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ON THE CLASS OF BANACH SPACES WITH JAMES CONSTANT
√
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(Communicated by H. Martini)

Abstract. We present a new characterization of two-dimensional Banach spaces with James con-
stant

√
2 . As an application, we give an example of a two-dimensional Banach space with James

constant
√

2 that is not isometrically isomorphic to any absolute, or symmetric, or π/2-rotation
invariant normed space. It is shown that this gives a counterexample to Lassak’s conjecture.

1. Introduction

This paper is a continuation of [9, 10]. For a real Banach space X with dimX � 2,
the James constant J(X) of a Banach space X is introduced by Gao and Lau [5] as
follows:

J(X) = sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ S(X)}.
In [9, 10], we studied the class of Banach spaces with James constant

√
2; and gave the

following characterizations:

(I) if dimX � 3, then J(X) =
√

2 if and only if X is a Hilbert space ([9, Theorem
2.3]), and

(II) if ‖ · ‖ is a π/2-rotation invariant norm on R
2 , then J((R2,‖ · ‖)) =

√
2 if and

only if ‖ · ‖ is π/4-rotation invariant ([10, Theorem 3.10]),

where a norm ‖ · ‖ on R
2 is said to be θ -rotation invariant, where θ ∈ R , if the θ -

rotation matrix

R(θ ) =
(

cosθ −sinθ
sinθ cosθ

)

is an isometry on (R2,‖ · ‖) .
The purpose of the present paper is to give a characterization of Banach spaces

X satisfying J(X) =
√

2. By (I), the problem reduces to the case of dimX = 2; so
we assume, throughout this paper, that X is the space R

2 endowed with the norm
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‖ ·‖ . Let x(θ ) = ‖(cosθ ,sinθ )‖−1(cosθ ,sinθ ) for each θ . If we define a function by
r(θ ) = ‖x(θ )‖2 , where ‖ · ‖2 denotes the Euclidean norm, the unit ball BX of X can
be expressed as

BX = {r(cosθ ,sinθ ) : 0 � r � r(θ ), θ ∈ R}
since r(θ )‖(cosθ ,sinθ )‖ = 1 and x(θ ) = r(θ )(cosθ ,sinθ ) .

In this paper, we present a new characterization of two-dimensional Banach spaces
X with J(X) =

√
2, in terms of the curve x(θ ) and function r(θ ) associated with the

norm on X . This provides a general form of two-dimensional Banach spaces with
James constant

√
2. In particular, we have (II) as a corollary of the main result. More-

over, as an application, we give an example of a two-dimensional Banach space with
James constant

√
2 that is not isometrically isomorphic to any absolute, or symmetric,

or π/2-rotation invariant normed space. It is shown that this gives a counterexample to
Lassak’s conjecture [11].

2. Characterizations in terms of the polar coordinates

If x,y are two elements of a normed space, then x is said to be isosceles orthogonal
to y , denoted by x ⊥I y , if ‖x+ y‖= ‖x− y‖ . It is clear from the definition that x ⊥I y
implies x ⊥I −y , y ⊥I x and αx ⊥I αy for any α ∈ R . Moreover, if ‖x‖ = ‖y‖ , then
x ⊥I y implies x+ y ⊥I x− y . The following is an important property of the isosceles
orthogonality.

LEMMA 2.1. (Gao and Lau [5]; Alonso [1]; Ji et al. [8]) Let X be a two-dimen-
sional normed space. Suppose that x ∈ SX . Then there exists a unique (up to the sign)
element y ∈ SX such that x ⊥I y .

The survey [2] contains many other properties of isosceles orthogonality.
In [9], the following auxiliary result was proved.

LEMMA 2.2. ([9]) Let θ0 ∈ R , and let ϕ0 be a unique real number such that
ϕ0 ∈ (θ0,θ0 +π) and x(θ0)⊥I x(ϕ0) . Then, for any θ ∈ [θ0,ϕ0] , there exists a unique
ϕ ∈ [ϕ0,θ0 + π ] such that x(θ ) ⊥I x(ϕ) .

A self-homeomorphism α on R is said to be rotation if |α(t +2π)−α(t)|= 2π
for each t ∈ R , or equivalently, if |s− t|= 2π implies that |α(s)−α(t)| = 2π .

As an application of Lemmas 2.1 and 2.2, we have the following result. We note
that x(θ +2nπ) = x(θ ) for each n ∈ Z and each θ ∈ R .

PROPOSITION 2.3. There exist a pair of increasing rotations ω and η on R sat-
isfying the following properties:

(i) θ < η(θ ) < ω(θ ) < θ + π for each θ ∈ R;

(ii) x(θ ) ⊥I x(ω(θ )) for each θ ∈ R;

(iii) ω2(θ ) = θ + π for each θ ∈ R;
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(iv) the equation

x(η(θ )) =
x(θ )+ x(ω(θ ))
‖x(θ )+ x(ω(θ ))‖

holds for each θ ∈ R; and

(v) η2 = ω . In particular, ω ◦η = η ◦ω .

Moreover, ω and η are uniquely determined by (i), (ii) and (iv).

Proof. For each θ ∈R , we have, by Lemma 2.2, there exists a unique real number
ω(θ ) satisfying ω(θ ) ∈ (θ ,θ + π) and x(θ ) ⊥I x(ω(θ )) . It is apparent from the
definition that ω(θ + 2π) = ω(θ ) + 2π for each θ ∈ R . We first show that ω is
continuous on R . Suppose that (θn) be a sequence in R that converges to some θ0 .
Let (θnk) be a subsequence of (θn) such that (ω(θnk )) converges to ϕ . Then θ0 �
ϕ � θ0 + π and

‖x(ϕ)+ x(θ0)‖ = lim
k
‖x(ω(θnk))+ x(θnk)‖

= lim
k
‖x(ω(θnk))− x(θnk)‖

= ‖x(ϕ)− x(θ0)‖,
that is x(θ0) ⊥I x(ϕ) . Hence, by the uniqueness clause of Lemma 2.2, it follows that
ϕ = ω(θ0) ; which in turn implies that the entire sequence (ω(θn)) converges to ω(θ0) .
Thus ω is continuous on R .

We next show (iii). For this, we note that x(ω2(θ )) = ±x(θ ) , since, by (ii),
x(ω(θ )) ⊥I x(ω2(θ )) as well as x(ω(θ )) ⊥I x(θ ) . However, it follows from θ <
ω(θ ) < θ + π for each θ ∈ R that

θ < ω(θ ) < ω2(θ ) < ω(θ )+ π < θ +2π ;

and so x(ω2(θ )) �= x(θ ) . Thus one has x(ω2(θ )) = −x(θ ) , which together with θ <
ω2(θ ) < θ +2π show that ω2(θ ) = θ + π . This proves (iii).

Now we put μ(θ ) = ω3(θ )−2π for each θ ∈ R . Then, by (iii), one has that

(ω ◦ μ)(θ ) = ω(ω3(θ )−2π)

= ω4(θ )−2π
= θ ;

and similarly that (μ ◦ω)(θ ) = θ . Therefore we obtain μ = ω−1 . Since μ is con-
tinuous on R , it follows that ω is a self-homeomorphism on R . This proves that ω
is a rotation on R . We note that each continuous injection from R into R is strictly
monotone (by the intermediate value theorem). This together with

ω(0) < ω(0)+2π = ω(2π)

show that ω is increasing on R .
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Define a mapping η on R as follows: for each θ , let η(θ ) be a unique element
in (θ ,ω(θ )) satisfying

x(η(θ )) =
x(θ )+ x(ω(θ ))

‖x(θ )+ x(ω(θ ))‖ .

