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(Communicated by I. Perić)

Abstract. Tight lower and upper bounds for the radii of univalence (and starlikeness) of some
normalized Bessel, Struve and Lommel functions of the first kind are obtained via Euler-Rayleigh
inequalities. It is shown also that the radius of univalence of the Struve functions is greater than
the corresponding radius of univalence of Bessel functions. Moreover, by using the idea of
Kreyszig and Todd, and Wilf it is proved that the radii of univalence of some normalized Struve
and Lommel functions are exactly the radii of starlikeness of the same functions, and they are
actually solutions of some functional equations. The Laguerre-Pólya class of entire functions
plays an important role in our study.

1. Introduction

The surprising use of generalized hypergeometric functions in the solution of the
famous Bieberbach conjecture created a considerable interest on geometric properties
of special functions. Although in the sixties appeared only a small number of stud-
ies concerning geometric properties of Bessel functions (see [13, 14, 15, 18, 20, 25]
and the references therein), in the last two decades the subject was reconsidered and
many results were proved for Bessel, Struve and Lommel functions (see for example
[1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 23, 24] and the references therein). The determination
of the radii of starlikeness and convexity of Bessel, Struve and Lommel functions was
intensively studied in the above papers, and it was shown that these radii are actually
solutions of some functional (transcendental) equations. Since these solutions can be
handled precisely only by computer softwares, it is natural to ask if there are some nat-
ural estimates for these radii. Motivated by this question, in this paper our aim is to
present some tight lower and upper bounds for the radii of univalence (and starlikeness)
of six normalized Bessel, Struve and Lommel functions of the first kind. Moreover,
we show that these radii of univalence actually correspond to the radii of starlikeness.
As in [25], the basic idea is that whereas the radius of univalence is quite troublesome
to deal with directly, the radius of starlikeness is obtainable almost immediately from
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Weierstrassian’s factorization. The results presented in this paper complement and im-
prove the main results of the papers [20, 25] and the proofs use the beautiful ideas from
[20, 25]. It is also important to mention that the method used in this paper is not new,
its origins goes back to Euler and Rayleigh, see [19] for more details. The bounds de-
duced for the radii of univalence (and starlikeness) are actually particular cases of the
well-known Euler-Rayleigh inequalities and it is possible to show that in the main re-
sults of this paper the deduced lower bounds increase and the upper bounds decrease to
the corresponding radii of univalence (and starlikeness). The fact that the lower bounds
increase can be deduced directly from the corresponding Euler-Rayleigh inequalities,
while the fact that the upper bounds are decreasing is actually a consequence of the
Cauchy-Schwarz inequality. In other words, the inequalities presented in this paper can
be improved by using higher order Euler-Rayleigh inequalities. We restricted ourselves
to the third Euler-Rayleigh inequalities since these are already quite complicated.

2. Radii of univalence (and starlikeness) of some special functions

Let Dr = {z ∈ C : |z| < r}, where r > 0 and let D1 = D. Further let f (z) =
z + α2z2 + . . . be a univalent function. We say that the radius of univalence of the
function f is the largest radius r for which f maps univalently the open disk Dr into
some domain. Similarly, the radius of starlikeness of the function f is the largest radius
r for which f maps Dr into a starlike domain with respect to origin. In this paper we
are interested on the radii of univalence (and starlikeness) of some normalized Bessel,
Struve and Lommel functions of the first kind. We consider the Bessel function of
the first kind Jν , the Struve function of the first kind Hν , and the Lommel function
of the first kind sμ,ν . The Bessel function of the first kind is a particular solution of
the homogeneous Bessel differential equation, while the Struve and Lommel functions
of the first kind are particular solutions of the inhomogeneous Struve and Lommel
differential equations. For more details on these functions we refer to [21]. In the proof
of the main results we are also using a special class of real entire functions, see [17] for
more details. A real entire function q belongs to the Laguerre-Pólya class L P if it
can be represented in the form

q(x) = cxme−αx2+β x ∏
n�1

(
1+

x
xn

)
e−

x
xn ,

where c, β , xn are real numbers, α � 0, m is a natural number or zero, and ∑
n�1

x−2
n

converges.

2.1. Radii of univalence (and starlikeness) of Bessel functions of the first kind

The first main results we establish concerning the Bessel function of the first kind
read as follows.

THEOREM 1. The radius of univalence (and starlikeness) r�(ϕν ) of the normal-
ized Bessel function of the first kind z �→ ϕν(z) = 2νΓ(ν +1)z1−νJν(z) satisfies r�(ϕν )
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<
√

2(ν +1) for each ν > −1. Moreover, if ν > −1, then the radius of univalence
satisfies

2

√
ν +1

3
< r�(ϕν ) < 2

√
3(ν +1)(ν +2)

4ν +13
,

2 4

√
(ν +1)2(ν +2)

4ν +13
< r�(ϕν ) < 2

√
(ν +1)(ν +3)(4ν +13)

2(4ν2 +26ν +49)
,

2 6

√
(ν +1)3(ν +2)(ν +3)

2(4ν2 +26ν +49)
< r�(ϕν ) < 2

√
2(ν +1)(ν +2)(ν +4)(4ν2 +26ν +49)
16ν4 +208ν3 +1032ν2 +2341ν +1987

.

It is worth to mention that the inequality r�(ϕν) <
√

2(ν +1), where ν > −1,

improves the inequality r�(ϕν ) <
√

12(ν +2)/5, obtained by Kreyszig and Todd [20].
Note that our approach is more simple and is based on the first Rayleigh sum for the
zeros of Bessel functions of the first kind. We also note that the above first lower bound
has been obtained also by Kreyszig and Todd [20] by using a completely different
method. Finally, we mention that if we consider the first upper bound and the second
lower bound for the radius of univalence r�(ϕν) from above, then we have

4

(
1+

1
ν

)√
ν +2

4ν +13
<

(r�(ϕν ))2

ν
< 2

(
1+

1
ν

)
,

which imply that (r�(ϕν ))2/ν → 2 as ν →∞. The above limit relation has been proved
earlier by Hayden and Merkes [18] by using continued fractions for Bessel functions.

