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ON SOME NEW INEQUALITIES FOR
FUSION FRAMES IN HILBERT SPACES
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Abstract. Recently fusion frame was considered as a generalization of frame in Hilbert spaces.
In this paper, we establish several new inequalities for fusion frames with a scalar in Hilbert
spaces. It is shown that the results we obtained can immediately lead to the existing correspond-
ing results when we choose suitable scalars.

1. Introduction

The concept of a frame in Hilbert spaces was first introduced by Duffin and Scha-
effer [10] in 1952 to study some problems in nonharmonic Fourier series. Frames were
reintroduced and developed in 1986 by Daubechies at al [9], and popularized from then
on. Nice properties of frames make them very useful in the characterization of function
spaces and other fields of applications such as signal processing [16], coding theory
[17], sampling theory [3] and more. We refer the reader to [8, 14] for an introduction
to the frame theory and its applications.

Later on, fusion frame, which we also call it a frame of subspaces, was first pro-
posed by Casazza and Kutyniok in [5] and reintroduced in [6]. Fusion frame is a natural
generalization of frame theory and related to the construction of global frames from lo-
cal frames in Hilbert spaces. Due to this characterization, fusion frames have been
applied for distributed processing [6], optimal transmission by packet encoding [2],
compressed sensing [4], filter bank [7], high energy physics [15], etc.

Balan et al. [1] found some Parseval equalities when they studied the optimal de-
composition of a Parseval frames in a Hilbert space. Then, Géavrute [11] developed
some identities and inequalities about discrete frames and the authors in [20] general-
ized these identities to alternate dual frames and got some general results.

These equalities and inequalities have been used for reconstructing signal without
information about the phase. However, a number of new applications have emerged
which cannot be modeled naturally by one single frame system. In order to reconstruct
signal without phase in a wireless sensor network, we need to study some equalities
and inequalities of fusion frames. Some authors have extended the equalities and in-
equalities for frames and dual frames in Hilbert spaces to fusion frames and dual fusion
frames, respectively (see [13, 19]).

Mathematics subject classification (2010): 42C15, 47B40.
Keywords and phrases: Fusion frame, frame operator, inequality.

© t1€I"€N' Zagreb 889

Paper MIA-20-56


http://dx.doi.org/10.7153/mia-20-56

890 D. LI AND J. LENG

In this paper, we give some new inequalities for fusion frames with a scalar A €
[0,2]. We show that inequalities and equalities of [13, 19] can be obtained for special
values of A =1 and A = %, respectively. We use different techniques to prove our
results. Moreover, we also give some inequalities for fusion frames with A € [1,2].

Throughout the paper, let .7# be a Hilbert spaces and let / be a countable index
set. I, denotes the identity operator on 7 . If W is a closed subspace of J7, we
denote the orthogonal projection of 72 onto W by 7wy .

DEFINITION 1. Let {W;}icr be a sequence of closed subspaces in .72, {w;}ics
be a family of weights, i.e., w; >0 forall i € I. {(W;,w;)}ics is called a fusion frame
for 77 , if there exist two positive constants A, B such that

AllFIP < Y willmw, (NI < BIIfI?, Vf €.

icl

The numbers A, B are called the fusion frame bounds. The family {(W;,w;) }ier is
called an A -tight fusion frame if A = B, it is a Parseval fusion frame if A=B =1, and
v-uniform if w =w; =w; forall i,j € I. If {(W;,w;)}ic; possesses an upper fusion
frame bound, but not necessarily a lower bound, we call it a Bessel fusion sequence
with Bessel fusion bound B. Moreover we say that {W;}c; is an orthonormal fusion
basis for 7 if H = ©ic/W;.

For each Bessel fusion sequence {(W;, w;) }ics of 5, we define the representation
space associated with {W;}c; by

C(A D) = {{fi}iel|fi eWiand Y [ < w}

icl
with inner product given by
({fitier-{gitier) = Y (fi.8i) -
iel
The frame operator S for {(W;,w;) }icr is defined by
S — o, S(f)=Dvimw(f), VfeH.
icl

Casazza and Kutyniok in [5] proved that S is positive, self-adjoint, invertible operator
on ¢ and the following reconstruction formula holds for all f € J7 :

f=S8T1Sf =Y wis" mw f = SST f =Y wimw (57" ).

icl icl

In [12] the author gave a more general alternate dual reconstruction formula, that
is, given a fusion frame {(W;,w;)}ie; with frame operator S and a Bessel sequence
{(Vl, Vi)}jg[, there is

f= Ev,-w,-nviS’lnmf, Vf c .

icl
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In this case we also call {(V;,v;)}ier an alternate dual of {(W;,w;)}icr -

Let {(W;,w;)}icr be a fusion frame, then for any J C I, we define a bounded linear
operator Sy : & — I by

Si1f =Y wimwf,
i€l

and denote J* =1\J.