It is apparent that x(η(θ +2π)) = x(η(θ )) = x(η(θ )+2π) ; and since

θ +2π < η(θ +2π),η(θ )+2π < ω(θ +2π) = ω(θ )+2π ,

we obtain η(θ +2π) = η(θ )+2π . On the other hand, it follows from (iii) that

x(η(ω(θ ))) =
x(ω(θ ))+ x(ω2(θ ))
‖x(ω(θ ))+ x(ω2(θ ))‖ =

x(ω(θ ))− x(θ )
‖x(ω(θ ))− x(θ )‖ (1)

for each θ ∈ R . Since x(θ ) ⊥I x(ω(θ )) by (ii), we have ‖x(ω(θ ))− x(θ )‖= ‖x(θ )+
x(ω(θ ))‖ ; and hence

x(η(ω(θ ))) =
x(ω(θ ))− x(θ )

‖x(θ )+ x(ω(θ ))‖ .

From this we obtain

‖x(η(θ ))+ x(η(ω(θ )))‖ =
2

‖x(θ )+ x(ω(θ ))‖ = ‖x(η(θ ))− x(η(ω(θ )))‖,

that is, x(η(θ )) ⊥I x(η(ω(θ ))) . By the (essential) uniqueness of the isosceles orthog-
onality, either x(η(ω(θ ))) = x(ω(η(θ ))) or x(η(ω(θ ))) = −x(ω(η(θ ))) holds. We
show that x(η(ω(θ ))) = −x(ω(η(θ ))) can not occur.

Let x = x(θ ) and y = x(ω(θ )) . Then {x,y} forms a basis for R
2 since x ⊥I

y . Consider, as usual, the four quadrants Qj ( j = 1,2,3,4) with respect to the basis
{x,y} . Then it follows that ω(θ ) < ω(η(θ )) < ω2(θ ) = θ + π , which together with
ω([θ ,θ + 2π ]) = [ω(θ ),ω(θ )+ 2π ] and x(ω2(θ ))) = −x imply that x(ω(η(θ ))) is
in the second quadrant Q2 (the cone generated by {−x,y} ). On the other hand, by (1),
we have

x(η(ω(θ )) =
y− x

‖y− x‖ ∈ Q2.

Thus x(ω(η(θ ))) and x(η(ω(θ ))) are in the same quadrant, while −x(ω(η(θ ))) is
in the opposite quadrant. This proves that x(η(ω(θ ))) = x(ω(η(θ ))) for each θ ∈ R .

Finally, we show that η is a self-homeomorphism on R satisfying η2 = ω . Then
η will be an increasing rotation since η(θ + 2π) = η(θ )+ 2π for each θ ∈ R . For
this, we first note that

x(η(θ ))+ x((η ◦ω)(θ )) =
2x(ω(θ ))

‖x(θ )+ x(ω(θ ))‖ ,

which and x(η(ω(θ ))) = x(ω(η(θ ))) together imply that

x(η2(θ )) =
x(η(θ ))+ x((ω ◦η)(θ ))

‖x(η(θ ))+ x((ω ◦η)(θ ))‖
=

x(η(θ ))+ x((η ◦ω)(θ ))
‖x(η(θ ))+ x((η ◦ω)(θ ))‖ = x(ω(θ ))
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for each θ . On the other hand, since θ < η(θ ) < ω(θ )(< θ + π) for each θ , one has
that

θ < η(θ ) < η2(θ ) < ω(η(θ )) < ω2(θ ) = θ + π .

It follows that η2(θ ) = ω(θ ) for each θ ∈ R . Thus (v) holds. We note that η is
a bijection since ω(= η2) is a homeomorphism on R . Now let (θn) be a sequence
in R that converges to θ ∈ R . Take an arbitrary convergent subsequence (η(θnk )) of
(η(θn)) that converges to ϕ ∈ R . Then it follows that θ � ϕ � ω(θ ) (since ω is
continuous), and that

x(ϕ) = lim
k

x(η(θnk )) = lim
k

x(θnk )+ x(ω(θnk))
‖x(θnk)+ x(ω(θnk))‖

=
x(θ )+ x(ω(θ ))
‖x(θ )+ x(ω(θ ))‖ = x(η(θ )),

which implies that ϕ = η(θ ) . This shows that the entire sequence (η(θn)) converges
to η(θ ) . Therefore η is a continuous bijection on R ; and thus it is a homeomorphism.

The uniqueness readily follows from (i), (ii) and (iv). �

We now give the main result, a necessary and sufficient condition for J(X) =
√

2,
in terms of the function r(θ ) = ‖x(θ )‖2 .

THEOREM 2.4. J(X) =
√

2 if and only if

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,2π ] .

Proof. We first note that

‖x(θ )+ x(ω(θ ))‖ = ‖x(θ )− x(ω(θ ))‖

for each θ ∈ [0,2π ] since x(θ ) ⊥I x(ω(θ )) . From this and η ◦ω = ω ◦η (Proposi-
tion 2.3 (v)), it follows that

r(η(θ ))2 + r((ω ◦η)(θ ))2 = ‖x(η(θ ))‖2
2 +‖x((ω ◦η)(θ ))‖2

2

=
‖x(θ )+ x(ω(θ ))‖2

2

‖x(θ )+ x(ω(θ ))‖2 +
‖x(θ )− x(ω(θ ))‖2

2

‖x(θ )− x(ω(θ ))‖2

=
‖x(θ )+ x(ω(θ ))‖2

2 +‖x(θ )− x(ω(θ ))‖2
2

‖x(θ )+ x(ω(θ ))‖2

=
2(‖x(θ )‖2

2 +‖x(ω(θ ))‖2
2)

‖x(θ )+ x(ω(θ ))‖2

=
2(r(θ )2 + r(ω(θ ))2)
‖x(θ )+ x(ω(θ ))‖2
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for each θ . Now J(X) =
√

2 holds if and only if ‖x(θ )+ x(ω(θ ))‖ =
√

2 for each θ ,
which happens if and only if

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,2π ] . The proof is complete. �
We shall give an improvement of the preceding theorem. For each x ∈ SX , let

β (x) = sup{‖x+ y‖ : y ∈ SX} . Then we have

β (x(θ )) = ‖x(θ )+ x(ω(θ ))‖ = ‖x(θ )− x(ω(θ ))‖.
On the other hand, as in the proof of Proposition 2.3, we have shown that

‖x(η(θ ))+ x((η ◦ω)(θ ))‖ =
2

‖x(θ )+ x(ω(θ ))‖ ,

which together with η ◦ω = ω ◦η imply that β (x(θ ))β (x(η(θ ))) = 2 for each θ .
From this, we have the following result.

COROLLARY 2.5. J(X) =
√

2 if and only if

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,η(0)] .