Proof. By using the first Rayleigh sum and the implicit relation for r�(ϕν ), ob-
tained by Kreyszig and Todd [20], we get for all ν > −1 that

1
(r�(ϕν ))2 = ∑

n�1

2
j2ν,n − (r�(ϕν ))2 > ∑

n�1

2
j2ν,n

=
1

2(ν +1)
.

Now, by using the Euler-Rayleigh inequalities it is possible to have more tight
bounds for the radius of univalence (and starlikeness) r�(ϕν ). For this recall that the
zeros of

ϕν(z) = ∑
n�0

(−1)nz2n+1

4nn!(ν +1)n

all are real when ν > −1. Consequently, this function belongs to the Laguerre-Pólya
class L P of real entire functions (see [16] for more details), which are uniform limits
of real polynomials whose all zeros are real. Now, since the Laguerre-Pólya class L P
is closed under differentiation, it follows that ϕ ′

ν belongs also to the Laguerre-Pólya
class and hence all of its zeros are real. Thus, the function z �→ Ψν (z) = ϕ ′

ν (2i
√

z) has
only negative real zeros and having growth order 1

2 it can be written as the product

Ψν(z) = ∏
n�1

(
1+

z
aν,n

)
,
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where aν,n > 0 for each n ∈ N. Now, by using the Euler-Rayleigh sum σk = ∑n�1 a−k
ν,n

and the infinite sum representation of the Bessel function Jν we have (see the proof of
[25, Theorem 2] for more details)

Ψ′
ν(z)

Ψν(z)
= ∑

n�1

1
z+aν,n

= ∑
n�1

∑
k�0

(−1)kzk

ak+1
ν,n

= ∑
k�0

(−1)kσk+1z
k, |z| < aν,1,

Ψ′
ν(z)

Ψν(z)
= ∑

n�0

(2n+3)zn

n!(ν +1)n+1

/
∑
n�0

(2n+1)zn

n!(ν +1)n
.

From these relations it is possible to express the Euler-Rayleigh sums in terms of ν and

by using the Euler-Rayleigh inequalities σ− 1
k

k < aν,1 < σk
σk+1

we obtain the inequalities
for ν > −1 and k ∈ N

2

√
σ− 1

k
k < r�(ϕν ) < 2

√
σk

σk+1
.

Since

σ1 =
3

ν +1
, σ2 =

4ν +13
(ν +1)2(ν +2)

, σ3 =
2(4ν2 +26ν +49)

(ν +1)3(ν +2)(ν +3)

and

σ4 =
16ν4 +208ν3 +1032ν2 +2341ν +1987

(ν +1)4(ν +2)2(ν +3)(ν +4)
,

in particular, when k ∈ {1,2,3} from the above Euler-Rayleigh inequalities we have
the next inequalities for 2

√
aν,1, that is,

2

√
ν +1

3
< r�(ϕν ) < 2

√
3(ν +1)(ν +2)

4ν +13
,

2 4

√
(ν +1)2(ν +2)

4ν +13
< r�(ϕν ) < 2

√
(ν +1)(ν +3)(4ν +13)

2(4ν2 +26ν +49)
,

2 6

√
(ν +1)3(ν +2)(ν +3)

2(4ν2 +26ν +49)
< r�(ϕν ) < 2

√
2(ν +1)(ν +2)(ν +4)(4ν2 +26ν +49)
16ν4 +208ν3 +1032ν2 +2341ν +1987

,

and it is possible to have more tighter bounds for other values of k ∈ N. �
The next result is analogous to Theorem 1 and complements the main results in

[6, 7].

THEOREM 2. Let ν > −1. The following assertions are true:

a. The radius of univalence r�(φν) of the normalized Bessel function of the first kind
z �→ φν (z) = 2νΓ(ν + 1)z1− ν

2 Jν(
√

z) corresponds to the radius of starlikeness
and it is the smallest positive root of the equation

√
zJ′ν(

√
z)+ (2−ν)Jν(

√
z) =

0.
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b. The radius of univalence (and starlikeness) r�(φν) satisfies r�(φν ) < 4(ν + 1)
for each ν > −1. Moreover, if ν > −1, then the radius of univalence satisfies

2(ν +1) < r�(φν ) <
8(ν +1)(ν +2)

ν +5
,

4(ν +1)
√

ν +2√
ν +5

< r�(φν) <
4(ν +1)(ν +3)(ν +5)

ν2 +8ν +23
,

4(ν +1) 3

√
(ν +2)(ν +3)
ν2 +8ν +23

< r�(φν ) <
4(ν +1)(ν +2)(ν +4)(ν2 +8ν +23)

ν4 +15ν3 +90ν2 +267ν +287
.

c. The radius of univalence (and starlikeness) r�(φν) satisfies r�(φν )
4(ν+1) → 1 as ν →

∞. Moreover, we have the following asymptotic relation

r�(φν) = 4(ν +1)
(

1− 1
ν

+O
(
ν−2)) , as ν → ∞.

d. The function ν �→ r�(φν ) is increasing on (−1,∞).

