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Abstract. In this paper, the boundedness of the composition of the supremal operators defined,
for a non-negative measurable functions f on (0,∞) , by

Sug(t) := esssup
0<τ�t

u(τ)g(τ), t ∈ (0,∞),

and
S∗ug(t) := esssup

t�τ<∞
u(τ)g(τ), t ∈ (0,∞),

where u is a fixed continous weight on (0,∞) , with the Hardy and Copson operators between
weighted Lebesgue spaces Lp(v) and Lq(w) are characterized.

The complete solution of the restricted inequalities, that is, inequalities

‖Su( f )‖q,w,(0,∞) � c‖ f‖p,v,(0,∞),

and
‖Su( f )‖q,w,(0,∞) � c‖ f‖p,v,(0.∞),

being satisfied on the cones of monotone functions f on (0,∞) , are given.
Moreover, the complete characterization of the inequality

‖Tu,b f‖q,w,(0,∞) � c‖ f‖p,v,(0,∞),

being satisfied for every non-negative and non-increasing functions f on (0,∞) , is given for
0 < p, q < ∞ , as well. Here the operator Tu,b is defined for a measurable non-negative function
f on (0,∞) by

(Tu,bg)(t) := sup
t�τ<∞

u(τ)
B(τ)

∫ τ

0
g(s)b(s)ds, t ∈ (0,∞),

where u, b are two weight functions on (0,∞) such that u is continuous on (0,∞) and the
function B(t) :=

∫ t
0 b(s)ds satisfies 0 < B(t) < ∞ for every t ∈ (0,∞) .

1. Introduction

Throughout the paper we assume that I := (a,b) ⊆ (0,∞) . By M(I) we denote
the set of all measurable functions on I . The symbol M+(I) stands for the collection
of all f ∈ M(I) which are non-negative on I , while M+(I;↓) and M+(I;↑) are used
to denote the subset of those functions which are non-increasing and non-decreasing on
I , respectively. The family of all weight functions (also called just weights) on I , that
is, locally integrable non-negative functions on (0,∞) , is given by W (I) .
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For p ∈ (0,∞] and w ∈ M+(I) , we define the functional ‖ · ‖p,w,I on M(I) by

‖ f‖p,w,I :=
{

(
∫
I | f (x)|pw(x)dx)1/p if p < ∞
esssupI | f (x)|w(x) if p = ∞.

If, in addition, w ∈ W (I) , then the weighted Lebesgue space Lp(w, I) is given by

Lp(w, I) = { f ∈ M(I) : ‖ f‖p,w,I < ∞}
and it is equipped with the quasi-norm ‖ · ‖p,w,I .

When w ≡ 1 on I , we write simply Lp(I) and ‖ · ‖p,I instead of Lp(w, I) and
‖ · ‖p,w,I , respectively.

Given an operator T : M+(0,∞)→M+(0,∞) , for 0 < p < ∞ and u∈ M+(0,∞) ,
denote by

Tu(g) := T (gu), g ∈ M+(0,∞).

Suppose that f is a measurable a.e. finite function on R
n . Then its non-increasing

rearrangement f ∗ is given by

f ∗(t) = inf{λ > 0 : |{x ∈ R
n : | f (x)| > λ}|� t}, t ∈ (0,∞),

and let f ∗∗ denotes the Hardy-Littlewood maximal function of f ∗ , i.e.

f ∗∗(t) :=
1
t

∫ t

0
f ∗(τ)dτ, t > 0.

Quite many familiar function spaces can be defined by using the non-increasing re-
arrangement of a function. One of the most important classes of such spaces are the
so-called classical Lorentz spaces.

Let p ∈ (0,∞) and w ∈ W (0,∞) . The classical Lorentz spaces Λp(w) and Γp(w)
consist of all measurable functions f on R

n for which ‖ f‖Λp(w) := ‖ f ∗‖p,w,(0,∞) <
∞ and ‖ f‖Γp(w) := ‖ f ∗∗‖p,w,(0,∞) < ∞ , respectively. For more information about the
Lorentz Λ and Γ spaces see e.g. [4] and the references therein.

