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Abstract. Recently fusion frame was considered as a generalization of frame in Hilbert spaces.
In this paper, we establish several new inequalities for fusion frames with a scalar in Hilbert
spaces. It is shown that the results we obtained can immediately lead to the existing correspond-
ing results when we choose suitable scalars.

1. Introduction

The concept of a frame in Hilbert spaces was first introduced by Duffin and Scha-
effer [10] in 1952 to study some problems in nonharmonic Fourier series. Frames were
reintroduced and developed in 1986 by Daubechies at al [9], and popularized from then
on. Nice properties of frames make them very useful in the characterization of function
spaces and other fields of applications such as signal processing [16], coding theory
[17], sampling theory [3] and more. We refer the reader to [8, 14] for an introduction
to the frame theory and its applications.

Later on, fusion frame, which we also call it a frame of subspaces, was first pro-
posed by Casazza and Kutyniok in [5] and reintroduced in [6]. Fusion frame is a natural
generalization of frame theory and related to the construction of global frames from lo-
cal frames in Hilbert spaces. Due to this characterization, fusion frames have been
applied for distributed processing [6], optimal transmission by packet encoding [2],
compressed sensing [4], filter bank [7], high energy physics [15], etc.

Balan et al. [1] found some Parseval equalities when they studied the optimal de-
composition of a Parseval frames in a Hilbert space. Then, Gǎvrute [11] developed
some identities and inequalities about discrete frames and the authors in [20] general-
ized these identities to alternate dual frames and got some general results.

These equalities and inequalities have been used for reconstructing signal without
information about the phase. However, a number of new applications have emerged
which cannot be modeled naturally by one single frame system. In order to reconstruct
signal without phase in a wireless sensor network, we need to study some equalities
and inequalities of fusion frames. Some authors have extended the equalities and in-
equalities for frames and dual frames in Hilbert spaces to fusion frames and dual fusion
frames, respectively (see [13, 19]).
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In this paper, we give some new inequalities for fusion frames with a scalar λ ∈
[0,2] . We show that inequalities and equalities of [13, 19] can be obtained for special
values of λ = 1 and λ = 1

2 , respectively. We use different techniques to prove our
results. Moreover, we also give some inequalities for fusion frames with λ ∈ [1,2] .

Throughout the paper, let H be a Hilbert spaces and let I be a countable index
set. IH denotes the identity operator on H . If W is a closed subspace of H , we
denote the orthogonal projection of H onto W by πW .

DEFINITION 1. Let {Wi}i∈I be a sequence of closed subspaces in H , {wi}i∈I

be a family of weights, i.e., wi > 0 for all i ∈ I . {(Wi,wi)}i∈I is called a fusion frame
for H , if there exist two positive constants A,B such that

A‖ f‖2 � ∑
i∈I

w2
i ‖πWi( f )‖2 � B‖ f‖2, ∀ f ∈ H .

The numbers A , B are called the fusion frame bounds. The family {(Wi,wi)}i∈I is
called an A-tight fusion frame if A = B , it is a Parseval fusion frame if A = B = 1, and
v-uniform if w = wi = wj for all i, j ∈ I . If {(Wi,wi)}i∈I possesses an upper fusion
frame bound, but not necessarily a lower bound, we call it a Bessel fusion sequence
with Bessel fusion bound B . Moreover we say that {Wi}i∈I is an orthonormal fusion
basis for H if H = ⊕i∈IWi .

For each Bessel fusion sequence {(Wi,wi)}i∈I of H , we define the representation
space associated with {Wi}i∈I by

�2(H , I) =

{
{ fi}i∈I| fi ∈Wi and ∑

i∈I

‖ fi‖2 < ∞

}

with inner product given by

〈{ fi}i∈I ,{gi}i∈I〉 = ∑
i∈I

〈 fi,gi〉 .

The frame operator S for {(Wi,wi)}i∈I is defined by

S : H −→ H , S( f ) = ∑
i∈I

v2
i πWi( f ), ∀ f ∈ H .