Proof. Suppose that

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,η(0)] . Then, as in the proof of Theorem 2.4, we have β (x(θ )) =
√

2
for each θ ∈ [0,η(0)] . On the other hand, by Proposition 2.3 (iii) and (v), one obtains

η8(θ ) = ω4(θ ) = ω2(θ + π) = θ +2π

for each θ ∈ R . In particular, η8(0) = 2π . Since η is an increasing rotation, it follows
that

[0,2π ] =
7⋃

i=0

[η i(0),η i+1(0)] =
7⋃

i=0

η i([0,η(0)]).

Now let θ ∈ [0,η(0)] . Then β (x(θ ))β (x(η(θ ))) = 2; and hence β (x(η(θ ))) =
√

2
since β (x(θ )) =

√
2. From this and β (x(η(θ )))β (x(η2(θ ))) = 2, we similarly have

β (x(η2(θ )))=
√

2. Continuing this process yields β (x(η i(θ )))=
√

2 for i = 0,1, . . . ,7.
Thus it follows that β (x(θ )) =

√
2 for each θ ∈ [0,2π ] ; and Theorem 2.4 shows that

J(X) =
√

2. �
A norm ‖ · ‖ on R

2 is θ0 -rotation invariant if and only if r(θ + θ0) = r(θ ) for
each θ ∈ [0,2π ] , where r(θ ) = ‖x(θ )‖2 = 1/‖(cosθ ,sinθ )‖ . As was mentioned in
Section 1 (II), if ‖ · ‖ is π/2-rotation invariant, then J((R2,‖ · ‖)) =

√
2 if and only

if ‖ · ‖ is π/4-rotation invariant. The proof was essentially based on a calculation
formula given by using absolute normalized norms on R

2 . Now, as an application of
Theorem 2.3, we can directly prove this result, in terms of the general form given in
that theorem. For this, we only need the following simple lemma.
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LEMMA 2.6. ([10, Theorem 3.1]) Let ‖ · ‖ be a π/2 -rotation invariant norm.
Suppose that ω and η are rotations constructed in Proposition 2.3. Then ω(θ ) =
θ + π/2 and η(θ ) = θ + π/4 for each θ ∈ R .

COROLLARY 2.7. ([10, Thoerem 3.10]) Let ‖ · ‖ be a π/2 -rotation invariant
norm. Then J((R2,‖ · ‖)) =

√
2 if and only if ‖ · ‖ is π/4 -rotation invariant.

Proof. By Theorem 2.4, we have J((R2,‖ · ‖)) =
√

2 if and only if

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,2π ] , which is equivalent to

2r(θ )2 = r(θ )2 + r(θ + π/2)2

= r(θ + π/4)2 + r(θ +3π/4)2

= 2r(θ + π/4)2

for each θ ∈ [0,2π ] by the preceding lemma. Thus J((R2,‖ · ‖)) =
√

2 if and only if
r(θ ) = r(θ + π/4) for each θ , that is, ‖ · ‖ is π/4-rotation invariant. �

3. Examples

In this section, we apply our result (mainly Corollary 2.5) to present some new
examples of two-dimensional Banach spaces with James constant

√
2. We first give a

simple class of such spaces; and then construct an explicit example.

PROPOSITION 3.1. Let (R2,‖ · ‖) be a normed space. Then J((R2,‖ · ‖)) =
√

2
if the function θ → r(θ )(= 1/‖(cosθ ,sinθ )‖) satisfies the following conditions:

(i) r(θ )2 + r(θ + π/2)2 = 2 for each θ ∈ [0,π/4]; and

(ii) r(θ ) = 1 for each θ ∈ [π/4,π/2]∪ [3π/4,π ] .

Proof. We first note that x(θ ) = r(θ )(cosθ ,sinθ ) is a parametrization of the unit
sphere of (R2,‖·‖)(= X) . By (i) and (ii), one has r(0) = r(π/4) = r(π/2)= r(π/3) =
1; and hence x(0) = (1,0) , x(π/4) = (1/

√
2,1/

√
2) , x(π/2) = (0,1) and x(3π/4) =

(−1/
√

2,1/
√

2) . In particular, it follows from

‖x(0)+ x(π/2)‖=
√

2 = ‖x(0)− x(π/2)‖

that ω(0) = π/2 by Proposition 2.3, which together with

x(0)+ x(π/2)
‖x(0)+ x(π/2)‖ = x(π/4)
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implies that η(0) = π/4. Hence, by Corollary 2.5, it is enough to show that

r(θ )2 + r(ω(θ ))2 = r(η(θ ))2 + r((ω ◦η)(θ ))2

for each θ ∈ [0,π/4] .
Now we note that

‖x(π/4)+ x(3π/4)‖=
√

2 = ‖x(π/4)− x(3π/4)‖
and that

x(π/4)+ x(3π/4)
‖x(π/4)+ x(3π/4)‖ = x(π/2).

From these we have ω(π/4) = 3π/4 and η(π/4) = π/2. Of course, ω(π/2) = π by
x(π/2)⊥I x(π)(= −x(0)) and the definition of ω . Since ω and η are both increasing
rotations by Proposition 2.3, the following hold:

(a) ω([0,π/4]) = [ω(0),ω(π/4)] = [π/2,3π/4] ;

(b) η([0,π/4]) = [η(0),η(π/4)] = [π/4,π/2] ; and

(c) (ω ◦η)([0,π/4]) = ω([η(0),η(π/4)]) = [ω(π/4),ω(π/2)] = [3π/4,π ] .

Thus, once it has been proved that ω(θ ) = θ + π/2 for each θ ∈ [0,π/4] , we obtain
r(θ )2 + r(ω(θ ))2 = 2 = r(η(θ ))2 + r((ω ◦η)(θ ))2 from the assumption (ii).

Let θ ∈ [0,π/4] . Put x = x(θ ) and y = x(ω(θ )) . Since η(θ ) ∈ [π/4,π/2] , one
obtains ‖x+ y‖ = ‖x+ y‖2 . On the other hand, as in the proof of Proposition 2.3 (see
equation (1)), it follows that

y− x
‖y− x‖ = x((ω ◦η)(θ )).

Since ‖x((ω ◦η)(θ ))‖2 = r((ω ◦η)(θ )) = 1 from (c) and the assumption (ii), we have
‖x− y‖ = ‖x− y‖2 . Now, by Proposition 2.3 (ii), the equation ‖x + y‖2 = ‖x− y‖2

holds, which implies that 〈x,y〉 = 0. In other words, x and y are orthogonal to each
other in the usual sense. This and the definition of ω together show that ω(θ ) =
θ + π/2, as desired. The proof is complete. �

The following example was appeared in [9, Section 4] and [10, Subsection 5.1].
By Proposition 3.1, we can treat it rather easily.

EXAMPLE 3.2. ([9]) For each 1 < a � 1/34, let

ra(θ ) =

⎧⎪⎪⎨
⎪⎪⎩

√
1+a(1− cos8θ ) (θ ∈ [0,π/4])

1 (θ ∈ [π/4,π/2])√
1−a(1− cos8θ ) (θ ∈ [π/2,3π/4])

1 (θ ∈ [3π/4,π ])

.

We extend this curve to [0,2π ] by letting ra(θ ) = ra(θ −π) for each θ ∈ [π ,2π ] . Put

Ba = {r(cosθ ,sinθ ) : 0 � r � ra(θ ),θ ∈ [0,2π ]}.
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Then, by [9, Proposition 4.5], the set Ba is absorbing, closed and convex; and hence its
Minkowski functional ‖ · ‖a is a norm on R

2 .
Of course, we have ra(θ ) = 1/‖(cosθ ,sinθ )‖a for each θ . It is easy to check that

the function θ → ra(θ ) satisfies the conditions (i) and (ii) set out in Proposition 3.1.
Hence J((R2,‖ · ‖a)) =

√
2.