The Hardy and Copson operators are defined by

Hg(t) :=
∫ t

0
g(s)ds, g ∈ M+(0,∞),

and
H∗g(t) :=

∫ ∞

t
g(s)ds, g ∈ M+(0,∞),

respectively. The operators H and H∗ play a prominent role in Real and Harmonic
Analysis. There are other operators that are also of interest. For example, certain
specific problems such as the description of the behaviour of the fractional maximal
operator on classical Lorentz spaces [6] or the optimal pairing problem for Sobolev
embeddings [18] or various questions arising in the interpolation theory can be handled
in an elegant way with the help of the supremal operators

Sg(t) := esssup
0<τ�t

g(τ), g ∈ M+(0,∞),
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and
S∗g(t) := esssup

t�τ<∞
g(τ), g ∈ M+(0,∞).

In this paper, we give the complete characterization of restricted inequalities

‖Su( f )‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↓), (1.1)

‖Su( f )‖q,w,(0,∞) � c‖ f‖p,v,(0.∞), f ∈ M+((0,∞);↑), (1.2)

and
‖S∗u( f )‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↑), (1.3)

‖S∗u( f )‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↓). (1.4)

Note that inequality (1.1) was characterized in [15]. It should be mentioned here that it
was done under some additional condition on weight function u , when q < p (cf. [15,
Theorem 3.4]).

In this paper, in particular, we give criteria for the validity of the iterated Hardy-
type inequalities involving suprema

∥∥∥∥Su

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,v,(0,∞), h ∈ M+(0,∞), (1.5)

and ∥∥∥∥Su

(∫ ∞

x
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,v,(0,∞), h ∈ M+(0,∞), (1.6)

where 0 < q < ∞ , 1 � p < ∞ , u , w and v are weight functions on (0,∞) .
It is worth to mention that the characterizations of the ”dual” inequalities

∥∥∥∥S∗u

(∫ ∞

x
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,v,(0,∞), h ∈ M+(0,∞), (1.7)

and ∥∥∥∥S∗u

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,v,(0,∞), h ∈ M+(0,∞), (1.8)

can be easily obtained from the solutions of inequalities (1.5) - (1.6), respectively, by
change of variables. Note that inequality (1.8) has been characterized in [15] in the case
0 < q < ∞ , 1 � p < ∞ .

We pronounce that the characterizations of inequalities (1.5) - (1.8) are important
because many inequalities for classical operators can be reduced to them (for illustra-
tions of this important fact, see, for instance, [13]). These inequalities play an important
role in the theory of Morrey spaces and other topics (see [1, 2] and [3]).

Investigation of the weighted iterated Hardy-type inequalities started in [12] and
[13]. The papers [12] and [13] do not contain the case of supremal operators. In [23,
24, 25, 26] a unified method was created for all possible values of parameters, including
the supremal case. In particular, the inequalities (1.5) - (1.8) were characterized with
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arbitrary measurable weight u in integral forms in [23]. But these characterizations
involve auxiliary functions, which make conditions more complicated. It seems to us
that our approach is more natural, we are reducing the unknown problems (1.5) - (1.7)
to the known one (1.8) and it gives better conditions from a practical point of view.
Recently, another characterization of (1.7) was found in [19].

The fractional maximal operator, Mγ , γ ∈ (0,n) , is defined at f ∈ L1
loc(R

n) by

(Mγ f )(x) = sup
Q
x

|Q|γ/n−1
∫

Q
| f (y)|dy, x ∈ R

n,

where the supremum is extended over all cubes Q ⊂ R
n with sides parallel to the coor-

dinate axes. It was shown in [6, Theorem 1.1] that

(Mγ f )∗(t) � sup
t�τ<∞

τγ/n−1
∫ τ

0
f ∗(y)dy � (Mγ f̃ )∗(t), (1.9)

for every f ∈ L1
loc(R

n) and t ∈ (0,∞) , where f̃ (x) = f ∗(ωn|x|n) and ωn is the volume
of the unit ball in R

n . Thus, in order to characterize the boundedness of the fractional
maximal operator Mγ between classical Lorentz spaces Λp(v) and Λq(w) , it is neces-
sary and sufficient to characterize the validity of the weighted inequality

(∫ ∞

0

[
sup

t�τ<∞
τγ/n−1

∫ τ

0
ϕ(y)dy

]q

w(t)dt

)1/q

�
(∫ ∞

0
[ϕ(t)]pv(t)dt

)1/p

for all ϕ ∈M+((0,∞);↓) . This last estimate can be interpreted as a restricted weighted
inequality for the operator Tγ , defined by

(Tγg)(t) = sup
t�τ<∞

τγ/n−1
∫ τ

0
g(y)dy, g ∈ M+(0,∞), t ∈ (0,∞). (1.10)

Such a characterization was obtained in [6] for the particular case when 1 < p � q < ∞
and in [20, Theorem 2.10] for more general operators and for extended range of p and
q . Full proofs and some further extensions and applications can be found in [9, 10].