Casazza and Kutyniok in [5] proved that S is positive, self-adjoint, invertible operator
on H and the following reconstruction formula holds for all f ∈ H :

f = S−1S f = ∑
i∈I

w2
i S

−1πWi f = SS−1 f = ∑
i∈I

w2
i πWi(S

−1 f ).

In [12] the author gave a more general alternate dual reconstruction formula, that
is, given a fusion frame {(Wi,wi)}i∈I with frame operator S and a Bessel sequence
{(Vi,vi)}i∈I , there is

f = ∑
i∈I

viwiπViS
−1πWi f , ∀ f ∈ H .
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In this case we also call {(Vi,vi)}i∈I an alternate dual of {(Wi,wi)}i∈I .
Let {(Wi,wi)}i∈I be a fusion frame, then for any J ⊂ I , we define a bounded linear

operator SJ : H −→ H by
SJ f = ∑

i∈J

w2
i πWi f ,

and denote Jc = I \ J .
The following equalities for a fusion frame in a Hilbert space were given in [13,

19].

THEOREM 1. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S , {(S−1Wi,wi)}i∈I is the dual fusion frame of {(Wi,wi)}i∈I . Then for any
J ⊂ I and any f ∈ H , we have

∑
i∈J

w2
i ‖πWi f‖2 +∑

i∈I
‖πWiS

−1SJc f‖2

= ∑
i∈Jc

w2
i ‖πWi f‖2 +∑

i∈I
‖πWiS

−1SJ f‖2 � 3
4 ∑

i∈I
w2

i ‖πWi f‖2. (1)

THEOREM 2. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S and let {(Vi,vi)}i∈I be the alternate dual fusion frame of {(Wi,wi)}i∈I .
Then, for any J ⊂ I and any f ∈ H , we have

∑
i∈J

viwi
〈
S−1πWi f ,πVi f

〉
+‖ ∑

i∈Jc
viwiπViS

−1πWi f‖2

= ∑
i∈Jc

viwi
〈
S−1πWi f ,πVi f

〉
+‖∑

i∈J
viwiπViS

−1πWi f‖2 � 3
4
‖ f‖2. (2)

2. The main results and their proofs

To derive our main results, we need the following lemma.

LEMMA 1. Let P, Q be two self-adjoint bounded linear operators in H and
P+Q = IH , then for any λ ∈ [0,2] and all f ∈ H we have

‖P f‖2 + λ 〈Qf , f 〉 = ‖Qf‖2 +(2−λ )〈P f , f 〉+(λ −1)‖ f‖2 �
(

λ − λ 2

4

)
‖ f‖2.

Proof. Since P+Q = IH , we have

‖P f‖2 + λ 〈Qf , f 〉 =
〈
P2 f , f

〉
+ λ 〈(IH −P) f , f 〉 =

〈
(P2−λP+ λ IH ) f , f

〉
,

and

‖Qf‖2 +(2−λ )〈P f , f 〉+(λ −1)‖ f‖2

=
〈
(IH −P)2 f , f

〉
+(2−λ )〈P f , f 〉+(λ −1)‖ f‖2

=
〈
(P2−λP+ λ IH ) f , f

〉
.
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We also have〈
(P2−λP+ λ IH ) f , f

〉
=

〈(
P2−λP+

λ 2

4
+ λ IH − λ 2

4
IH

)
f , f

〉

=
〈((

P− λ
2

IH
)2

+ λ IH − λ 2

4

)
f , f

〉

=
∥∥∥(

P− λ
2

IH
)

f
∥∥∥2

+
(

λ − λ 2

4

)
‖ f‖2

�
(

λ − λ 2

4

)
‖ f‖2. �

THEOREM 3. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S , {(S−1Wi,wi)}i∈I is the dual fusion frame of {(Wi,wi)}i∈I . Then for any
λ ∈ [0,2] , for all J ⊂ I and any f ∈ H , we have

∑
i∈I

w2
i ‖πWi f‖2 � ∑

i∈Jc
w2

i ‖πWi f‖2 +∑
i∈I

w2
i ‖πWiS

−1SJ f‖2

= ∑
i∈J

w2
i ‖πWi f‖2 +∑

i∈I
w2

i ‖πWiS
−1SJc f‖2

�
(

λ − λ 2

4

)
∑
i∈J

w2
i ‖πWi f‖2 +

(
1− λ 2

4

)
∑
i∈Jc

w2
i ‖πWi f‖2. (3)

Proof. Since S = SJ +SJc , it follows that

IH = S−1/2SJS
−1/2 +S−1/2SJcS−1/2.