Proof. a. We know that if the function z �→ z + α2z2 + . . . has real coefficients,
then its radius of starlikeness is less or equal than its radius of univalence, see [25]. On
the other hand, we know that the radius of univalence of the function φν is less or equal
than the smallest positive zero of φ ′

ν , according to Wilf [25, p. 243]. But, the smallest
positive zero of φ ′

ν , that is, the first positive zero of the equation
√

zJ′ν(
√

z) + (2−
ν)Jν(

√
z) = 0 is actually the radius of starlikeness of φν , according to [6, 7]. These

show that indeed the radius of univalence corresponds to the radius of starlikeness of
the function φν . Alternatively, we can follow Wilf’s argument (see the proof of [25,
Theorem 1]) to show that the radii of univalence and starlikeness coincide.

b. By using the well-known infinite product representation

2νΓ(ν +1)z−νJν(z) = ∏
n�1

(
1− z2

j2ν,n

)

we have that
φ ′

ν (z)
φν (z)

=
1
z

+ ∑
n�1

1
z− j2ν,n

, (1)

which vanishes at r�(φν ). In view of the first Rayleigh sum for the zeros of the Bessel
functions of the first kind we get

1
r�(φν )

= ∑
n�1

1
j2ν,n − r�(φν )

> ∑
n�1

1
j2ν,n

=
1

4(ν +1)
. (2)

Now, consider the infinite sum representation of φν and its derivative

φν (z) = ∑
n�0

(−1)n zn+1

n!4n (ν +1)n
,
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Φν(z) = φ ′
ν (−4z) = ∑

n�0

n+1
(ν +1)n

· zn

n!
. (3)

The normalized Bessel function φν has only real zeros for ν > −1 and belongs to the
Laguerre-Pólya class L P of real entire functions, see [16]. Therefore φ ′

ν belongs
also to the Laguerre-Pólya class L P and has also only real zeros. Consequently, this
is also true for Φν . Moreover, since the coefficients of Φν (z) are non-negative and Φν
belongs to the Laguerre-Pólya class L P, it follows that Φν can have only negative
zeros, and thus Φν(z) can be written as the product

Φν (z) = ∏
n�1

(
1+

z
bν,n

)
, (4)

where bν,n > 0 for each n ∈ N . Now, by using the Euler-Rayleigh sum ρk = ∑n�1 b−k
ν,n

and the infinite sum representation of the Bessel function Jν we have

Φ′
ν(z)

Φν(z)
= ∑

n�1

1
z+bν,n

= ∑
n�1

∑
k�0

(−1)k zk

bk+1
ν,n

= ∑
k�0

(−1)k ρk+1z
k, |z| < bν,1,

Φ′
ν(z)

Φν(z)
= ∑

n�0

(n+2)zn

n!(ν +1)n+1

/
∑
n�0

(n+1)zn

n!(ν +1)n
.

We can express the Euler-Rayleigh sums in terms of ν and by using the Euler-Rayleigh

inequalities ρ− 1
k

k < bν,1 < ρk
ρk+1

we get the inequalities for 4bν,1 when ν > −1 and
k ∈ N

4ρ− 1
k

k < r�(φν ) < 4
ρk

ρk+1
. (5)

Since

ρ1 =
2

ν +1
, ρ2 =

ν +5
(ν +1)2(ν +2)

, ρ3 =
ν2 +8ν +23

(ν +1)3(ν +2)(ν +3)

and

ρ4 =
ν4 +15ν3 +90ν2 +267ν +287
(ν +1)4(ν +2)2(ν +3)(ν +4)

,

in particular, when k ∈ {1,2,3} we have the inequalities of this theorem.
c. By using the Euler-Rayleigh inequality (5) for k = 2 or k = 3 we have that in-

deed the radius of univalence (and starlikeness) r�(φν ) satisfies r�(φν )
4(ν+1) → 1 as ν → ∞.

Moreover, if we use the inequality (5) for k = 3 and the next asymptotic equalities

4ρ− 1
3

3 = 4 ρ3
ρ4

= 4(ν +1)
(
1− 1

ν +O
(
ν−2

))
as ν → ∞, we have the following asymp-

totic relation r�(φν ) = 4(ν +1)
(
1− 1

ν +O
(
ν−2

))
as ν → ∞.

d. We denote the logarithmic derivative of φν by Δν . From (1) and the left-hand
side of (2) it follows that Δν(z) > 0 for z∈ (0,r�(φν )) and Δν(r�(φν )) = 0. Now, since
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the function ν �→ jν,n is increasing on (−1,∞) for each fixed n∈ N, it follows that for
μ > ν and z ∈ (0,r�(φν)) the terms of the series in

Δμ(z)−Δν(z) = ∑
n�1

j2μ,n − j2ν,n

(z− j2μ,n)(z− j2ν,n)

are positive. Hence Δμ(z) > 0 for z ∈ (0,r�(φν )) and therefore r�(φμ) > r�(φν ). �

2.2. Radii of univalence (and starlikeness) of Struve functions of the first kind

The next result concerning Struve functions of the first kind complements the re-
sults in [4].

THEOREM 3. Let ν ∈ [− 1
2 , 1

2

]
. The following assertions are true:

a. The radius of univalence r�(vν ) of the normalized Struve function

z �→ vν(z) =
√

π2νz−νΓ
(

ν +
3
2

)
Hν(z)

corresponds to its radius of starlikeness, and it is the smallest positive root of the
transcendental equation zH′

ν(z)−νHν(z) = 0.

b. The radius of univalence r�(vν ) satisfies r�(vν ) <
√

3
(
ν + 3

2

)
for ν ∈ [− 1

2 , 1
2

]
.

Moreover, when ν ∈ [− 1
2 , 1

2

]
the radius of univalence r�(vν ) satisfies the in-

equalities
√

2ν +3 < r�(vν) <

√
3(2ν +3)(2ν +5)

2ν +9
,

4

√
3(2ν +3)2(2ν +5)

2ν +9
< r�(vν ) <

√
5(2ν +3)(2ν +7)(2ν +9)

3(4ν2 +32ν +79)
,

6

√
5(2ν +3)3(2ν +5)(2ν +7)

4ν2 +32ν +79
< r�(vν) <

√
S1(ν),

where

S1(ν) =
63(2ν +3)(2ν +5)(2ν +9)(4ν2 +32ν +79)

592ν4 +9296ν3 +56352ν2 +159660ν +171315
.