We next construct a new explicit example of two-dimensional Banach space with
James constant

√
2. The basic idea comes from the preceding example.

For each 0 < b < 1/2, let

sb(θ ) =

⎧⎨
⎩

√
1+b(1− cos16θ ) (θ ∈ [0,π/8])√
1−b(1− cos16θ ) (θ ∈ [π/8,π/4])

1 (θ ∈ [π/4,π/2])
.

Extending this curve to [0,π ] by putting sb(θ ) :=
√

2− sb(θ −π/2)2 for each θ ∈
[π/2,π ] , and then to [0,2π ] by putting sb(θ ) := sb(θ −π) for each θ ∈ [π ,2π ] . The
resulting curve θ → sb(θ )(cosθ ,sinθ ) : [0,2π ] → R

2 is a (continuous) simple closed
curve; and the set

Cb = {s(cosθ ,sinθ ) : 0 � s � sb(θ ),θ ∈ [0,2π ]}

is absorbing, balanced and closed. Let ‖·‖(b) be the Minkowski functional of Cb . Then
it is a norm on R

2 if Cb is convex, and in that case, sb(θ ) = 1/‖(cosθ ,sinθ )‖(b) for
each θ . Consequently, if Cb is convex, then J((R2,‖ ·‖(b))) =

√
2 by the construction

of sb and Proposition 3.1.
Recall that the curvature of a curve r(θ ) in polar coordinate is given by

κ(θ ) =
r(θ )2 +2r′(θ )2 − r(θ )r′′(θ )

(r(θ )2 + r′(θ )2)3/2
.

To examine the convexity of Cb , we make use of the fact that a simple closed curve of
positive curvature is convex.

Below we shall show that Cb is convex if 0 < b � 1/130.

LEMMA 3.3. Let s(1)
b (θ ) =

√
1+b(1− cos16θ ) for θ ∈ [0,2π ] , and κ (1)

b be the

curvature of s(1)
b . If 0 < b � 1/128 , then κ (1)

b � 0 .

Proof. The first and second derivatives of s(1)
b are given by

(s(1)
b )′(θ ) =

8bsin16θ
s(1)
b (θ )

,

(s(1)
b )′′(θ ) =

−64b2 sin2 16θ −128b2 cos2 16θ +128b(1+b)cos16θ
s(1)
b (θ )3

.
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It follows that

s(1)
b (θ )2 +2(s(1)

b )′(θ )2 − s(1)
b (θ )(s(1)

b )′′(θ )

=
−63b2 cos2 16θ −130b(1+b)cos16θ +(1+b)2 +192b2

s(1)
b (θ )2

.

Put t = cos16θ and f (t) = −63b2t2 − 130b(1+ b)t + (1 + b)2 + 192b2 . Then t ∈
[−1,1] , f is concave and

f (−1) = 260b2 +132b+1 > 0,

f (1) = 1−128b.

Thus κ (1)
b � 0 if and only if f (t) � 0 for each t ∈ [−1,1] , which happens if and only

if 0 < b � 1/128. �

LEMMA 3.4. Let s(2)
b (θ ) =

√
1−b(1− cos16θ ) for θ ∈ [0,2π ] , and κ (2)

b be the

curvature of s(2)
b . If 0 < b � 1/130 , then κ (2)

b � 0 .

Proof. The first and second derivatives of s(2)
b are as follows:

(s(2)
b )′(θ ) = −8bsin16θ

s(2)
b (θ )

,

(s(2)
b )′′(θ ) =

−64b2 sin2 16θ −128b2 cos2 16θ −128b(1−b)cos16θ
s(2)
b (θ )3

.

From these, one has that

s(2)
b (θ )2 +2(s(2)

b )′(θ )2 − s(2)
b (θ )(s(2)

b )′′(θ )

=
−63b2 cos2 16θ +130b(1−b)cos16θ +(1−b)2 +192b2

s(1)
b (θ )2

.

Put t = cos16θ and g(t) = −63b2t2 + 130b(1− b)t +(1− b)2 + 192b2 . Then g is a
concave function. Since t ∈ [−1,1] and

g(−1) = 260b2−132b+1 = (130b−1)(2b−1),
g(1) = 1+128b > 0,

It follows that κ (2)
b � 0 if and only if 0 < b � 1/130. �

By Lemmas 3.3 and 3.4, if 0 < b � 1/130, the curve sb consists of parts of a

circle and convex curves s(1)
b and s(2)

b . It remains to show that the curve sb is convex at
the joints θ = 0,π/8,π/4,π/2,5π/8,3π/4. To see this, it is enough to prove that the
set Cb has tangent lines at these points.
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Let x ∈ R
2 . For each θ , we note that x ∈ R(θ )(B�2

∞
) if and only if ‖R(−θ )x‖∞ �

1, where B�2
∞

is the unit ball of the space R
2 endowed with the norm given by ‖(a,b)‖∞

= max{|a|, |b|} . For our purpose, it suffices to show that Cb ⊂ R(θ )(B�2
∞
) for θ =

0,π/8,π/4 (since r(θ ) = 1 at the joints and �2
∞ is π/2-rotation invariant). Before

arguing this, we determine the values of

min
0�θ�π/4

tan2 θ
1− cos16θ

and min
−π/8�θ�π/8

tan2 θ
1− cos16θ

.

Let θ ∈ (−π/2,π/2) . We first note that

tan2 θ =
1− cos2θ
1+ cos2θ

,

and that

cos16θ = 2cos2 8θ −1 = 2(2cos2 4θ −1)2−1

= 8cos4 4θ −8cos2 4θ +1.

From this one has that 1−cos16θ = 8cos2 4θ (1−cos2 4θ ) . Since cos4θ = 2cos2 2θ −
1, it follows that

tan2 θ
1− cos16θ

=
1

32cos2 2θ (1+ cos2θ )2(2cos2 2θ −1)2 .

Now put t = cos2θ . Then t ∈ [0,1] if θ ∈ [0,π/4] , and t ∈ [1/
√

2,1] if θ ∈ [−π/8,π/8] .
It is easy to verify that max0�t�1 h(t) = max1/

√
2�t�1 h(t) = h(1) = 128, where

h(t) = 32t2(1+ t)2(2t2−1)2.

Thus we obtain

min
0�θ�π/4

tan2 θ
1− cos16θ

= min
−π/8�θ�π/8

tan2 θ
1− cos16θ

=
1

128
.

We now ready to prove that Cb is convex for 0 < b � 1/130.

PROPOSITION 3.5. Let 0 < b � 1/130 . Then Cb is convex. Consequently, ‖ ·‖(b)

is a norm on R
2 .

Proof. As was mentioned above, it is enough to show that Cb ⊂ R(θ0)(B�2
∞
) for

θ0 = 0,π/8,π/4. For this, we have to show that R(−θ0)x(θ ) ∈ B�2
∞

for each θ ∈ [0,π ]
and θ0 = 0,π/8,π/4.