Let P = S−1/2SJS−1/2 , Q = S−1/2SJcS−1/2 and let S1/2 f instead of f ∈H in Lemma
1, we have

‖PS1/2 f‖2 + λ
〈
QS1/2 f ,S1/2 f

〉
=

〈
S−1SJ f ,SJ f

〉
+ λ 〈SJc f , f 〉 . (4)

And

‖QS1/2 f‖2 +(2−λ )
〈
PS1/2 f ,S1/2 f

〉
+(λ −1)‖S1/2 f‖2

=
〈
S−1SJc f ,SJc f

〉
+(2−λ )〈SJ f , f 〉+(λ −1)〈S f , f 〉 . (5)

By (4) and (5), we have〈
S−1SJ f ,SJ f

〉
+ λ 〈SJc f , f 〉 =

〈
S−1SJc f ,SJc f

〉
+(2−λ )〈SJ f , f 〉+(λ −1)〈S f , f 〉 .

After subtracting both sides by λ 〈SJc f , f 〉 , we obtain〈
S−1SJ f ,SJ f

〉
=

〈
S−1SJc f ,SJc f

〉
+(2−λ )〈SJ f , f 〉+(λ −1)〈S f , f 〉−λ 〈SJc f , f 〉

=
〈
S−1SJc f ,SJc f

〉
+2〈SJ f , f 〉−λ 〈(SJc +SJ) f , f 〉+(λ −1)〈S f , f 〉

=
〈
S−1SJc f ,SJc f

〉
+2〈SJ f , f 〉− 〈S f , f 〉

=
〈
S−1SJc f ,SJc f

〉
+2〈SJ f , f 〉− 〈(SJ +SJc) f , f 〉

=
〈
S−1SJc f ,SJc f

〉
+ 〈SJ f , f 〉− 〈SJc f , f 〉 .
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Thus, 〈
S−1SJ f ,SJ f

〉
+ 〈SJc f , f 〉 =

〈
S−1SJc f ,SJc f

〉
+ 〈SJ f , f 〉 . (6)

On the other hand, we have〈
S−1SJ f ,SJ f

〉
=

〈
SS−1SJ f ,S−1SJ f

〉
= ∑

i∈I
w2

i ‖πWiS
−1SJ f‖2. (7)

Similarly, we obtain
〈SJc f , f 〉 = ∑

i∈Jc
w2

i ‖πWi f‖2. (8)

〈SJ f , f 〉 = ∑
i∈J

w2
i ‖πWi f‖2. (9)

〈
S−1SJc f ,SJc f

〉
= ∑

i∈I
w2

i ‖πWiS
−1SJc f‖2. (10)

Using (6)–(10), we prove the equality of (3). Next, we prove the first inequality of (3).
Since P = S−1/2SJS−1/2 , Q = S−1/2SJcS−1/2 are positive operators, then

0 � PQ = P(IH −P) = P−P2 = S−1/2(SJ −SJS
−1SJ)S−1/2,

from which we conclude that SJ −SJS−1SJ � 0. Therefore, By (7) and (8), we have

∑
i∈I

w2
i ‖πWiS

−1SJ f‖2 + ∑
i∈Jc

w2
i ‖πWi f‖2 =

〈
S−1SJ f ,SJ f

〉
+ 〈SJc f , f 〉

=
〈
SJS

−1SJ f , f
〉
+ 〈SJc f , f 〉

� 〈SJ f , f 〉+ 〈SJc f , f 〉
= 〈S f , f 〉 = ∑

i∈I
w2

i ‖πWi f‖2.

We now prove the last inequality. By Lemma 1 and (4), we have〈
S−1SJ f ,SJ f

〉
+ λ 〈SJc f , f 〉 � (λ −λ 2/4)〈S f , f 〉 .