It is worth to mention that by using the inequalities

r�(vν ) >
√

2ν +3 and
√

2(ν +1) > r�(ϕν)

it is clear that r�(vν) > r�(ϕν) when ν ∈ [− 1
2 , 1

2

]
. Some numerical experiments sug-

gest that we can say more, that is, the positive zeros of the functions z �→ zH′
ν(z)−
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νHν(z) and z �→ zJ′ν(z)− νJν(z) are interlacing. However, we were unable to prove
this result, which can be of interest for future research.

We also mention that by using the second lower bound for r�(vν ) in Theorem
3 it can be shown that r�(vν ) > r�(v− 1

2
) = π

2 for each ν ∈ [ν∗, 1
2

]
, where ν∗ �

−0.4935034122. . . is the unique root of the equation

4

√
3(2ν +3)2(2ν +5)

2ν +9
=

π
2

.

Moreover, by using the third upper bound in part b of Theorem 3 we get that for ν ∈[− 1
2 , 1

2

]
the radius of univalence r�(vν) satisfies r�(vν ) � r�(v 1

2
), where r�(v 1

2
) �

2.33112237. . . is the smallest positive root of the trigonometric equation zsin z = 1−
cosz. Taking into account these results it is natural to ask whether the function ν �→
r�(vν) is increasing on

[− 1
2 , 1

2

]
. Note that if it would be possible to show that ν �→

hν,n is increasing on
[− 1

2 , 1
2

]
for each fixed n ∈ N, then the above result would be an

immediate consequence of this. Here hν,n stands for the n th positive zero of the Struve
function Hν .

Proof. a. The proof of this part concerning the radius of univalence goes along
the lines introduced by Kreyszig and Todd [20]. First we show that the function θ �→
h(θ ) =

∣∣(reiθ )−νHν(reiθ )
∣∣ is increasing for r < hν,1 . By using the infinite product

representation (see [9])

vν(z) = z ∏
n�1

(
1− z2

h2
ν,n

)
,

the expression h(θ ) can be written as an infinite product of factors which are positive
and increasing for r < hν,1. This shows that indeed θ �→ h(θ ) is increasing on

[
0, π

2

]
.

On the other hand, if we consider vν(x) for x � 0, then we have vν(x) = x +O(x3),
and thus vν starts by increasing. Consequently, there is a last number r�(vν) < hν,1 for
which vν is a maximum. Moreover, the radius of univalence cannot exceed r�(vν ) be-
cause values of vν(x) are repeated for x > r�(vν ). Now, by using again the above Weier-
strassian decomposition of vν it is possible to show that 0 � arg(rνeiθ )−νHν(rνeiθ ) �
θ , where r�(vν ) is the smallest positive number for which x �→ x−νHν(x) has a max-
imum. So, if we consider the curve C consisting of three arcs: the segment C1 :
0 � x � r�(vν ) of the real axis; the arc C2 : 0 < θ < π

2 of the circle |z| = r�(vν ) ; and
the segment C3 : r�(vν ) > y > 0 of the imaginary axis; then by using the above prop-
erties it can be shown that if γi is the map of Ci by vν , then the arcs γ1, γ2 and γ3 are
simple. Moreover, since vν is genuinely complex on C2 it follows that γ1 or γ3 cannot
have common points with γ2. The arcs γ1 and γ3 cannot have also common points
since vν is real on C1 and purely imaginary on C3. Thus, the map γ of C by vν has
no double points and applying [20, Lemma 4] it follows that the radius of univalence of
vν is r�(vν).

Now, according to Wilf [25, Theorem 1] we know that if the entire function f has
the form

f (z) = z ∏
n�1

(
1− z2

u2
n

)
,
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where un > 0 and ∑n�1 u−2
n < ∞, then the radii of univalence and starlikeness of f

coincide and are equal to the smallest positive zero of f ′. Thus, applying this result
to the normalized Struve function vν it follows that indeed r�(vν) is the radius of
univalence and starlikeness, which according to [4] it is the smallest positive root of the
transcendental equation zH′

ν(z)−νHν(z) = 0.
b. We proceed exactly as in the proof of Theorem 1 about the radius of univalence

of normalized Bessel function discussed therein. By using the Mittag-Leffler expansion
(see [9])

Hν−1(z)
zHν(z)

− 2ν +1
z2 = ∑

n�1

2
z2 −h2

ν,n
, (6)

the fact that

v′ν(z)
vν(z)

= −ν
z

+
H′

ν(z)
Hν(z)

= −2ν
z

+
Hν−1(z)
Hν(z)

=
1
z

+ ∑
n�1

2z
z2 −h2

ν,n

vanishes at r�(vν), and taking the limit of both sides in (6) as z → 0, we obtain the
upper bound for the radius of univalence r�(vν) in term of the first Rayleigh sum for
the zeros of the Struve functions as follows

1
(r�(vν))2 = ∑

n�1

2
h2

ν,n− (r�(vν ))2 > ∑
n�1

2
h2

ν,n
=

2
3(2ν +3)

.

Now, consider the infinite sum representation of vν and its derivative

vν(z) =
√

π
2 ∑

n�0

(−1)nz2n+1

4nΓ
(
n+ 3

2

)(
ν + 3

2

)
n

,

Vν(z) = v′ν(2i
√

z) =
√

π
2 ∑

n�0

(2n+1)zn

Γ
(
n+ 3

2

)(
ν + 3

2

)
n

.