The operator Tγ is a typical example of what is called a Hardy-operator involving
suprema

(Tug)(t) := sup
t�s<∞

u(s)
s

∫ s

0
g(y)dy,

which combines both the operations (integration and taking the supremum).
In the above-mentioned applications, it is required to characterize a restricted

weighted inequality for Tu . This amounts to find a necessary and sufficient condition
on a triple of weights (u, v, w) such that the inequality

(∫ ∞

0

(
sup

t�s<∞
u(s) f ∗∗(s)

)q

w(t)dt

)1/q

�
(∫ ∞

0
f ∗(t)pv(t)dt

)1/p

(1.11)

holds. Particular examples of such inequalities were studied in [6] and, in a more
systematic way, in [15]. Inequality (1.11) was investigated in [16] in the case when
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0 < p � 1. The approach used in this paper was based on a new type reduction theorem
which showed connection between three types of restricted weighted inequalities.

Such operators have been recently encountered in various research projects. They
have been found indispensable in the search for optimal pairs of rearrangement-invariant
norms for which a Sobolev-type inequality holds (cf. [18]). They constitute a very use-
ful tool for characterization of the associate norm of an operator-induced norm, which
naturally appears as an optimal domain norm in a Sobolev embedding (cf. [21, 22]).
Supremum operators are also very useful in limiting interpolation theory as can be seen
from their appearance for example in [11, 8, 7, 27].

DEFINITION 1.1. Let u∈W (0,∞)∩C(0,∞) , b∈W (0,∞) and B(t) :=
∫ t
0 b(s)ds .

Assume that b is such that 0 < B(t) < ∞ for every t ∈ (0,∞) . The operator Tu,b is de-
fined at g ∈ M+(0,∞) by

(Tu,bg)(t) := sup
t�τ<∞

u(τ)
B(τ)

∫ τ

0
g(s)b(s)ds, t ∈ (0,∞).

The operator Tγ , defined in (1.10), is a particular example of operators Tu,b . These
operators are investigated in [15] and [16].

In this paper we give the complete characterization for the inequality

‖Tu,b f‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↓) (1.12)

for 0 < q < ∞ , 0 < p < ∞ (see Theorems 5.1 and 5.5).
Inequality (1.12) was characterized in [15, Theorem 3.5] under the additional con-

dition

sup
0<t<∞

u(t)
B(t)

∫ t

0

b(τ)
u(τ)

dτ < ∞.

Note that the case when 0 < p � 1 < q < ∞ was not considered in [15]. It is also worth
to mention that in the case when 1 < p < ∞ , 0 < q < p < ∞ , q = 1 [15, Theorem 3.5]
contains only discrete condition. In [16] the new reduction theorem was obtained when
0 < p � 1, and this technique allows to characterize inequality (1.12) when b ≡ 1, and
in the case when 0 < q < p � 1 this paper contains only discrete condition. Using the
results in [23, 24, 25, 26], another characterization of (1.12) was obtained in [30] and
[29]. In particular, (1.12) is precisely characterized in [29, Theorem 1 and Proposition
1], but this characterization involves auxiliary functions, which makes conditions more
complicated.

The paper is organized as follows. Section 2 contains some preliminaries along
with the standard ingredients used in the proofs. Full characterization of inequalities
(1.1) - (1.4) and (1.5) - (1.7) are given in Sections 3 and 4. Finally, the solutions of
inequality (1.12) are obtained in Section 5.

2. Notations and Preliminaries

Throughout the paper, we always denote by c or C a positive constant, which is
independent of main parameters but it may vary from line to line. However a constant
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with subscript such as c1 does not change in different occurrences. By a � b , (b � a )
we mean that a � λb , where λ > 0 depends on inessential parameters. If a � b and
b � a , we write a ≈ b and say that a and b are equivalent. We will denote by 1 the
function 1(x) = 1, x ∈ (0,∞) . Unless a special remark is made, the differential ele-
ment dx is omitted when the integrals under consideration are the Lebesgue integrals.
Everywhere in the paper, u , v and w are weights.