And then,〈
S−1SJ f ,SJ f

〉
� (λ −λ 2/4)〈S f , f 〉−λ 〈SJc f , f 〉

= λ 〈S f , f 〉−λ 〈SJc f , f 〉− λ 2

4
〈S f , f 〉

= λ 〈SJ f , f 〉− λ 2

4
〈SJ f , f 〉− λ 2

4
〈SJc f , f 〉 (11)

=
(

λ − λ 2

4

)
〈SJ f , f 〉+

(
1− λ 2

4

)
〈SJc f , f 〉− 〈SJc f , f 〉 .

Hence,

〈
S−1SJ f ,SJ f

〉
+ 〈SJc f , f 〉 �

(
λ − λ 2

4

)
〈SJ f , f 〉+

(
1− λ 2

4

)
〈SJc f , f 〉 .

Therefore the proof is completed. �
Theorem 3 leads to a direct consequence as follow.
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COROLLARY 1. Let {(Wi,wi)}i∈I be a Parseval fusion frame for H . Then for
any λ ∈ [0,2] , for all J ⊂ I and any f ∈ H , we have

∑
i∈I

w2
i ‖πWi f‖2 � ∑

i∈Jc
w2

i ‖πWi f‖2 +∑
i∈I

w2
i ‖πWiSJ f‖2

= ∑
i∈J

w2
i ‖πWi f‖2 +∑

i∈I
w2

i ‖πWiSJc f‖2

�
(

λ − λ 2

4

)
∑
i∈J

w2
i ‖πWi f‖2 +

(
1− λ 2

4

)
∑
i∈Jc

w2
i ‖πWi f‖2.

REMARK 1. If we take λ = 1 in Theorem 3, then we obtain the previous inequal-
ity in Theorem 1 and Theorem 8 of [13].

Next, We consider scalar λ ∈ [0,1] and give a generalization of the Theorem 2.
We need the following result.

LEMMA 2. Let P, Q be two self-adjoint bounded linear operators in H and
P+Q = IH , then for any λ ∈ [0,1] and all f ∈ H we have

P∗P+ λ (Q∗+Q) = Q∗Q+(1−λ )(P∗+P)+ (2λ −1)IH � λ (2−λ )IH .

Proof. Since P+Q = IH , we have

P∗P+ λ (Q∗ +Q) = P∗P+ λ (IH −P∗+ IH −P) = P∗P−λ (P∗+P)+2λ IH ,

and

Q∗Q+(1−λ )(P∗+P)+ (2λ −1)IH
= (IH −P∗)(IH −P)+ (1−λ )(P∗+P)+ (2λ −1)IH
= P∗P−λ (P∗+P)+2λ IH .

We also have

P∗P−λ (P∗ +P)+2λ IH = P∗P−λ (P∗+P)+2λ IH + λ 2IH −λ 2IH
= (P−λ IH )∗(P−λ IH )+ λ (2−λ )IH
� λ (2−λ )IH . �

THEOREM 4. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S and let {(Vi,vi)}i∈I be the alternate dual fusion frame of {(Wi,wi)}i∈I .
Then for any λ ∈ [0,1] , for all J ⊂ I and x ∈ H , we have

Re∑
i∈J

viwi
〈
S−1πWi f ,πVi f

〉
+‖ ∑

i∈Jc
viwiπViS

−1πWi f‖2

= Re ∑
i∈Jc

viwi
〈
S−1πWi f ,πVi f

〉
+‖∑

i∈J
viwiπViS

−1πWi f‖2

� (2λ −λ 2)Re∑
i∈J

viwi
〈
S−1πWi f ,πVi f

〉
+(1−λ 2)Re ∑

i∈Jc
viwi

〈
S−1πWi f ,πVi f

〉
. (12)
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Proof. For any J ⊂ I , we define a bounded linear operator EJ as

EJ f = ∑
i∈J

viwiπViS
−1πWi f , ∀ f ∈ H .