We know that vν has only real zeros for ν ∈ [− 1
2 , 1

2

]
and belongs to the Laguerre-

Pólya class L P, see [9]. Hence its derivative v′ν has also only real zeros and thus Vν
has only negative real zeros. Because the growth order of the entire function Vν is 1

2 it
follows that it can be written as the product

Vν(z) = ∏
n�1

(
1+

z
cν,n

)
,

where cν,n > 0 for each n ∈ N. Now, by using the Euler-Rayleigh sum τk = ∑n�1 c−k
ν,n

and the infinite sum representation of the Struve function Hν we have

V ′
ν(z)

Vν(z)
= ∑

n�1

1
z+ cν,n

= ∑
n�1

∑
k�0

(−1)kzk

ck+1
ν,n

= ∑
k�0

(−1)kτk+1z
k, |z| < cν,1,

V ′
ν(z)

Vν(z)
= ∑

n�0

(2n+3)(n+1)zn

Γ
(
n+ 5

2

)(
ν + 3

2

)
n+1

/
∑
n�0

(2n+1)zn

Γ
(
n+ 3

2

)(
ν + 3

2

)
n

.
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Proceeding similarly as for Bessel functions in the proof of Theorem 1, from the above
relations we can express the Euler-Rayleigh sums in terms of ν and by using the Euler-

Rayleigh inequalities τ−
1
k

k < cν,1 < τk
τk+1

we obtain the inequalities for 2
√

cν,1 when

ν ∈ [− 1
2 , 1

2

]
and k ∈ N

2

√
τ−

1
k

k < r�(vν) < 2
√

τk

τk+1
.

Since

τ1 =
4

2ν +3
, τ2 =

16(2ν +9)
3(2ν +3)2(2ν +5)

, τ3 =
64(4ν2 +32ν +79)

5(2ν +3)3(2ν +5)(2ν +7)

and

τ4 =
256(592ν4 +9296ν3 +56352ν2 +159660ν +171315)

315(2ν +3)4(2ν +5)2(2ν +7)(2ν +9)
,

in particular, when k ∈ {1,2,3} we have the required inequalities. �

The following result complements the picture in [4] about Struve functions.

THEOREM 4. Let ν ∈ [− 1
2 , 1

2

]
. The following assertions are true:

a. The radius of univalence r�(wν ) of the normalized Struve function

z �→ wν (z) =
√

π2νz
1−ν

2 Γ
(

ν +
3
2

)
Hν(

√
z)

corresponds to its radius of starlikeness, and it is the smallest positive root of the
transcendental equation

√
zH′

ν(
√

z)− (ν −1)Hν(
√

z) = 0.

b. The radius of univalence r�(wν ) satisfies r�(wν ) < 3(2ν +3) for ν ∈ [− 1
2 , 1

2

]
.

Moreover, when ν ∈ [− 1
2 , 1

2

]
the radius of univalence r�(wν ) satisfies the in-

equalities
3(2ν +3)

2
< r�(wν ) <

15(2ν +3)(2ν +5)
2ν +23

,

3(2ν +3)
√

5(2ν +5)√
2(2ν +23)

< r�(wν ) <
21(2ν +3)(2ν +7)(2ν +23)

20ν2 +228ν +1417
,

3(2ν +3) 3

√
35(2ν +5)(2ν +7)

2(20ν2 +228ν +1417)
< r�(wν ) < S2(ν),

where

S2(ν) =
15(2ν +3)(2ν +5)(2ν +9)

(
20ν2 +228ν +1417

)
272ν4 +5552ν3 +47584ν2 +247828ν +416439

.
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We would like to mention that the starlikeness of the function z �→wν (z)=
√

zvν(
√

z)
can be obtained by using the interlacing property of the zeros Bessel and Struve func-
tions of the first kind. More precisely, we have that if |ν| � 1

2 and |z| = r < hν,1, then
(see [4])

ℜ
zw′

ν (z)
wν (z)

= 1−ℜ ∑
n�1

z
h2

ν,n− z
� 1− ∑

n�1

r
h2

ν,n− r
=

rw′
ν (r)

wν (r)
>

w′
ν (1)

wν (1)
.

Here we used that r �→ r/(h2
ν,n − r) is strictly increasing on (0,hν,1) for each n ∈ N

and consequently r �→ rw′
ν (r)/wν(r) is strictly decreasing on (0,hν,1). Now, denoting

by jν,n the n th positive zero of the Bessel function Jν and by using the fact that the
zeros of the Struve and Bessel functions of the first kind are interlacing, according to
Steinig [22], it follows that for all |ν| � 1

2 we have

w′
ν (1)

wν (1)
= 1− ∑

n�1

1
h2

ν,n−1
� 1− ∑

n�1

1
j2ν,n −1

> 0,

where the last inequality follows from the proof of the starlikeness of the normalized
Bessel functions of the first kind z �→ φν(z) = 2νΓ(ν +1)z1− ν

2 Jν(
√

z) and it is valid for
all ν � ν0, ν0 � −0.5623 being the root of the equation φ ′

ν (1) = 0, see [23] for more
details. Thus, combining the above two chain of inequalities we obtain that indeed
when |ν| � 1

2 we have that wν is starlike in the open unit disk. This result was proved
recently by Baricz and Szász [11], but by using a somewhat different approach.

Finally, we mention that by using the inequalities r�(wν ) > 3(2ν+3)
2 and 4(ν +

1) > r�(φν ) we obtain that r�(wν ) > r�(φν) for ν ∈ [− 1
2 , 1

2

]
, that is, the radius of uni-

valence of the normalized Struve function wν is greater than the corresponding radius
of univalence of the normalized Bessel function φν .