We need the following notations:

V (t) :=
∫ t
0 v, V∗(t) :=

∫ ∞
t v,

W (t) :=
∫ t
0 w, W∗(t) :=

∫ ∞
t w.

CONVENTION 2.1. We adopt the following conventions:

• Throughout the paper we put 0 ·∞ = 0, ∞/∞ = 0 and 0/0 = 0.

• If p ∈ [1,+∞] , we define p′ by 1/p+1/p′ = 1.

• If 0 < q < p < ∞ , we define r by 1/r = 1/q−1/p .

• If I = (a,b) ⊆ R and g is monotone function on I , then by g(a) and g(b) we
mean the limits limx→a+ g(x) and limx→b− g(x) , respectively.

In this paper we consider operators T : M+(0,∞) → M+(0,∞) satisfying the fol-
lowing conditions:

(i) T (λ f ) = λT f for all λ � 0 and f ∈ M+(0,∞) ;
(ii) T f (x) � cTg(x) for almost all x ∈ R+ if f (x) � g(x) for almost all x ∈ R+ ,

with constant c > 0 independent of f and g ;
(iii) T ( f +g) � c(T f +Tg) for all f , g ∈ M+(0,∞) , with a constant c > 0 inde-

pendent of f and g .
We recall some known results from [17]. Our formulations of the following theo-

rems, which are more convenient for our future applications, are not exactly the same
as in the mentioned paper. But by following the proofs of these theorems in [17], it is
not difficult to see that such formulations are also true.

THEOREM 2.2. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfies conditions (i) - (iii). Then the inequality

‖T f‖β ,w,(0,∞) � c‖ f‖s,v,(0,∞), f ∈ M+((0,∞);↓) (2.1)

holds iff both the inequality∥∥∥∥T

(∫ ∞

x
h

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,Vsv1−s,(0,∞), h ∈ M+(0,∞) (2.2)

and
‖T1‖β ,w,(0,∞) � c‖1‖s,v,(0,∞) (2.3)

hold.
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THEOREM 2.3. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfies conditions (i) - (iii). Then inequality (2.1) holds iff the inequality

∥∥∥∥T

(
1

V 2(x)

∫ x

0
hV

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,v1−s,(0,∞), h ∈ M+(0,∞) (2.4)

holds.

THEOREM 2.4. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfies conditions (i) - (iii). Then the inequality

‖T f‖β ,w,(0,∞) � c‖ f‖s,v,(0,∞), f ∈ M+((0,∞);↑) (2.5)

holds iff both the inequality
∥∥∥∥T

(∫ x

0
h

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,Vs∗v1−s,(0,∞), h ∈ M+(0,∞) (2.6)

and (2.3) hold.

THEOREM 2.5. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfies conditions (i) - (iii). Then inequality (2.5) holds iff the inequality

∥∥∥∥T

(
1

V 2∗ (x)

∫ ∞

x
hV∗

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,v1−s,(0,∞), h ∈ M+(0,∞) (2.7)

holds.

REMARK 2.6. If
∫ ∞
0 v = ∞ , then condition (2.3) automatically holds, and in this

case this condition disappears in the statements of Theorems 2.2 and 2.4.
Note that Theorems 2.2, 2.3, 2.4 and 2.5 were proved in [17] under weaker as-

sumption than (iii): T ( f +λ1) � c(T f +λT1) for all f ∈ M+(0,∞) and λ � 0, with
a constant c > 0 independent of f and λ .

Now we recall some reduction theorems for positive monotone operators [14].

THEOREM 2.7. [14, Theorem 3.1] Let 0 < q � ∞ , 1 < p < ∞ , and let T : M+(0,∞)
→ M+(0,∞) satisfies conditions (i) - (iii). Assume that u, w ∈ W (0,∞) and v ∈
W (0,∞) is such that

∫ x

0
v1−p′(t)dt < ∞ for all x > 0. (2.8)

Then inequality
∥∥∥∥T

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,v,(0,∞), h ∈ M+(0,∞), (2.9)
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holds iff
‖TΦ2 f‖q,w,(0,∞) � c‖ f‖p,φ ,(0,∞), f ∈ M+((0,∞);↓), (2.10)

holds, where

φ(x) ≡ φ
[
v; p

]
(x) :=

(∫ x

0
v1−p′(t)dt

)−p′/(p′+1)

v1−p′(x)

and

Φ(x) ≡ Φ
[
v; p

]
(x) =

∫ x

0
φ(t)dt =

(∫ x

0
v1−p′(t)dt

)1/(p′+1)

.