Clearly, EJ +EJc = IH . By Lemma 2, we have

〈E∗
J EJ f , f 〉+ λ 〈(E∗

Jc +EJc) f , f 〉
= 〈E∗

J EJ f , f 〉+ λ 〈EJc f , f 〉+ λ 〈EJc f , f 〉 (13)

= 〈E∗
JcEJc f , f 〉+(1−λ )〈(E∗

J +EJ) f , f 〉+(2λ −1)‖ f‖2

= 〈E∗
JcEJc f , f 〉+(1−λ )(〈EJ f , f 〉+ 〈EJ f , f 〉)+ (2λ −1)〈IH f , f 〉 . (14)

Taking real part of (13) and (14), we have

‖EJ f‖2 +2λRe〈EJc f , f 〉 = ‖EJc f‖2 +2(1−λ )Re〈EJ f , f 〉+(2λ −1)Re〈IH f , f 〉 .
Thus,

‖EJ f‖2 = ‖EJc f‖2 +2(1−λ )Re〈EJ f , f 〉−2λRe〈EJc f , f 〉+(2λ −1)Re〈IH f , f 〉
= ‖EJc f‖2 +2Re〈EJ f , f 〉−2λRe〈(EJ +EJc) f , f 〉+(2λ −1)Re〈IH f , f 〉
= ‖EJc f‖2 +2Re〈EJ f , f 〉−Re〈IH f , f 〉
= ‖EJc f‖2 +2Re〈EJ f , f 〉−Re〈(EJ +EJc) f , f 〉
= ‖EJc f‖2 +Re〈EJ f , f 〉−Re〈EJc f , f 〉 .

Hence,
‖EJ f‖2 +Re〈EJc f , f 〉 = ‖EJc f‖2 +Re〈EJ f , f 〉 . (15)

By (15), we have

‖∑
i∈J

viwiπViS
−1πWi f‖2 +Re ∑

i∈Jc
viwi

〈
S−1πWi f ,πVi f

〉
= ‖∑

i∈J
viwiπViS

−1πWi f‖2 +Re ∑
i∈Jc

viwi
〈
πViS

−1πWi f , f
〉

= ‖EJ f‖2 +Re〈EJc f , f 〉 = ‖EJc f‖2 +Re〈EJ f , f 〉
= ‖ ∑

i∈Jc
viwiπViS

−1πWi f‖2 +Re∑
i∈J

viwi
〈
πViS

−1πWi f , f
〉

= ‖ ∑
i∈Jc

viwiπViS
−1πWi f‖2 +Re∑

i∈J
viwi

〈
S−1πWi f ,πVi f

〉
We now prove the inequality of (12). By Lemma 2, we have

〈E∗
J EJ f , f 〉+ λ 〈EJc f , f 〉+ λ 〈EJc f , f 〉 � (2λ −λ 2)〈IH f , f 〉 . (16)

Taking real part of (16), we obtain

‖EJ f‖2 +2λRe〈EJc f , f 〉 � (2λ −λ 2)Re〈IH f , f 〉 ,
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then

‖EJ f‖2 � (2λ −λ 2)Re 〈IH f , f 〉−2λRe〈EJc f , f 〉
= (2λ −λ 2)Re 〈(EJ +EJc) f , f 〉−2λRe〈EJc f , f 〉
= (2λ −λ 2)Re 〈EJ f , f 〉−λ 2Re 〈EJc f , f 〉
= (2λ −λ 2)Re 〈EJ f , f 〉+(1−λ 2)Re〈EJc f , f 〉−Re〈EJc f , f 〉 .

Hence

‖EJ f‖2 + 〈EJc f , f 〉 � (2λ −λ 2)Re 〈EJ f , f 〉+(1−λ 2)Re 〈EJc f , f 〉 .
The proof is completed. �

In the situation of Parseval fusion frames the inequality is of special form.

COROLLARY 2. Let {(Wi,wi)}i∈I be a Parseval fusion frame for H and let
{(Vi,vi)}i∈I be the alternate dual fusion frame of {(Wi,wi)}i∈I . Then, for any λ ∈
[0,1] , for all J ⊂ I and any f ∈ H , we have

Re∑
i∈J

viwi 〈πWi f ,πVi f 〉+‖ ∑
i∈Jc

viwiπViπWi f‖2

= Re ∑
i∈Jc

viwi 〈πWi f ,πVi f 〉+‖∑
i∈J

viwiπViπWi f‖2

� (2λ −λ 2)Re∑
i∈J

viwi 〈πWi f ,πVi f 〉+(1−λ 2)Re ∑
i∈Jc

viwi 〈πWi f ,πVi f 〉 .

