

1(t
∗)|√

1−T
2
1(t∗)

. (12)

It follows from (11) and (12) that

Fn(p) �
√

α2 + β 2 |T ′
1(t

∗)|√
1−T

2
1(t∗)

= F1(q),

where q(x,y) := T 1(αx+ βy+ γ)∈ π2
1 . By Theorem 2,

F1(q) � BS1(Δ;x∗,y∗) = M(x∗,y∗), (13)

which completes the proof of (9).
It remains to clarify the cases of equality in (4). Every polynomial p such that

|p(x∗,y∗)| = ‖p‖ satisfies (4) as an equality. Therefore, without loss of generality we
can suppose that p ∈ S and ‖p‖ = 1. Let Fn(p) = M(x∗,y∗) . It follows from the
proof of (9) that (10) and (13) hold true as equalities. We shall consider only the case
(x∗,y∗) ∈ intD1 , since the remaining cases for the point (x∗,y∗) are similar. Then Re-
mark 1 implies T 1(αx+βy+ γ) = σ p1(x,y) = σ(2x−1) , where σ ∈ {−1,1} . Notic-
ing that T 1(t) = 2

b−a t − a+b
b−a we determine the coefficients as follows: α = σ(b− a) ,

β = 0, and γ = a+b
2 −σ b−a

2 . The equality in (10) is attained only if P(t) = ±Tn(t) =
±Tn( 2

b−at − a+b
b−a) . Consequently,

p(x,y) = P(αx+ βy+ γ) = ±Tn

(
σ

b−a
2

(2x−1)+
a+b

2

)
= ±Tn(σ(2x−1)) = τq1(x,y),

where τ ∈ {−1,1} . Conversely, if p = ±q1 , then it can be directly checked that
Fn(p) = M(x∗,y∗) . Theorem 3 is proved. �
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