Proof. a. It is known that if the function z �→ z+ α2z2 + . . . has real coefficients,
then its radius of starlikeness is less or equal than its radius of univalence. On the other
hand, we know that the radius of univalence of the function wν is less or equal than the
smallest positive zero of w′

ν , according to Wilf [25, p. 243]. But, the smallest positive
zero of w′

ν , that is, the first positive zero of the equation
√

zH′
ν(
√

z)+(1−ν)Hν (
√

z) =
0 is actually the radius of starlikeness of wν , according to [4]. These show that indeed
the radius of univalence corresponds to the radius of starlikeness of the function wν .
Alternatively, we can follow Wilf’s argument (see the proof of [25, Theorem 1]) to
show that the radii of univalence and starlikeness coincide.

b. We proceed as in the proof of Theorem 1 about the radius of univalence of nor-
malized Bessel function discussed therein. By using the infinite product representation
(see [9])

√
π2νz−ν−1Γ

(
ν +

3
2

)
Hν(z) = ∏

n�1

(
1− z2

h2
ν,n

)

we have that
w′

ν (z)
wν (z)

=
1
z

+ ∑
n�1

1
z−h2

ν,n
,
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which vanishes at r�(wν ). In view of the first Rayleigh sum for the zeros of the Struve
functions we get

1
r�(wν )

= ∑
n�1

1
h2

ν,n− r�(wν )
> ∑

n�1

1
h2

ν,n
=

1
3(2ν +3)

.

Now, consider the infinite sum representation of wν and its derivative

wν (z) =
√

π
2 ∑

n�0

(−1)n zn+1

4nΓ
(
n+ 3

2

)(
ν + 3

2

)
n

,

Wν(z) = w′
ν (−4z) =

√
π

2 ∑
n�0

(n+1)zn

Γ
(
n+ 3

2

)(
ν + 3

2

)
n

=
√

π
2 ∑

n�0

(n+1)!
Γ
(
n+ 3

2

)(
ν + 3

2

)
n

· zn

n!
.

(7)
The normalized Struve function wν has only real zeros for ν ∈ [− 1

2 , 1
2

]
and belongs to

the Laguerre-Pólya class L P of real entire functions, see [9]. Therefore w′
ν belongs

also to the Laguerre-Pólya class L P and has also only real zeros. Consequently, this
is also true for Wν . Moreover, since the coefficients of Wν(z) are non-negative and
Wν belongs to the Laguerre-Pólya class L P, it follows that it has only negative real
zeros, and thus, Wν(z) can be written as the product

Wν(z) = ∏
n�1

(
1+

z
dν,n

)
, (8)

where dν,n > 0 for each n ∈ N . By using the Euler-Rayleigh sum ςk = ∑n�1 d−k
ν,n and

the infinite sum representation of the Struve function Hν we have

W ′
ν(z)

Wν(z)
= ∑

n�1

1
z+dν,n

= ∑
n�1

∑
k�0

(−1)k zk

dk+1
ν,n

= ∑
k�0

(−1)k ςk+1z
k, |z| < dν,1,

W ′
ν (z)

Wν (z)
= ∑

n�0

(n+1)(n+2)zn

Γ
(
n+ 5

2

)(
ν + 3

2

)
n+1

/
∑
n�0

(n+1)zn

Γ
(
n+ 3

2

)(
ν + 3

2

)
n

.

It is possible to express the Euler-Rayleigh sums in terms of ν and by using the Euler-

Rayleigh inequalities ς− 1
k

k < dν,1 < ςk
ςk+1

we get the inequalities for 4dν,1 when ν ∈[− 1
2 , 1

2

]
and k ∈ N

4ς− 1
k

k < r�(wν ) < 4
ςk

ςk+1
.

Since

ς1 =
8

3(2ν +3)
, ς2 =

32(2ν +23)
45(2ν +3)2 (2ν +5)

,

ς3 =
128

(
20ν2 +228ν +1417

)
945(2ν +3)3 (2ν +5)(2ν +7)
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and

ς4 =
512

(
272ν4 +5552ν3 +47584ν2 +247828ν +416439

)
14175(2ν +3)4 (2ν +5)2 (2ν +7)(2ν +9)

,

in particular, when k ∈ {1,2,3} we have the required inequalities. �

2.3. Radii of univalence (and starlikeness) of Lommel functions of the first kind

The following results are analogous to the results obtained for Bessel and Struve
functions of the first kind and are related to the main results of [4] concerning Lommel
functions of the first kind.

THEOREM 5. Let μ ∈ (−1,1), μ 	= 0. The following assertions are true:

a. The radius of univalence r�(gμ) of the normalized Lommel function

z �→ gμ(z) = gμ− 1
2 , 1

2
(z) = μ(μ +1)z−μ+ 1

2 sμ− 1
2 , 1

2
(z)

corresponds to its radius of starlikeness, and it is the smallest positive root of the
transcendental equation zs′

μ− 1
2 , 1

2
(z)− (μ − 1

2

)
sμ− 1

2 , 1
2
(z) = 0.

b. The radius of univalence r�(gμ) satisfies r�(gμ) <

√
(μ+2)(μ+3)

2 . Moreover, the
radius of univalence r�(gμ) satisfies the inequalities

√
(μ +2)(μ +3)

3
< r�(gμ) <

√
3(μ +2)(μ +3)(μ +4)(μ +5)

−μ2 +31μ +120
,

4

√
(μ +2)2 (μ +3)2 (μ +4)(μ +5)

−μ2 +31μ +120
< r�(gμ) <

√
T1(μ),

6

√
(μ+2)3 (μ+3)3 (μ+4)(μ+5)(μ+6)(μ+7)

3(μ4−2μ3+175μ2+1842μ+4032)
< r�(gμ) <

√
T2(μ)T3(μ)

T4(μ)+T5(μ)
,

where

T1(μ) =
(μ +2)(μ +3)(μ +6)(μ +7)

(−μ2 +31μ +120
)