REMARK 2. If we take λ = 1
2 in Theorem 4, we can obtain the inequality in

Theorem 2 of [19].

In [18] the author presented some inequalities for g-frame in C∗ -modules. Next,
we will generalize the version of fusion frame for Theorem 2.4 in [18].

Now, we consider scalar λ ∈ [1,2] and give some exciting inequalities for fusion
frames in Hilbert spaces. We first give a simple lemma.

LEMMA 3. Let P, Q be two self-adjoint, positive and bounded linear operators
in H and P+Q = IH , then for any λ ∈ [1,2] and all f ∈ H we have

‖P f‖2 � λ 〈P f , f 〉 , ‖Qf‖2 � λ 〈Qf , f 〉 .

Proof. Since P and Q are positive operators, we have

0 � PQ = P(IH −Q) = P−P2.

Then, for any λ ∈ [1,2] and any f ∈ H we obtain

‖P f‖2 + λ 〈Qf , f 〉 =
〈
P2 f , f

〉
+ λ 〈Qf , f 〉

� 〈P f , f 〉+ λ 〈(IH −P) f , f 〉
= (1−λ )〈P f , f 〉+ λ‖ f‖2 � λ‖ f‖2,
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it follows that
‖P f‖2 � λ‖ f‖2−λ 〈Qf , f 〉 = λ 〈P f , f 〉 .

Similarly, we can obtain ‖Qf‖2 � λ 〈Qf , f 〉 . �

THEOREM 5. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S , {(S−1Wi,wi)}i∈I is the dual fusion frame of {(Wi,wi)}i∈I . Then for any
λ ∈ [1,2] , for all J ⊂ I and any f ∈ H , we have

0 � ∑
i∈J

w2
i ‖πWi f‖2 −∑

i∈I

w2
i ‖πWiS

−1SJ f‖2

� (λ −1) ∑
i∈Jc

w2
i ‖πWi f‖2 +

(
1− λ

2

)2

∑
i∈I

w2
i ‖πWi f‖2. (17)

Proof. As mentioned in the proof of Theorem 3, we have SJ −SJS−1SJ � 0, thus,
for all f ∈ H we have

∑
i∈J

w2
i ‖πWi f‖2−∑

i∈I
w2

i ‖πWiS
−1SJ f‖2 = 〈SJ f , f 〉− 〈

S−1SJ f ,SJ f
〉

> 0. (18)

On the other hand, by (11) we have

∑
i∈J

w2
i ‖πWi f‖2 −∑

i∈I
w2

i ‖πWiS
−1SJ f‖2

= 〈SJ f , f 〉− 〈
S−1SJ f ,SJ f

〉
� 〈SJ f , f 〉−λ 〈SJ f , f 〉+

λ 2

4
〈S f , f 〉

= (1−λ )〈SJ f , f 〉+
λ 2

4
〈S f , f 〉

= (1−λ )〈(S−SJc) f , f 〉+
λ 2

4
〈S f , f 〉

= (λ −1)〈SJc f , f 〉+
(
1− λ

2

)2 〈S f , f 〉

= (λ −1) ∑
i∈Jc

w2
i ‖πWi f‖2 +

(
1− λ

2

)2

∑
i∈I

w2
i ‖πWi f‖2. (19)

From (18) and (19), the conclusion is holds. �

THEOREM 6. Let {(Wi,wi)}i∈I be a fusion frame for H with the fusion frame
operator S , {(S−1Wi,wi)}i∈I is the dual fusion frame of {(Wi,wi)}i∈I . Then for any
λ ∈ [1,2] , for all J ⊂ I and any f ∈ H , we have