The following equalities for a fusion frame in a Hilbert space were given in [13,
19].

THEOREM 1. Let {(W;,w;)}icr be a fusion frame for S with the fusion frame
operator S, {(S™'Wi,wi)}Yies is the dual fusion frame of {(W;,w;)}ic;. Then for any
J C I andany f € 5, we have

S wilmw A1+ llmw S~ e 12

ieJ el
_ 3
= Y willmw 11+ D lawS S fI1P = 5 willmw £ (1
ieJe el 4 iel

THEOREM 2. Let {(W;,wi) }ier be a fusion frame for S with the fusion frame
operator S and let {(Vi,vi)}icr be the alternate dual fusion frame of {(Wi,w;)}icr.
Then, for any J C I and any f € ¢, we have

Eviwi <S717'Ewl.f7 7l'Vl-f> + H 2 ViWiTlTV,.S717'lTWifH2

iceJ ieJe
N B 3
=Y viwi (S mw fomy f) + | D viwiny, S aw, fIF > Z||fH2. )
ieJe iceJ

2. The main results and their proofs
To derive our main results, we need the following lemma.

LEMMA 1. Let P, Q be two self-adjoint bounded linear operators in 7 and
P+Q=1,, thenforany A €0,2] and all f € F we have

7L2
IPFIR+ 201, f) = QI+ @ = 2) (PF.f)+ (= DIAIP = (A= 5 IAI%

Proof. Since P+ Q =1, , we have
IPFI?+A(OF, f) = (P2 £, fY + ALy — P)f,f) = (P2 = AP+ ALy)f,f),

and
IQFII* + (2= A) (PL.f)+ (A =1
=Ly —=PY*f.f)+ 2= M) (Pf.f)+ (A —DIf?
=((PP=AP+ALy)f.f).



892 D. LI AND J. LENG

‘We also have

(PP = AP+ ALy)f.f) =

THEOREM 3. Let {(W;,w;)}ier be a fusion frame for S with the fusion frame
operator S, {(S™'Wi,w;)}ies is the dual fusion frame of {(Wi,w;)}ici. Then for any
A €10,2], forall J C I and any f € F , we have

S willmwflI? = Y willmw fI1P + > wil|aw S~ S, £

icl icJe icl
= > willmw f11P + X wi | mw,S ™ Sye f1?
= icl

> (A~ %2) > w1+ (1- %2) > wilmw sl 3)

ieJ ieJ¢
Proof. Since S = Sj+ Sye, it follows that
Ly = S_I/ZSJS_I/Z+S_1/2SJL'S_1/2.
Let P=S"1/28;5"12 0 =8"1/285,51/2 and let §'/2f instead of f € # in Lemma
1, we have
|PS'2 72+ 2 (OS' 21,8 2 ) = (STUS,£.S,F) + A (S f) (4)
And
1082712+ (2= 2) (PS'2£.SY2F) + (A= 1) |8V
= (S7Spe f,Spe )+ 2= A)(Saf . f) + (A= 1) (ST, [). (5)
By (4) and (5), we have
(STISIES1f) + A (Sse fof) = (ST Ssef,Sse f) + (2= A) (Sf s f) + (A= 1) (SF, f) -
After subtracting both sides by A (Sycf, f), we obtain
(STIS1f:S1f) = (ST S f:Sse ) + 2= A) (S f o f) + (A= 1) (SF, f) = A(Sye . )
SIS £ S f) +2(S1f f) = AA(Se + S f) + (A= 1) (Sf. f)
STy £, Sse f) +2(Ssf f) — (S, f)
STISse f.Sse £y +2(Ssf f) = ((Ss+Ss) fo f)
STy fSe f) + (Saf o f) = (Sie o f) -

(
(
(
(
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Thus,
(STVSIF.Suf) 4+ (Ssefof) = (ST Sye f.Sse f) + (Suf . f) -
On the other hand, we have
(STUS1£.80f) = (SS7 S, £.571 8, f) = Y willmw, S~ Sy £
icl
Similarly, we obtain

(Sreff) =" willmwfl*

eJe
(S1f. f) =D wi|mw fII*-
ieJ
(S7'Sye f,Spe f) =D wi||aw, S Sy fI*.
iel

893

(10)

Using (6)—(10), we prove the equality of (3). Next, we prove the first inequality of (3).