3(μ4−2μ3 +175μ2 +1842μ +4032)
,

T2(μ) = 3(μ +2)(μ +3)(μ +4)(μ +5)(μ +8)(μ +9) ,

T3(μ) =
(
μ4−2μ3 +175μ2 +1842μ +4032

)
,

T4(μ) = −μ8 +128μ7 +2196μ6 +24178μ5 +352645μ4

and

T5(μ) = 3476958μ3 +17744328μ2+44003088μ +42301440.
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Proof. First we prove the results of this theorem for μ ∈ (0,1).
a. Recall that if the function z �→ z+α2z2 + . . . has real coefficients, then its radius

of starlikeness is less or equal than its radius of univalence. On the other hand, we know
that the radius of univalence of the function gμ is less or equal than the smallest positive
zero of g′μ , according to Wilf [25, p. 243]. But, the smallest positive zero of g′μ , that

is, the first positive zero of the equation zs′
μ− 1

2 , 1
2
(z)−(μ − 1

2

)
sμ− 1

2 , 1
2
(z) = 0 is actually

the radius of starlikeness of gμ , according to [4]. These show that indeed the radius of
univalence corresponds to the radius of starlikeness of the function gμ . Alternatively,
we can follow Wilf’s argument (see the proof of [25, Theorem 1]) to show that the radii
of univalence and starlikeness coincide.

b. By using the infinite product representation (see [5, 12])

sμ− 1
2 , 1

2
(z) =

zμ+ 1
2

μ(μ +1) ∏
n�1

(
1− z2

ξ 2
μ,n

)
, (9)

we get
g′μ(z)
gμ(z)

=
1
z

+ ∑
n�0

2z
z2 − ξ 2

μ,n
,

which vanishes at r�(gμ). Here ξμ,n stands for the n th positive zero of the Lommel
function sμ− 1

2 , 1
2
. In view of the first Rayleigh sum for the zeros of the Lommel func-

tions we obtain

1(
r�(gμ)

)2 = ∑
n�0

2

ξ 2
μ,n −

(
r�(gμ)

)2 > ∑
n�0

2
ξ 2

μ,n
=

2
(μ +2)(μ +3)

.

Now, consider the infinite sum representation of gμ and its derivative

gμ(z) = ∑
n�0

(−1)n z2n+1

4n
(

μ+2
2

)
n

(
μ+3

2

)
n

,

Gμ(z) = g′μ(2i
√

z) = ∑
n�0

(2n+1)zn(
μ+2

2

)
n

(
μ+3

2

)
n

.

The function gμ has only real zeros for μ ∈ (0,1) and belongs to the Laguerre-Pólya
class L P of real entire functions, see [5]. Hence g′μ belongs also to the Laguerre-
Pólya class L P . Thus, Gμ has only negative real zeros and it can be written as the
product

Gμ(z) = ∏
n�1

(
1+

z
κμ,n

)
,

where κμ,n > 0 for each n ∈ N . By using the Euler-Rayleigh sum ρk = ∑n�1 κ−k
μ,n and

the infinite sum representation of the Lommel function sμ− 1
2 , 1

2
we have

G′
μ(z)

Gμ(z)
= ∑

n�1

1
z+ κμ,n

= ∑
n�1

∑
k�0

(−1)k zk

κk+1
μ,n

= ∑
k�0

(−1)k ρk+1z
k, |z| < κμ,1,
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G′
μ(z)

Gμ(z)
= ∑

n�0

(n+1)(2n+3)zn(
μ+2

2

)
n+1

(
μ+3

2

)
n+1

/
∑
n�0

(2n+1)zn(
μ+2

2

)
n

(
μ+3

2

)
n

.

It is possible to express the Euler-Rayleigh sums in terms of μ and by using the Euler-

Rayleigh inequalities ρ− 1
k

k < κμ,1 < ρk
ρk+1

we get the inequalities for 2
√κμ,1 when

μ ∈ (0,1) and k ∈ N

2

√
ρ− 1

k
k < r�(gμ) < 2

√
ρk

ρk+1
.

Since

ρ1 =
12

(μ +2)(μ +3)
, ρ2 =

16
(−μ2 +31μ +120

)
(μ +2)2 (μ +3)2 (μ +4)(μ +5)

,

ρ3 =
192

(
μ4−2μ3 +175μ2 +1842μ +4032

)
(μ +2)3 (μ +3)3 (μ +4)(μ +5)(μ +6)(μ +7)

and

ρ4 =
T4(μ)+T5(μ)

256−1 (μ +2)4 (μ +3)4 (μ +4)2 (μ +5)2 (μ +6)(μ +7)(μ +8)(μ +9)
.

in particular, when we take k ∈ {1,2,3} in the above Euler-Rayleigh inequalities, we
have the inequalities of this theorem.

Now, we prove that parts a and b also hold when μ ∈ (−1,0) . In order to do this,
suppose that μ ∈ (0,1) and repeat the above proof, substituting μ by μ −1, gμ by the
function gμ−1 and taking into account that the n th positive zero of gμ−1, denoted by
ζμ,n, are all real, since gμ−1 belongs also to the Laguerre-Pólya class L P of entire
functions (see [5]). It is worth mentioning that

g′μ−1(z)

gμ−1(z)
=

1
z

+ ∑
n�0

2z
z2 − ζ 2

μ,n

holds for μ ∈ (0,1) . In this case we have

∑
n�0

2
ζ 2

μ,n
=

2
(μ +1)(μ +2)

,

hence the parts a and b are valid for μ − 1 instead of μ . Thus, now replacing μ by
μ +1, we obtain the statements of the parts a and b for μ ∈ (−1,0) . �

The last main result is the following theorem concerning Lommel functions of the
first kind.
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THEOREM 6. Let μ ∈ (−1,1), μ 	= 0. The following assertions are true:

a. The radius of univalence r�(hμ) of the normalized Lommel function

z �→ hμ(z) = hμ− 1
2 , 1

2
(z) = μ(μ +1)z

3−2μ
4 sμ− 1

2 , 1
2
(
√

z)

corresponds to its radius of starlikeness, and it is the smallest positive root of the
transcendental equation 2