(
2λ − λ 2

2
−1

)
∑
i∈J

w2
i ‖πWi f‖2 +

(
1− λ 2

2

)
∑
i∈Jc

w2
i ‖πWi f‖2

� ∑
i∈I

w2
i ‖πWiS

−1SJ f‖2 +∑
i∈I

w2
i ‖πWiS

−1SJc f‖2 � λ ∑
i∈I

w2
i ‖πWi f‖2. (20)
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Proof. As mentioned in the proof of Theorem 3, from (6) and (11), we have

〈
S−1SJc f ,SJc f

〉
+ 〈SJ f , f 〉 �

(
λ − λ 2

4

)
〈SJ f , f 〉+

(
1− λ 2

4

)
〈SJc f , f 〉 ,

and then

〈
S−1SJc f ,SJc f

〉
�

(
λ − λ 2

4
−1

)
〈SJ f , f 〉+

(
1− λ 2

4

)
〈SJc f , f 〉 . (21)

By using (11) and (21), we obtain

∑
i∈I

w2
i ‖πWiS

−1SJ f‖2 +∑
i∈I

w2
i ‖πWiS

−1SJc f‖2

=
〈
S−1SJ f ,SJ f

〉
+

〈
S−1SJc f ,SJc f

〉
� λ 〈SJ f , f 〉− λ 2

4
〈S f , f 〉+

(
λ − λ 2

4
−1

)
〈SJ f , f 〉+

(
1− λ 2

4

)
〈SJc f , f 〉

=
(
2λ − λ 2

2
−1

)
〈SJ f , f 〉+

(
1− λ 2

2

)
〈SJc f , f 〉

=
(
2λ − λ 2

2
−1

)
∑
i∈J

w2
i ‖πWi f‖2 +

(
1− λ 2

2

)
∑
i∈Jc

w2
i ‖πWi f‖2.

Next, we prove the last inequality of (20). Since P = S−1/2SJS−1/2 , Q = S−1/2SJcS−1/2

are positive and self-adjoint operators, by Lemma 3, we have

∑
i∈I

w2
i ‖πWiS

−1SJ f‖2 +∑
i∈I

w2
i ‖πWiS

−1SJc f‖2

=
〈
S−1SJ f ,SJ f

〉
+

〈
S−1SJc f ,SJc f

〉
=

〈
S−1/2SJ f ,S−1/2SJ f

〉
+

〈
S−1/2SJc f ,S−1/2SJc f

〉
=

〈
S−1/2SJS

−1/2S1/2 f ,S−1/2SJS
−1/2S1/2 f

〉
+

〈
S−1/2SJcS−1/2S1/2 f ,S−1/2SJcS−1/2S1/2 f

〉
� λ

〈
S−1/2SJS

−1/2S1/2 f ,S1/2 f
〉

+ λ
〈
S−1/2SJcS−1/2S1/2 f ,S1/2 f

〉
= λ 〈SJ f , f 〉+ λ 〈SJc f , f 〉 = λ 〈(SJ +SJc) f , f 〉
= λ 〈S f , f 〉 = λ ∑

i∈I
w2

i ‖πWi f‖2.

The proof is completed. �

In case of Parseval fusion frames, we immediately get the following result.

COROLLARY 3. Let {(Wi,wi)}i∈I be a Parseval fusion frame for H . Then for
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any λ ∈ [1,2] , for all J ⊂ I and any f ∈ H , we have

0 � ∑
i∈J

w2
i ‖πWi f‖2 −∑

i∈I

w2
i ‖πWiSJ f‖2

� (λ −1) ∑
i∈Jc

w2
i ‖πWi f‖2 +

(
1− λ

2

)2

∑
i∈I

w2
i ‖πWi f‖2,

and

(
2λ − λ 2

2
−1

)
∑
i∈J

w2
i ‖πWi f‖2 +

(
1− λ 2

2

)
∑
i∈Jc

w2
i ‖πWi f‖2

� ∑
i∈I

w2
i ‖πWiSJ f‖2 +∑

i∈I

w2
i ‖πWiSJc f‖2 � λ ∑

i∈I

w2
i ‖πWi f‖2.

REMARK 3. If we take λ = 1 in Theorem 5 and Theorem 6, we can obtain the
the version of fusion frame for Theorem 2.4 in [18].
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