THEOREM 2.8. [14, Theorem 3.11] Let 0 < q � ∞ , and let T : M+(0,∞) →
M+(0,∞) satisfies conditions (i) - (iii). Assume that u, w ∈ W (0,∞) and v ∈ W (0,∞)
are such that V (x) < ∞ for all x > 0 . Then inequality∥∥∥∥T

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖1,V−1,(0,∞), h ∈ M+(0,∞), (2.11)

holds iff
‖TV2 f‖q,w,(0,∞) � c‖ f‖1,v,(0,∞), f ∈ M+((0,∞);↓). (2.12)

3. Supremal operators on the cones of monotone functions

In this section, we give complete characterization of inequalities (1.1) - (1.4).
To state the next statements we need the following notations:

u(t) := sup
0<τ�t

u(τ), u(t) := sup
t�τ<∞

u(τ), (t > 0).

For a given weight v , 0 � a < b � ∞ and 1 � p < ∞ , we denote

σp(a,b) =

⎧⎪⎪⎨
⎪⎪⎩

(
b∫
a
[v(t)]1−p′dt

)1/p′

, when 1 < p < ∞,

esssup
a<t<b

[v(t)]−1, when p = 1.

Recall the following theorem.

THEOREM 3.1. [15, Theorems 4.1 and 4.4] Let 1 � p < ∞ , 0 < q < ∞ and let
u ∈ W (0,∞)∩C(0,∞) . Assume that v, w ∈ W (0,∞) are such that

0 < V (x) < ∞ and 0 < W (x) < ∞ for all x > 0.

Then inequality (1.8) with the best constant c holds if and only if the following holds:
(i) p � q and A1 < ∞ , where

A1 := sup
x>0

(
[u]q(x)W (x)+

∫ ∞

x
[u]q(t)w(t)dt

)1/q

σp(0,x),
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and in this case c ≈ A1;
(ii) q < p and B11 +B12 < ∞ , where

B11 : =
(∫ ∞

0

(∫ ∞

x
[u]q(t)w(t)dt

)r/p

[u]q(x)
[

σp(0,x)
]r

w(x)dx

)1/r

,

B12 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞
u(τ)σp(0,τ)

]r

w(x)dx

)1/r

,

and in this case c ≈ B11 +B12.

Using change of variables x = 1/t , we can easily obtain the following statement.

THEOREM 3.2. Let 1 � p < ∞ , 0 < q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . As-
sume that v, w ∈ W (0,∞) are such that

0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0.

Then inequality (1.6) with the best constant c holds if and only if the following holds:
(i) p � q and A2 < ∞ , where

A2 := sup
x>0

(
[u]q(x)W∗(x)+

∫ x

0
[u]q(t)w(t)dt

)1/q

σp(x,∞),

and in this case c ≈ A2;
(ii) q < p and B21 +B22 < ∞ , where

B21 : =
(∫ ∞

0

(∫ x

0
[u]q(t)w(t)dt

)r/p

[u]q(x)
[

σp(x,∞)
]r

w(x)dx

)1/r

,

B22 : =
(∫ ∞

0
Wr/p

∗ (x)
[

sup
0<τ�x

u(τ)σp(τ,∞)
]r

w(x)dx

)1/r

,

and in this case c ≈ B21 +B22.

Proof. Obviously, inequality (1.6) is satisfied with the best constant c iff
∥∥∥∥S∗ũ

(∫ x

0
h

)∥∥∥∥
q,w̃,(0,∞)

� c‖h‖p,ṽ,(0,∞), h ∈ M+ (3.1)

holds, where

ũ(t) = u

(
1
t

)
, w̃(t) = w

(
1
t

)
1
t2

, ṽ(t) = v

(
1
t

)(
1
t2

)1−p

, t > 0.

Using Theorem 3.1, and then applying substitution of variables mentioned above three
times, we get the statement.
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THEOREM 3.3. Let 0 < p, q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . Assume that
v, w ∈ W (0,∞) are such that

0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0.