Let θ0 ∈ R . We note that if sb(θ ) � 1, then R(−θ0)x(θ ) ∈ B�2
2
⊂ B�2

∞
, where �2

2

is the Euclidean 2-space. By the definition of sb , we have sb(θ )2 + sb(θ + π/2)2 = 2
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for each θ ∈ [0,π/2] . It follows that sb(θ ) � 1 for each θ ∈ [π/8,5π/8]∪ [3π/4,π ] .
Moreover, for each θ ∈ [5π/8,3π/4] , we obtain θ −π/2∈ [π/8,π/4] and

sb(θ ) =
√

2− sb(θ −π/2)2 =
√

1+b(1− cos16(θ −π/2)) = s(1)
b (θ −π/2).

Since ‖ · ‖∞ is π/2-rotation invariant, the equation

‖R(−θ0)x(θ )‖∞ = ‖R(−π/2)R(−θ0)x(θ )‖∞

= sb(θ )‖R(−θ0)(cos(θ −π/2),sin(θ −π/2))‖∞

= s(1)
b (θ −π/2)‖R(−θ0)(cos(θ −π/2),sin(θ −π/2))‖∞

holds. From this and the fact that sb(θ ) = s(1)
b (θ ) for each θ ∈ [0,π/8] , to prove

Cb ⊂ R(θ0)(B�2
∞
) , it is enough to show that

s(1)
b (θ )‖R(−θ0)(cosθ ,sinθ )‖∞ � 1 (2)

for each θ ∈ [0,π/4] .
Now let θ0 ∈{0,π/8,π/4} and θ ∈ [0,π/4] . Then we have θ −θ0 ∈ [−π/4,π/4] ,

which implies that

‖R(−θ0)(cosθ ,sinθ )‖∞ = ‖(cos(θ −θ0),sin(θ −θ0))‖∞ = cos(θ −θ0).

Hence the inequality (2) is equivalent to

(1+b(1− cos16θ ))cos2(θ −θ0) � 1,

which happens if and only if

b � tan2(θ −θ0)
1− cos16θ

.

(I) θ0 = 0. In this case

tan2(θ −θ0)
1− cos16θ

=
tan2 θ

1− cos16θ
.

It follows from

b � 1
130

<
1

128
= min

0�θ�π/4

tan2 θ
1− cos16θ

that Cb ⊂ B�2
∞
.

(II) θ0 = π/8. We note that

tan2(θ −θ0)
1− cos16θ

=
tan2(θ −π/8)

1− cos16(θ −π/8)
,

which implies that

min
0�θ�π/4

tan2(θ −θ0)
1− cos16θ

= min
−π/8�θ�π/8

tan2 θ
1− cos16θ

=
1

128
.
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Hence, b � 1/130 guarantees that Cb ⊂ R(π/8)(B�2
∞
) .

(III) θ0 = π/4. We have

tan2(θ −θ0)
1− cos16θ

=
tan2(θ −π/4)

1− cos16(θ −π/4)
,

This, together with tan2(−θ ) = tan2 θ and cos(−θ ) = cosθ , assures that

min
0�θ�π/4

tan2(θ −θ0)
1− cos16θ

= min
−π/4�θ�0

tan2 θ
1− cos16θ

= min
0�θ�π/4

tan2 θ
1− cos16θ

=
1

128
.

Thus it follows that Cb ⊂ R(π/4)(B�2∞
) by b � 1/130.

From these, the set Cb is convex if b � 1/130. The proof is complete. �

We conclude this section with the following result which is a consequence of
Propositions 3.1 and 3.5.

THEOREM 3.6. Let 0 < b � 1/130 . Then J((R2,‖ · ‖(b))) =
√

2 .

4. Some special properties of ‖ · ‖(b)

Throughout this section, we assume that 0 < b � 1/130. We here show that
(R2,‖ · ‖(b)) is not isometrically isomorphic to any absolute, or symmetric, or π/2-
rotation invarinat normed space. Recall that, by [9, Lemma 5.6], a two-dimensional
normed space is isometrically isomorphic to some absolute normed space if and only
if it is isometrically isomorphic to some symmetric normed space. Hence, it is enough
to consider absolute or π/2-rotation invariant norms. The following are useful for our
purpose.

LEMMA 4.1. ([10]) A normed space (R2,‖ · ‖) is isometrically isomorphic to
some absolute normed space if and only if there exists a unit vector basis {x,y} such
that ‖x+ αy‖= ‖x−αy‖ for each α ∈ R .

LEMMA 4.2. A normed space (R2,‖ · ‖) is isometrically isomorphic to some
π/2 -rotation invariant normed space if and only if there exists a unit vector basis {x,y}
such that ‖x+ αy‖= ‖−αx+ y‖ for each α ∈ R .

Proof. If (R2,‖·‖) is isometrically isomorphic to a π/2-rotation invariant normed
space (R2,‖ · ‖0) . Let T : (R2,‖ · ‖0) → (R2,‖ · ‖) be an isometric isomorphism, and
let x = T (1,0) and y = T (0,1) . Then we have ‖x‖ = ‖y‖ = k > 0 and

‖x+ αy‖= ‖(1,α)‖0 = ‖R(π/2)(1,α)‖0 = ‖(−α,1)‖0 = ‖−αx+ y‖

for each α ∈ R . Replacing {x,y} with {k−1x,k−1y} if necessary, we obtain a unit
vector basis with the desired property.



878 N. KOMURO, K.-S. SAITO AND R. TANAKA

Conversely, if there exists a unit vector basis {x,y} satisfying the property set out
in the statement of this lemma, we obtain ‖αx+βy‖= ‖−βx+αy‖ for each α,β ∈R .
Putting ‖(α,β )‖′ = ‖αx+βy‖ yields another norm on R

2 which is isometric to ‖ ·‖ ;
and it is obvious that ‖ · ‖′ is π/2-rotation invariant. This completes the proof. �

We introduce some notions about generalized orthogonality types in normed spaces.
Let x,y be elements of a normed space. Then x and y are Roberts orthogonal to each
other, denoted by x ⊥R y , if ‖x+ αy‖ = ‖x−αy‖ for each α ∈ R (Roberts [12]); are
twisted orthogonal to each other, denoted by x ⊥t y , if ‖x + αy‖ = ‖−αx + y‖ for
each α ∈ R ; and x is Birkhoff orthogonal to y , denoted by x ⊥B y , if ‖x+ αy‖ � ‖x‖
for each α ∈ R (Birkhoff [3]). It is not difficult to check that x ⊥R y implies y ⊥R x ,
x ⊥B y and x ⊥I y , and that x ⊥t y implies y ⊥t x and x ⊥I y .

From the definitions of Roberts orthogonality and twisted orthogonality, we have
to show that there is no unit vector basis {x,y} for (R2,‖ · ‖(b)) such that x ⊥R y or
x ⊥t y . For this purpose, the following lemma plays an important role. The proof is
essentially based on [10, Theorem 3.2]. Recall that, for each convex function ψ on
[0,1] satisfying max{1− t,t}� ψ(t) � 1 for each t , the equation

‖(α,β )‖ψ =

⎧⎨
⎩ (|α|+ |β |)ψ

( |β |
|α|+ |β |

)
((α,β ) �= (0,0))

0 ((α,β ) = (0,0))

defines an absolute (normalized) norm on R
2 (Bonsall and Duncan [4]). For such an

norm, we have
max{|α|, |β |} � ‖(α,β )‖ψ � |α|+ |β |

for each α,β ∈ R . Now put ψ̃(t) = ψ(1− t) . Then, by [10, Proposition 3.4], the norm
given by

‖(α,β )‖ψ,ψ̃ =
{ ‖(α,β )‖ψ (αβ � 0)
‖(α,β )‖ψ̃ (αβ � 0)

is π/2-rotation invariant. The space (R2,‖ · ‖ψ,ψ̃) is denoted by �2
ψ,ψ̃ .