Since P = S1/28;871/2 0 = §1/25;571/2 are positive operators, then

0<PQ=P(ly—P)=P—P*=5"'2(8;,—8;87'8,)871/2,

from which we conclude that S; — S;S~'S; > 0. Therefore, By (7) and (8), we have

S willmw ST SifI1P+ X, willww fII* = (ST Ssf . Suf) + (S fo f)

icl ieJe

<SJS71SJf7f> + <Sjcf7f>
<(Sof )+ (S f o f)
= (Sf.f) = 2 willmw S

i€l
We now prove the last inequality. By Lemma 1 and (4), we have
(S7VSIf.Sf) + A (Sse fof) = (A =A% /4) (ST, f)-
And then,
(STIS1f.S1f) = (A =22 J4) (S, f) = A (Sse . f)
A1 -AGer)- 2isrn

2
N et

Hence,
2

(1 .800) 4 600 0) > (A=) 5101+ (1=22) (5010

Therefore the proof is completed. [J

Theorem 3 leads to a direct consequence as follow.

= ) SIf.f)+ (1_’“_) (Ssefof) = (S fof)-

(11)
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COROLLARY 1. Let {(W;,w;)}icr be a Parseval fusion frame for S . Then for
any A €10,2], forall J C I and any f € 7, we have

Y wilmwfl? = X willmwf1? + X wi | mwSaf |1

iel ieJe i€l
= willmw f1I> + Y wi | mwSse £
ieJ i€l

> (-2 Suimus+ (1-20) 3wl

iceJ ieJe

REMARK 1. If we take A = 1 in Theorem 3, then we obtain the previous inequal-
ity in Theorem 1 and Theorem 8 of [13].

Next, We consider scalar A € [0, 1] and give a generalization of the Theorem 2.
We need the following result.

LEMMA 2. Let P, Q be two self-adjoint bounded linear operators in ¢ and
P+Q=1,, thenforany A €[0,1] and all f € 7 we have

PP+AQ +Q0)=0"0+(1—A)(P +P)+(2A—DI;p 2 A2 —A)Ly.

Proof. Since P+ Q =1, , we have
P'P+AQ +Q)=P'P+A(lyy — P + 1y —P)=PP—A(P"+P)+2A1,p,
and
Q0+ (1—=A)(P"+P)+(2A—1)Ly

=y —P)YLy—P)+(1—=2)(P"+P)+ (21— 1)L,
=P'P—A(P"+P)+2ALy.

‘We also have
P*P—A(P*+P)+2Alyp =P P—A(P*+P)+ 241y + ALy — A%Ly

=(P—=AlLy) (P=ALy)+A(2= )Ly
>A2—A)Lp. O

THEOREM 4. Let {(W;,w;)}ier be a fusion frame for S with the fusion frame
operator S and let {(Vi,v;)}ici be the alternate dual fusion frame of {(Wi,w;)}ic.
Then for any A € [0,1], for all J C I and x € 7, we have

ReZviwi <S_17l'Wif, 7'EV’f> + || Z \/’ﬂ/Vﬂ'l?ViS_177."/1/,.]“”2

icJ icJe
=Re Z Viw; <S_17'Ewl.f7 7l'Vl-f> + H Zviwi”\/,-s_lﬂw,-sz
icJe icJ

> (24 — A%)Re Y viw; (S 'mw, oy, f) + (1 — A%)Re Y, viw; (S aaw, f, v, f) . (12)

icJ ieJe
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Proof. For any J C I, we define a bounded linear operator E; as

E;f =Y vwiny S~ 'mw, f, Vfe .