Then inequality (1.1) with the best constant c holds if and only if the following holds:
(i) p � q and A1 +‖Su(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞) < ∞ , where

A1 := sup
x>0

(
[u]q(x)W∗(x)+

∫ x

0
[u]q(t)w(t)dt

)1/q

V−1/p(x),

and in this case c ≈ A1 +‖Su(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞);
(ii) q < p and B11 +B12 +‖Su(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞) < ∞ , where

B11 : =
(∫ ∞

0

(∫ x

0
[u]q(t)w(t)dt

)r/p

[u]q(x)V−r/p(x)w(x)dx

)1/r

,

B12 : =
(∫ ∞

0
Wr/p

∗ (x)
[

sup
0<τ�x

u(τ)V−1/p(τ)
]r

w(x)dx

)1/r

,

and in this case c ≈ B11 +B12 +‖Su(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞).

Proof. It is easy to see that inequality (1.1) holds iff

‖Sup( f )‖q/p,w,(0,∞) � cp‖ f‖1,v,(0,∞), f ∈ M+((0,∞);↓) (3.2)

holds. By Theorem 2.2, (3.2) holds iff both
∥∥∥∥Sup

(∫ ∞

x
h

)∥∥∥∥
q/p,w,(0,∞)

� cp‖h‖1,V,(0,∞), h ∈ M+, (3.3)

and
‖Su(1)‖q,w,(0,∞) � c‖1‖s,v,(0,∞) (3.4)

hold. In order to complete the proof, it remains to apply Theorem 3.2.
Using change of variables x = 1/t , we can easily obtain the following ”dual”

statement.

THEOREM 3.4. Let 0 < p, q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . Assume that
v, w ∈ W (0,∞) are such that

0 < V (x) < ∞ and 0 < W (x) < ∞ for all x > 0.

Then inequality (1.3) with the best constant c holds if and only if the following holds:
(i) p � q and A2 +‖S∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞) < ∞ , where

A2 := sup
x>0

(
[u]q(x)W (x)+

∫ ∞

x
[u]q(t)w(t)dt

)1/q

V−1/p
∗ (x),
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and in this case c ≈ A2 +‖S∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞);
(ii) q < p and B21 +B22 +‖S∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞) < ∞ , where

B21 : =
(∫ ∞

0

(∫ ∞

x
[u]q(t)w(t)dt

)r/p

[u]q(x)V−r/p
∗ (x)w(x)dx

)1/r

,

B22 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞
u(τ)V−1/p

∗ (τ)
]r

w(x)dx

)1/r

,

and in this case c ≈ B21 +B22 +‖S∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞).

Proof. It is easy to see that inequality (1.3) is satisfied with the best constant c iff

‖Sũ f‖q,w̃,(0,∞) � c‖ f‖p,ṽ,(0,∞), f ∈ M+((0,∞);↓) (3.5)

holds, where

ũ(t) = u

(
1
t

)
, w̃(t) = w

(
1
t

)
1
t2

, ṽ(t) = v

(
1
t

)
1
t2

, t > 0.

Using Theorem 3.3, and then applying substitution of variables mentioned above three
times, we get the statement.

THEOREM 3.5. Let 0 < p, q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . Assume that
v, w ∈ W (0,∞) are such that

0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0.

Then inequality (1.2) with the best constant c holds if and only if the following holds:
(i) p � q and A3 +‖Su(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞) < ∞ , where

A3 := sup
x>0

([
sup

0<τ�x

u(τ)p

V∗(τ)2

]q/p

W∗(x)+
∫ x

0

[
sup

0<τ�t

u(τ)p

V∗(τ)2

]q/p

w(t)dt

)1/q

[V∗]1/p(x),

and in this case c ≈ A3 +‖Su(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞);
(ii) 0 < q < p < ∞ and B31 +B32 +‖Su(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞) < ∞ , where

B31 : =
(∫ ∞

0

(∫ x

0

[
sup

0<τ�t

u(τ)p

V∗(τ)2

]q/p

w(t)dt

)r/p

[V∗]−r/p(x)
[

sup
0<τ�x

u(τ)p

V∗(τ)2

]q/p

w(x)dx

)1/r

,

B32 : =
(∫ ∞

0
Wr/p

∗ (x)
[

sup
0<τ�x

[
sup

0<τ�t

u(τ)p

V∗(τ)2

]
V∗(τ)