√
zs′μ− 1

2 , 1
2
(
√

z)− (2μ −3)sμ− 1
2 , 1

2
(
√

z) = 0.

b. The radius of univalence r�(hμ) satisfies r�(hμ) < (μ + 2)(μ + 3). Moreover,
the radius of univalence r�(hμ) satisfies the inequalities

(μ +2)(μ +3)
2

< r�(hμ) <
(μ +2)(μ +3)(μ +4)(μ +5)

(−μ2 +3μ +22)
,

(μ +2)(μ +3)
√

(μ +4)(μ +5)√
2(−μ2 +3μ +22)

< r�(hμ) < T6(μ),

(μ +2)(μ +3) 3
√

(μ +4)(μ +5)(μ +6)(μ +7)
3
√

2(μ4−14μ3−79μ2 +320μ +1308)
< r�(hμ) <

T7(μ)T8(μ)
T9(μ)+T10(μ)

,

where

T6(μ) =
(μ +2)(μ +3)(μ +6)(μ +7)

(−μ2 +3μ +22
)

μ4−14μ3−79μ2 +320μ +1308
,

T7(μ) = −(μ +2)(μ +3)(μ +4)(μ +5)(μ +8)(μ +9) ,

T8(μ) =
(
μ4−14μ3−79μ2 +320μ +1308

)
,

T9(μ) = 3μ8 +96μ7 +2180μ6 +27338μ5 +164205μ4

and
T10(μ) = 335662μ3−881588μ2−5070360μ−6293376.

Proof. We proceed similarly as in the proof of Theorem 5. First we show that the
statements of this theorem are valid for μ ∈ (0,1), and then by using a similar argument
as in the proof of Theorem 5 we consider the case of μ ∈ (−1,0). Since the argument
concerning the case when μ ∈ (−1,0) goes along the lines introduced at the end of the
proof of Theorem 5, we omit the details.

a. We shall use again the fact that if the function z �→ z + α2z2 + . . . has real
coefficients, then its radius of starlikeness is less or equal than its radius of univa-
lence. On the other hand, we know that the radius of univalence of the function hμ
is less or equal than the smallest positive zero of h′μ , according to Wilf [25, p. 243].
But, the smallest positive zero of h′μ , that is, the first positive zero of the equation
2
√

zs′μ− 1
2 , 1

2
(
√

z)−(2μ −3)sμ− 1
2 , 1

2
(
√

z) = 0 is actually the radius of starlikeness of hμ ,
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according to [4]. These show that indeed the radius of univalence corresponds to the
radius of starlikeness of the function hμ . Alternatively, we can follow Wilf’s argument
(see the proof of [25, Theorem 1]) to show that the radii of univalence and starlikeness
coincide.

b. By using the infinite product representation (9) we get

h′μ(z)
hμ(z)

=
1
z

+ ∑
n�0

1
z− ξ 2

μ,n
,

which vanishes at r�(hμ). In view of the first Rayleigh sum for the zeros of the Lommel
functions we obtain

1
r�(hμ)

= ∑
n�0

1
ξ 2

μ,n − r�(hμ)
> ∑

n�0

1
ξ 2

μ,n
=

1
(μ +2)(μ +3)

.

Now, consider the infinite sum representation of hμ and its derivative

hμ(z) = ∑
n�0

(−1)n zn+1

4n
(

μ+2
2

)
n

(
μ+3

2

)
n

,

Hμ(z) = h′μ(−4z) = ∑
n�0

(n+1)zn(
μ+2

2

)
n

(
μ+3

2

)
n

.

Note that hμ has only real zeros for μ ∈ (0,1) and belongs to the Laguerre-Pólya class
L P of real entire functions, see [5]. Hence h′μ belongs also to L P and has also
only real zeros. Since the coefficients of Hμ(z) are non-negative and Hμ belongs to
the Laguerre-Pólya class L P , it has only negative zeros, and thus Hμ can be written
as the product

Hμ(z) = ∏
n�1

(
1+

z
λμ,n

)
,

where λμ,n > 0 for each n ∈ N . By using the Euler-Rayleigh sum ηk = ∑n�1 λ−k
μ,n and

the infinite sum representation of the Lommel function sμ− 1
2 , 1

2
we have

H ′
μ(z)

Hμ(z)
= ∑

n�1

1
z+ λμ,n

= ∑
n�1

∑
k�0

(−1)k zk

λ k+1
μ,n

= ∑
k�0

(−1)k ηk+1z
k, |z| < λμ,1,

H ′
μ(z)

Hμ(z)
= ∑

n�0

(n+1)(n+2)zn(
μ+2

2

)
n+1

(
μ+3

2

)
n+1

/
∑
n�0

(n+1)zn(
μ+2

2

)
n

(
μ+3

2

)
n

.

Similarly as in the above proofs, it is possible to express the Euler-Rayleigh sums in

terms of μ and by using the Euler-Rayleigh inequalities η− 1
k

k < λμ,1 < ηk
ηk+1

we get the

inequalities for 4λμ,1 when μ ∈ (0,1) and k ∈ N

4η
−1
k

k < rμ(h) <
4ηk

ηk+1
.
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Since

η1 =
8

(μ +2)(μ +3)
, η2 =

32
(−μ2 +3μ +22

)
(μ +2)2 (μ +3)2 (μ +4)(μ +5)

,

η3 =
128

(
μ4−14μ3−79μ2 +320μ +1308

)
(μ +2)3 (μ +3)3 (μ +4)(μ +5)(μ +6)(μ +7)

and

η4 =
−T9(μ)−T10(μ)

512−1 (μ +2)4 (μ +3)4 (μ +4)2 (μ +5)2 (μ +6)(μ +7)(μ +8)(μ +9)
,

in particular, when k ∈ {1,2,3} we get the inequalities of the theorem. �
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