il
Clearly, Ej+ Ej = I, . By Lemma 2, we have

(EJEIf.[) +7L<(E}‘v +Er)f,f)

895

13)

=(EJE;f,f) + MEsf,f) +A(Esrf.f)
= (EjeEsef.f)+ (1= L) {(Ef +E)f. f)+ 22— D) fI?
= (EJEsef . f) + (1= 2)(Esf, )+ (Esf, )+ QA=) (e f.f) . (14)

Taking real part of (13) and (14), we have

IESfII* +2ARe(Eye f, f) = ||Ese f||* +2(1 — A)Re(Esf, f) + (24 — D)Re (L £, f) -

Thus,

IEsfI1* = | Ese fI* +2(1 = A)R
= ||Ese f1* +2Re (Es f, f
= ||Ese f1I* +2Re(E; f, f) —Re (L f. f)
= ||Ese f1I* +2Re (E;f, ) — Re ((Ej+ Ege) £, f)
= ||EsefII* +Re(E; f, f) — Re(Eye £, f).

e(
) —
) —
)

Hence,
IEsf11? +Re(Ege f, f) = |Ese fII* + Re(Esf, f).
By (15), we have

| Z\)iwinviS_lnm.sz +Re Z Viw; <S_17TW,-f7 775V,-f>

iel icJe
= | Y viwiy, S~ f1I* +Re Y viwi (v, S~ m £, f)
icl icJe

= ||Esf|I* +Re(Ese f,f) = | Ex fII* + Re (Esf, f)
= I Y, viwiry, S~ 7w, f1|* +Re Y, viw; (v, S~ 7w, £, f)

ieJe iceJ
= | Y viwimy, S mw, f11* + Re Y viw; (S 7w, f, 7, f)
ieJe iceJ

We now prove the inequality of (12). By Lemma 2, we have

(EJE1f, )+ AEscfo ) + AEscfof) = QA=A L . f) .

Taking real part of (16), we obtain

IEsf|> 4+ 2ARe (Eye f, f) = (22 — A*)Re (L f, f)

ELf.f) — 20Re (Ex f.f) + (24— )Re
2ARe{((E;+Eje)f,f)+ (24 —1)Re

(15)
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then
IEs 1P = (24 = A*)Re (L f, f) — 2ARe (Ese f, f)
= (24 —A?)Re ((E;+Eye)f.f) — 2ARe (Eje f. f)
= (24— APRe(E;f,f) — A*Re (Eje f, f)
= (24 = A*)Re(E;f,f) + (1= A*)Re(Eyc f, f) = Re(Eye f, f) -
Hence

IELfI? + (Esef.f) > (24 = A*)Re (s f . f) + (1 = A)Re (Eyef. f).
The proof is completed. [

In the situation of Parseval fusion frames the inequality is of special form.

COROLLARY 2. Let {(Wi,w;)}icr be a Parseval fusion frame for 7 and let
{(Vi,vi)}ie1 be the alternate dual fusion frame of {(W;,wi)}ici. Then, for any A €
[0,1], forall J C I and any f € S, we have

ReZviwi <7L'Wif, v )+l Z ViWinV,-ﬂW,-sz

ieJ ieJe
=Re Y viw; (w, f, v, f) + || Eviwin‘/,-WWifH2
ieJe =
= (21 — Az)ReE\iiwi <717Wif, anf> + (1 _ 12)Re 2 Viws <7TW,~f, 7TV,f> .
icJ icJe

REMARK 2. If we take A = % in Theorem 4, we can obtain the inequality in
Theorem 2 of [19].

In [18] the author presented some inequalities for g-frame in C*-modules. Next,
we will generalize the version of fusion frame for Theorem 2.4 in [18].

Now, we consider scalar A € [1,2] and give some exciting inequalities for fusion
frames in Hilbert spaces. We first give a simple lemma.

LEMMA 3. Let P, Q be two self-adjoint, positive and bounded linear operators
in A and P+ Q = Ly, then for any A € [1,2] and all f € 7 we have

IPFI> <AL f), IOFI* < A(QF.f).