]r/p

w(x)dx

)1/r

.

and in this case c ≈ B31 +B32 +‖Su(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞).
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Proof. It is easy to see that inequality (1.2) holds iff

‖Sup( f )‖q/p,w,(0,∞) � cp‖ f‖1,v,(0,∞), f ∈ M+((0,∞);↑) (3.6)

holds. By Theorem 2.5 with T = Sup we see that inequality (3.6) is satisfied with the
best constant c iff both∥∥∥∥Sup/V2∗

(∫ ∞

x
h

)∥∥∥∥
q/p,w,(0,∞)

� c‖h‖1,1/V∗,(0,∞), h ∈ M+(0,∞),

and
‖Su(1)‖q,w,(0,∞) � c‖1‖p,v,(0.∞)

hold. It remains to apply Theorem 3.2.
The following ”dual” statement holds true.

THEOREM 3.6. Let 0 < p, q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . Assume that
v, w ∈ W (0,∞) are such that

0 < V (x) < ∞ and 0 < W (x) < ∞ for all x > 0.

Then inequality (1.4) with the best constant c holds if and only if the following holds:
(i) p � q and A4 +‖S∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞) < ∞ , where

A4 := sup
x>0

([
sup

x�τ<∞

u(τ)p

V (τ)2

]q/p

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)p

V (τ)2

]q/p

w(t)dt

)1/q

V 1/p(x),

and in this case c ≈ A4 +‖S∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞);
(ii) q < p and B41 +B42 +‖S∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞) < ∞ , where

B41 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)p

V (τ)2

]q/p

w(t)dt

)r/p

V−r/p(x)
[

sup
x�τ<∞

u(τ)p

V (τ)2

]q/p

w(x)dx

)1/r

,

B42 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

t�τ<∞

u(τ)p

V (τ)2

]
V (τ)

]r/p

w(x)dx

)1/r

,

and in this case c ≈ B41 +B42 +‖S∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞).

Proof. Obviously, (1.4) is satisfied with the best constant c iff

‖Sũ f‖q,w̃,(0,∞) � c‖ f‖p,ṽ,(0,∞), f ∈ M+((0,∞);↑)
holds, where

ũ(t) = u

(
1
t

)
, w̃(t) = w

(
1
t

)
1
t2

, ṽ(t) = v

(
1
t

)
1
t2

, t > 0.

Using Theorem 3.5, and then applying substitution of variables mentioned above three
times, we get the statement.
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4. Iterated inequalities with supremal operators

In this section we characterize inequalities (1.5) and (1.7).
The following theorem is true.

THEOREM 4.1. Let 1 < p < ∞ , 0 < q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . As-
sume that v, w ∈ W (0,∞) are such that

0 <
∫ x

0
v1−p′(t)dt < ∞ and 0 < W∗(x) < ∞ for all x > 0.

Recall that

φ
[
v; p

]
(x) =

(∫ x

0
v1−p′(t)dt

)−p′/(p′+1)

v1−p′(x), x > 0,

Φ
[
v; p

]
(x) =

(∫ x

0
v1−p′(t)dt

)1/(p′+1)

, x > 0.

Denote by
Φ1(x) := sup

0<τ�x
u(τ)Φ2[v; p](τ), x > 0.

Then inequality (1.5) with the best constant c holds if and only if the following holds:
(i) p � q and A3 +‖SuΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ [v;p],(0,∞) < ∞ , where

A3 := sup
x>0

(
[Φ1]q(x)W∗(x)+

∫ x

0
[Φ1]q(t)w(t)dt

)1/q

Φ[v; p]−1/p(x),

and in this case c ≈ A3 +‖SuΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ [v;p],(0,∞);
(ii) q < p and c≈B31 +B32 +‖SuΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ [v;p],(0,∞) < ∞ , where

B31 : =
(∫ ∞

0

(∫ x

0
[Φ1]q(t)w(t)dt

)r/p

[Φ1]q(x)Φ[v; p]−r/p(x)w(x)dx

)1/r

,

B32 : =
(∫ ∞

0
Wr/p

∗ (x)
[

sup
0<τ�x

Φ1(τ)Φ[v; p]−1/p(τ)
]r

w(x)dx

)1/r

,

and in this case c ≈ B31 +B32 +‖SuΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ [v;p],(0,∞).