LEMMA 4.3. If there exists a unit vector basis {x,y} with x ⊥t y in a normed
space (R2,‖ · ‖) . Then there exists another unit vector basis {x0,y0} with x0 ⊥t y0 ,
x0 ⊥B y0 and y0 ⊥B x0 .

Proof. From the assumption, (R2,‖ · ‖) is isometrically isomorphic to the π/2-
rotation invariant space (R2,‖·‖0) , where ‖(α,β )‖0 = ‖αx+βy‖ for each α,β ∈R

2 .
By [10, Theorem 3.2], there exists a convex function ψ on [0,1] satisfying max{1−
t,t} � ψ(t) � 1 for each t such that (R2,‖ · ‖0) is isometrically isomorphic to �2

ψ,ψ̃ .

We note that e1 = (1,0) and e2 = (0,1) (considered in �2
ψ,ψ̃ ) satisfy e1 ⊥t e2 , e1 ⊥B e2

and e2 ⊥B e1 . Let T be an isometric isomorphism from �2
ψ,ψ̃ onto (R2,‖ · ‖) , and let

x0 = Te1 and y0 = Te2 . Then {x0,y0} is a unit vector basis for (R2,‖ · ‖) having the
desired properties. �
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From this, for our purpose, it is enough to consider the case x = x(θ ) with θ ∈
[0,π/2] and y = x(ω(θ )) . Indeed, let ‖x‖ = ‖y‖ = 1, and x ⊥R y or x ⊥t y . Then
x ⊥I y . From the preceding lemma, we may assume that x ⊥B y and y ⊥B x . We note
that x⊥R y implies that ±x⊥R ±y ; x⊥B y implies that ±x⊥B ±y ; and x⊥t y implies
that ±x ⊥t ±y . From these, in any case, we may assume that x,y are in the first or
second quadrants. Replacing x with y if necessary, we can write x = x(θ ) and y =
x(ω(θ )) . As was mentioned in the proof of Proposition 3.1, one has ω(0) = π/2; and
so ω(−π/2) = 0, ω(π/2) = π and ω(π) = 3π/2, which implies that ω([−π/2,0]) =
[0,π/2] , ω([0,π/2])= [π/2,π ] and ω([π/2,π ])= [π ,3π/2] . These, together with the
fact that ω is strictly increasing, prove that θ ∈ [0,2π ] .

The following auxiliary lemma will be needed.

LEMMA 4.4. Let (R2,‖ ·‖) be a normed space, and let r(θ ) = 1/‖(cosθ ,sinθ )‖
and x(θ ) = r(θ )(cosθ ,sinθ ) for each θ . Suppose that θ0 ∈ [0,π ] . Then x(θ0) ⊥R

x(θ0 + π/2) if and only if r(θ0 + θ ) = r(θ0 −θ ) for each θ ∈ [0,π/2] .

Proof. We note that

x(θ0)+ αx(θ0 + π/2) = r(θ0)(cosθ0,sinθ0)+ αr(θ0 + π/2)(−sinθ0,cosθ0)
= s(α)(cos(θ0−ϕ),sin(θ0 + ψ)),

where s(α) =
√

r(θ0)2 + α2r(θ0 + π/2)2 and ϕ ,ψ are real numbers satisfying

sinϕ = −αr(θ0 + π/2)
s(α)

and cosϕ =
r(θ0)
s(α)

and

sinψ =
αr(θ0 + π/2)

s(α)
and cosψ =

r(θ0)
s(α)

,

respectively. In particular, we have

x(θ0)+ αx(θ0 + π/2) = s(α)(cos(θ0 + ψ),sin(θ0 + ψ)).

Similarly, we obtain

x(θ0)−αx(θ0 + π/2) = s(α)(cos(θ0 −ψ),sin(θ0−ψ)).

Since the function

α → αr(θ0 + π/2)
s(α)

maps R
+ onto [0,1) while r(θ0)/s(α) is always positive, the parameter ψ takes all

the values in [0,π/2) when α varies in R
+ .

Now we have

‖x(θ0)±αx(θ0 + π/2)‖=
s(α)

r(θ0 ±ψ)
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for each α ∈ R
+ . Hence x(θ0)⊥R x(θ0 +π/2) holds if and only if r(θ0 +θ ) = r(θ0−

θ ) for each θ ∈ [0,π/2] . �

We now proceed to the proof of the absence of a Roberts orthogonal unit vector
basis in (R2,‖ · ‖(b)) . To this end, recall that Birkhoff orthogonality is deeply related
to tangent lines. Indeed, if x,y ∈ SX , then x ⊥B y means ‖x+ αy‖� 1. Consequently,
in two-dimensional case, x,y ∈ SX and x ⊥B y imply that α → x+αy is a tangent line
for BX at x .

PROPOSITION 4.5. There is no unit vector basis {x,y} satisfying x⊥R y in (R2,‖·
‖(b)) . Consequently, (R2,‖ · ‖(b)) is not isometrically isomorphic to any absolute
normed space.

Proof. We first show that if x(θ ) ⊥R x(ω(θ )) (with θ ∈ [0,π/2]), then ω(θ ) =
θ + π/2. Indeed, as in the proof of Proposition 3.1, we have ω(θ ) = θ + π/2 for
each θ ∈ [0,π/4] ; and so ω(π/2) = π . On the other hand, the curve x(θ ) coincides
with the unit circle on (π/4,π/2) , which implies that the tangent line for the unit ball
of (R2,‖ · ‖(b)) at θ ∈ (π/4,π/2) is only the straight line α → x(θ )+ αx(θ + π/2) .
This, together with the fact thatx(θ ) ⊥B x(ω(θ )) , proves ω(θ ) = θ + π/2.

Now Lemma 4.4 applies; and if x(θ0) ⊥R x(ω(θ0)) for some θ0 ∈ [0,π/2] , then
sb(θ0 + θ ) = sb(θ0 − θ ) for each θ ∈ [0,π/2] . However, sb satisfies the following
conditions:

(i) sb(θ ) > 1 for each θ ∈ (−3π/8,−π/4)∪ (0,π/8)∪ (5π/8,3π/4) ;

(ii) sb(θ )= 1 for each θ ∈ [−π/4,0]∪[π/4,π/2]∪[3π/4,π]∪{−3π/8,π/8,5π/8} ;
and

(iii) sb(θ ) < 1 for each θ ∈ (−π/2,−3π/8)∪ (π/8,π/4)∪ (π/2,5π/8) .

From these, we conclude that x(θ0) ⊥R x(ω(θ0)) cannot happen. Thus there is no unit
vector basis {x,y} satisfying x ⊥R y in (R2,‖ · ‖(b)) . �

We next show that there is no unit vector basis {x,y} satisfying x ⊥t y in (R2,‖ ·
‖(b)) . In fact, it is a consequence of a more general result. For this we need the follow-
ing simple lemma.