Proof. Since P and Q are positive operators, we have
0<PQ=P(ly—Q)=P—P.
Then, for any A € [1,2] and any f € J# we obtain
IPAI?+2(QF .f) = (P2f.) + A (Qf. 1)
S(PFL)+A (L —P)f.f)
= (L=2)(Pf.f) +AIIfI < AIIFI%,
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it follows that
IPFIP < AIFIP = 2(Qf f) = A (Pf.f).
Similarly, we can obtain ||Qf|> <A (Qf,f). O
THEOREM 5. Let {(W;,wi) }ier be a fusion frame for S with the fusion frame

operator S, {(S™'Wi,w;)}Yies is the dual fusion frame of {(W;,w;)}ic;. Then for any
A €[1,2], forall J C I and any f € F , we have

0 < X willmw f1? =X willmws~ 81>

iceJ icl

A2
<=1 T whlmw 2+ (1= 5 ) S lmw ] (7)

ieJe icl

Proof. As mentioned in the proof of Theorem 3, we have S; — S 1S~1S; >0, thus,
forall f € 5 we have

S willmw f1? = Y willaw S S f |12 = (Saf. f) — (ST'Ssf.S1f) > 0. (18)

iel icl
On the other hand, by (11) we have
owilmw 1P = X wi l|ww,S 'S 117
icJ icl

= (S1f ) = (S7'Ssf,81f)
7L2
SASF ) = A (Saf )+ 7 (SF.1)

2,2
= (A S )+ o 51 p)
2
= (=)= S+ (81.1)

A2
= (=D (Sef )+ (1-5) (1.5
= =) S Rl (1= 2) S (19)
ieJe icl

From (18) and (19), the conclusion is holds. [

THEOREM 6. Let {(W;,w;)}ier be a fusion frame for S with the fusion frame
operator S, {(S™'Wi,w;)}Yies is the dual fusion frame of {(W;,w;)}ic;. Then for any
A €[1,2], forall J C I and any f € F , we have

A 2 2 A’ 2 2

(A =5 —1) wdlmns 1P+ (1=5) 3 whlmw s

icl icJe

< X willmwSTISs AP + Y wi lmw S~ Sse fIP < A X wilmw fI2. - (20)

icl icl iel
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Proof. As mentioned in the proof of Theorem 3, from (6) and (11), we have

(SIS L 50 0)+ 05 0) > (=LY sp) + (1= 20) 50 p).

and then

2 2

A
(57 f Sty = (A= T =) s+ (1-5 ) serh) @)
By using (11) and (21), we obtain

2w llmwS IS f 112 + X wt | mw S~ S 117
icl icl
= <S—1SJf,SJf>+< 1S f .S f)
A2 A2
a2 s (=) s+ (1-2) s
2

:(u—?— ) (S1f.f) + <I—A_><SJ‘ff>
(2= 1) Sl P+ (1-2) 3wl

ieJ icJe

Next, we prove the last inequality of (20). Since P=§~1/2§;571/2, 9 =§~1/2§,.51/2
are positive and self-adjoint operators, by Lemma 3, we have

S willmwS IS £I1P + Y wi | w, S Sye £

icl icl

= (ST'Suf, S )+ (ST Sue £, Sse f)

= (57128, .87V, ) 4+ (57280 £, 57 S e )

_ <S71/2S‘]S71/2S1/2f,871/2SJS71/2S1/2‘]C>
<S‘1/ZSJcS‘1/2S1/2f7S‘l/zSJcS_1/2S1/2f>

< 71/2SJS71/2S1/2f,S1/2f>+A«<S71/2SJCS71/2S1/2f,S1/2f>

S.lf7f> +A’ <SJ¢'f7f> = A’ <(SJ+SJ°)f7f>
Sf.fy = A2 wi llmwf.

icl

<A
Al
= (
The proof is completed. []

In case of Parseval fusion frames, we immediately get the following result.

COROLLARY 3. Let {(W;,w;)}icr be a Parseval fusion frame for 7 . Then for
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any A €[1,2], forall J C I and any f € 7, we have

0 < Y willmw AP = X willmwSsf>
iceJ icl

A

2

2
<= T wdlmuf |2+ (1-5) T wlm s,

ieJe icl
and

(-2 1) Sl P+ (1-20) 3wl

2 = icre
<YW Sof 1P + X willmw,Sse f112 < A Y wi[|mow, £

icl icl icl

REMARK 3. If we take A = 1 in Theorem 5 and Theorem 6, we can obtain the
the version of fusion frame for Theorem 2.4 in [18].
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