LEMMA 4.6. Let (R2,‖ · ‖) be a normed space, and r(θ ) = 1/‖(cosθ ,sinθ )‖
and x(θ ) = r(θ )(cosθ ,sinθ ) for each θ . Suppose that r(θ ) satisfies the conditions
(i) and (ii) set out in Proposition 3.1. Then

2+
√

2
4

� r(θ )2 � 4−2
√

2

for each θ ∈ [0,π/4] .



BANACH SPACES WITH JAMES CONSTANT
√

2 881

Proof. From the definition, r(0)= r(π/4)= 1, that is, x(0)= (1,0) and x(π/4)=
(1/

√
2,1/

√
2) . Since the unit ball of (R2,‖·‖) is convex and r(θ ) = ‖x(θ )‖2 , we have

min
0�t�1

‖(1− t)x(0)+ tx(π/4)‖2 � r(θ )

for each θ ∈ [0,π/4] . It follows from

min
0�t�1

‖(1− t)x(0)+ tx(π/4)‖2 = ‖2−1(x(0)+ x(π/4))‖2 =
(2+

√
2)1/2

2

that
2+

√
2

4
� r(θ )2

for each θ ∈ [0,π/4] .
On the other hand, since r(θ ) = 1 for each θ ∈ [−π/4,0]∪ [π/4,π/2] , the straight

lines t → (1, t) and t → x(π/4)+ (t,−t) are tangent to the unit ball of (R2,‖ · ‖) at
x(0) and x(π/4) , respectively. In other words, for 0 � θ � π/4, the vector x(θ ) is in
the regular octagon that circumscribes the unit circle. Now let

‖(α,β )‖0 = max{‖(α,β )‖∞,‖(α,β )‖1/
√

2} = max{|α|, |β |,(|α|+ |β |)/
√

2}

for each α,β ∈ R . Then ‖ · ‖0 is a norm on R
2 such that the unit ball with respect to

this norm is the regular octagon that circumscribes the unit circle. Thus our argument
in above shows that ‖x(θ )‖0 � 1 for each θ ∈ [0,π/4] , that is, the inequality

r(θ )max{cosθ ,cos(π/4−θ )}� 1

holds for each θ ∈ [0,π/4] . Since

min
0�θ�π/4

max{cosθ ,cos(π/4−θ )}= cos(π/8) =

√
2+

√
2

2
,

it follows that

r(θ ) � 2√
2+

√
2

for each θ ∈ [0,π/4] ; and hence

r(θ )2 � 4−2
√

2

for each θ ∈ [0,π/4] . �

PROPOSITION 4.7. Let (R2,‖·‖) be a normed space, and r(θ )= 1/‖(cosθ ,sinθ )‖
and x(θ ) = r(θ )(cosθ ,sinθ ) for each θ . Suppose that r(θ ) satisfies the conditions (i)
and (ii) set out in Proposition 3.1. Then (R2,‖ · ‖) is isometrically isomorphic to some
π/2 -rotation invariant normed space if and only if r(θ ) = 1 for each θ ∈ [0,2π ] .
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Proof. If r(θ ) = 1 for each θ ∈ [0,2π ] , then (R2,‖ · ‖) is itself a π/2-rotation
invariant normed space. For the converse, suppose that (R2,‖ · ‖) is isometrically iso-
morphic to some π/2-rotation invariant normed space. Then, by Lemma 4.3, there
exists a unit vector basis {x,y} for (R2,‖ · ‖) with the properties that x ⊥t y , x ⊥B y
and y ⊥B x . From the comment following Lemma 4.3, we may assume that x = x(θ0)
with θ0 ∈ [0,π/2] and y = x(ω(θ0)) . Moreover, by an argument similar to that in the
beginning of the proof of Proposition 4.5, we have ω(θ0) = θ0 + π/2.

We first show that r(θ0) = 1 (which happens, at least, if θ0 ∈ {0}∪ [π/4,π/2]).
To see this, it is enough to consider the case θ0 ∈ (0,π/4) . Then 0 < tanθ0 < 1. As in
the proof of Lemma 4.4, we have

x(θ0)+ αx(θ0 + π/2) = r(θ0)(cosθ0,sinθ0)+ αr(θ0 + π/2)(−sinθ0,cosθ0)
= s1(α)(cos(θ0 + ϕ1),sin(θ0 + ϕ1)),

where s1(α) =
√

r(θ0)2 + α2r(θ0 + π/2)2 and ϕ1 is a real number satisfying

sinϕ1 =
αr(θ0 + π/2)

s1(α)
and cosϕ1 =

r(θ0)
s1(α)

.

Similarly, one has

−αx(θ0)+ x(θ0 + π/2) = −αr(θ0)(cosθ0,sinθ0)+ r(θ0 + π/2)(−sinθ0,cosθ0)
= s2(α)(−sin(θ0 + ϕ2),cos(θ0 + ϕ2)),

where s2(α) =
√

α2r(θ0)2 + r(θ0 + π/2)2 and ϕ2 satisfies

sinϕ2 =
αr(θ0)
s2(α)

and cosϕ2 =
r(θ0 + π/2)

s2(α)
.

On the other hand, the inequalities

0 � r(θ0)cosθ0−αr(θ0 + π/2)sinθ0 � r(θ0)sinθ0 + αr(θ0 + π/2)cosθ0

hold if and only if

r(θ0)
r(θ0 + π/2)

· 1− tanθ0

1+ tanθ0
� α � r(θ0)

r(θ0 + π/2)
· 1
tanθ0

.

Moreover, we obtain

0 � −αr(θ0)sinθ0 + r(θ0 + π/2)cosθ0 � αr(θ0)cosθ0 + r(θ0 + π/2)sinθ0

if and only if

r(θ0 + π/2)
r(θ0)

· 1− tanθ0

1+ tanθ0
� α � r(θ0 + π/2)

r(θ0)
· 1
tanθ0

.
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From these, for each α satisfying

max

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
· 1− tanθ0

1+ tanθ0

� α

� min

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
1

tanθ0
,

(3)

it follows that

‖x(θ0)+ αx(θ0 + π/2)‖= ‖x(θ0)+ αx(θ0 + π/2)‖2 = s1(α)

and
‖−αx(θ0)+ x(θ0 + π/2)‖= ‖−αx(θ0)+ x(θ0 + π/2)‖2 = s2(α).

However, since

s1(α)2 − s2(α)2 = (1−α2)(r(θ0)2 − r(θ0 + π/2)2),

if there exists an α(�= 1) satisfying the inequalities (3), then x(θ0) ⊥t x(θ0 + π/2)
implies that r(θ0) = r(θ0 + π/2) . This, together with the condition r(θ0)2 + r(θ0 +
π/2)2 = 2, guarantees that r(θ0) = 1.

Now we aim to prove the strict inequality

max

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
· 1− tanθ0

1+ tanθ0

< min

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
1

tanθ0
.

Once it has been proved, we have at least two distinct α satisfying (3). Our argument
is divided into two cases.

(I) r(θ0) � r(θ0 + π/2) . In this case, we have to show that

tanθ0(1− tanθ0)
1+ tanθ0

<
r(θ0 + π/2)2

r(θ0)2 =
2− r(θ0)2

r(θ0)2 .

Since tanθ0 ∈ (0,1) , one has

tanθ0(1− tanθ0)
1+ tanθ0

� max
0�t�1

t(1− t)
1+ t

= (
√

2−1)2.

Therefore, it suffices to show that

(
√

2−1)2 <
2− r(θ0)2

r(θ0)2 ,

which is equivalent to

r(θ0)2 <
2

(
√

2−1)2 +1
=

1

2−√
2

=
2+

√
2

2
.
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On the other hand, by Lemma 4.6, we already have

r(θ0)2 � 4−2
√

2 <
2+

√
2

2
.

(II) r(θ0) � r(θ0 + π/2) . Our aim is to show that

tanθ0(1− tanθ0)
1+ tanθ0

<
r(θ0)2

r(θ0 + π/2)2 =
r(θ0)2

2− r(θ0)2 .

As in the preceding paragraph, it is enough to prove that

(
√

2−1)2 <
r(θ0)2

2− r(θ0)2 ,

or equivalently, that
2(
√

2−1)2

(
√

2−1)2 +1
< r(θ0)2.

We here note that
2(
√

2−1)2

(
√

2−1)2 +1
=

2−√
2

2
<

2+
√

2
4

,

which, together with Lemma 4.6, assures that

2(
√

2−1)2

(
√

2−1)2 +1
<

2+
√

2
4

� r(θ0)2.

Thus, in any case, we have the strict inequality

max

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
· 1− tanθ0

1+ tanθ0

< min

{
r(θ0)

r(θ0 + π/2)
,
r(θ0 + π/2)

r(θ0)

}
1

tanθ0
.

Consequently, we obtain r(θ0) = 1, as desired.
Now it follows from x(θ0) ⊥t x(θ0 + π/2) and r(θ0)2 + r(θ0 + π/2)2 = 2 that

r(θ0 + π/2) =
√

2− r(θ0)2 = 1 = r(θ0) and

‖αx(θ0)+ βx(θ0 + π/2)‖= ‖−βx(θ0)+ αx(θ0 + π/2)‖

for each α,β ∈ R . From these, one has that x(θ0) = (cosθ0,sinθ0) and x(θ0 +π/2) =
(cos(θ0 + π/2),sin(θ0 + π/2)) , and that

‖R(π/2)(αx(θ0)+ βx(θ0 + π/2))‖= ‖αx(θ0 + π/2)+ βx(θ0 + π)‖
= ‖αx(θ0 + π/2)−βx(θ0)‖
= ‖αx(θ0)+ βx(θ0 + π/2)‖
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for each α,β ∈ R ; that is, ‖ · ‖ is itself π/2-rotation invariant. Hence it follows that
r(θ + π/2) = r(θ ) for each θ , which together with the condition (i) set out in Propo-
sition 3.1 implies that

2r(θ )2 = 2r(θ + π/2)2 = r(θ )2 + r(θ + π/2)2 = 2

for each θ ∈ [0,π/4] , that is, r(θ ) = 1 for each θ ∈ [0,π/4]∪ [π/2,3π/4] . This and
the condition (ii) in Proposition 3.1, together with the fact that r(θ + π) = r(θ ) for all
θ , guarantee that r(θ ) = 1 for each θ ∈ [0,2π ] . The proof is complete. �

COROLLARY 4.8. The normed space (R2,‖·‖(b)) is not isometrically isomorphic
to any π/2 -rotation invariant normed space.

REMARK 4.9. Proposition 4.7 guarantees that the normed space (R2,‖ · ‖a) that
appeared in Example 3.2 is not isometrically isomorphic to any π/2-rotation invariant
normed space. This result was already mentioned in [10, Theorem 5.2]. However,
in that theorem, the proof was based on the existence of a unit vector basis {x,y}
for (R2,‖ · ‖a) with the property that x ⊥R y . On the contrary, for the type of normed
spaces considered in Proposition 3.1, Proposition 4.7 provides a more general and direct
criterion for the existence of unit vector bases that are twisted orthogonal to each other.

We conclude this section with the following result that summarizes Theorem 3.6,
Proposition 4.5 and Corollary 4.8.

THEOREM 4.10. Let 0 < b � 1/130 . Then the normed space (R2,‖ · ‖(b)) satis-
fies the following properties:

(i) J((R2,‖ · ‖(b))) =
√

2 ;

(ii) (R2,‖ · ‖(b)) is not isometrically isomorphic to any absolute normed space;

(iii) (R2,‖·‖(b)) is not isometrically isomorphic to any symmetric normed space; and

(iv) (R2,‖·‖(b)) is not isometrically isomorphic to any π/2 -rotation invariant normed
space.

5. Remarks

Finally, we point out the relationship between our results and Hadwiger’s unsettled
problem on covering convex bodies by smaller homothets [6]. Let K be a convex
body in R

n , that is, a compact convex subset with nonempty interior. If x ∈ R
n and

λ ∈ (0,1) , the set
x+ λK := {x+ λy : y ∈ K}

is called a smaller homothetic copy of K . Now let c(K) be the smallest number of
smaller homothetic copies of K needed to cover K . Then it is equal to the smallest



886 N. KOMURO, K.-S. SAITO AND R. TANAKA

integer m such that there exist m points x1, . . . ,xm and a λ ∈ (0,1) satisfying

K ⊂
m⋃

j=1

(x j + λK).

Hadwiger’s conjecture is as follows: Let K be a convex body of R
n . Then c(K) � 2n ,

and the equality holds if and only if K is a parallelotope. This conjecture is unsettled
except for n = 2.

In connection with Hadwiger’s conjecture, the notion of the m-covering number
of a convex body was considered in [11]. For a convex body K in R

n and an m ∈ N ,
let hm(K) be the smallest possible positive ratio of m homothetical copies of K whose
union covers K . In [11], Lassak conjectured that every convex body K in R

2 with
hm(K) = 1/

√
2 is an affine image of a convex body whose boundary r(θ ) satisfies

r(θ + π/4) = r(θ ) .
Very recently, He et al. [7] showed the connection between m-covering numbers

and the Schäffer constant of normed spaces. More precisely, they proved that if K ⊂R
2

is centrally symmetric, that is, if it is the unit ball BX of some normed space X =
(R2,‖ · ‖) , then

h4(K) = 2−1S(X) = 2−1 inf{‖x+ y‖ : x,y ∈ SX , x ⊥I y}.

On the other hand, the James constant and Schäffer constant are closely related to each
other by the equality J(X)S(X) = 2; see Gao and Lau [5]. From this, it follows that

h4(K) = 1/J(X).

Now we consider Lassak’s conjecture. Let K be the unit ball of the normed space
(R2,‖ · ‖(b)) studied in the preceding two sections. Then we have

h4(K) = 1/J((R2,‖ · ‖(b))) = 1/
√

2.

However, we showed that the space (R2,‖ ·‖(b)) is not isometrically isomorphic to any
π/2-rotation invariant normed space, which means that K can not be an affine image
of a convex body whose boundary r(θ ) satisfies r(θ + π/4) = r(θ ) . Hence we see
that the answer to Lassak’s conjecture is negative.

We here remark that Lassak’s conjecture is true for the partial case that K is the
unit ball of a π/2-rotation invariant normed space. In that case, we can make use of
Corollary 2.7.
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