Proof. By Theorem 2.7 with T = Su it is clear that inequality (1.5) with the best
constant c holds if and only if the inequality

∥∥SuΦ2[v;p]( f )
∥∥

q,w,(0,∞) � C‖ f‖p,φ [v;p],(0,∞), f ∈ M+((0,∞);↓) (4.1)

holds. Moreover, c ≈C . Now the statement follows by Theorem 3.3.
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THEOREM 4.2. Let 0 < q < ∞ and let u∈W (0,∞)∩C(0,∞) . Assume that v, w∈
W (0,∞) are such that 0 < V (x) < ∞ and 0 < W∗(x) < ∞ for all x > 0 . Denote by

V1(x) := sup
0<τ�x

u(τ)V 2(τ), x > 0.

Then inequality ∥∥∥∥Su

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖1,V−1,(0,∞), (4.2)

with the best constant c holds if and only if the following holds:
(i) p � q and A 1

3 +‖SuV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞) < ∞ , where

A 1
3 := sup

x>0

(
[V1]q(x)

∫ ∞

x
w(t)dt +

∫ x

0
[V1]q(t)w(t)dt

)1/q

V−1/p(x),

and in this case c ≈ A 1
3 +‖SuV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞);

(ii) q < p and B1
31 +B1

31 +‖SuV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞) < ∞ , where

B1
31 : =

(∫ ∞

0

(∫ x

0
[V1]q(t)w(t)dt

)r/p

[V1]q(x)V−r/p(x)w(x)dx

)1/r

,

B1
32 : =

(∫ ∞

0

(∫ ∞

x
w(t)dt

)r/p[
sup

0<τ�x
[V1](τ)V−1/p(τ)

]r

w(x)dx

)1/r

,

and in this case c ≈ B1
31 +B1

31 +‖SuV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞).

Proof. Applying Theorem 2.8 to the operator Su we see that inequality (4.2) with
the best constant c holds iff the inequality

∥∥SuV2( f )
∥∥

q,w,(0,∞) � C‖ f‖1,v,(0,∞), f ∈ M+((0,∞);↓) (4.3)

holds. Moreover, c ≈C . Now the statement follows by Theorem 3.3.
The following ”dual” statements also hold true.

THEOREM 4.3. Let 1 < p < ∞ , 0 < q < ∞ and let u ∈ W (0,∞)∩C(0,∞) . As-
sume that v, w ∈ W (0,∞) are such that

0 <

∫ ∞

x
v1−p′(t)dt < ∞ and 0 < W (x) < ∞ for all x > 0.

Denote by

ψ
[
v;s

]
(x) :=

(∫ ∞

x
v1−s′(t)dt

)− s′
s′+1

v1−s′(x), x > 0,

Ψ
[
v;s

]
(x) :=

(∫ ∞

x
v1−s′(t)dt

) 1
s′+1

, x > 0,
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Ψ1(x) := sup
x�τ<∞

u(τ)Ψ2[v; p](τ), x > 0.

Then inequality (1.7) with the best constant c holds if and only if the following holds:
(i) p � q and A4 +‖SuΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞) < ∞ , where

A4 := sup
x>0

(
[Ψ1]q(x)W (x)+

∫ ∞

x
[Ψ1]q(t)w(t)dt

)1/q

Ψ[v; p]−1/p(x),

and in this case c ≈ A4 +‖SuΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞);
(ii) q < p and c≈B41 +B42 +‖SuΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞) < ∞ , where

B41 : =
(∫ ∞

0

(∫ ∞

x
[Ψ1]q(t)w(t)dt

)r/p

[Ψ1]q(x)Ψ[v; p]−r/p(x)w(x)dx

)1/r

,

B42 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞
Ψ1(τ)Ψ[v; p]−1/p(τ)

]r

w(x)dx

)1/r

,

and in this case c ≈ B41 +B42 +‖SuΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞).

Proof. Obviously, (1.7) is satisfied with the best constant c if and only if
∥∥∥∥Sũ

(∫ x

0
h

)∥∥∥∥
q,w̃,(0,∞)

� c‖h‖p,ṽ,(0,∞), h ∈ M+(0,∞)

holds, where

ũ(t) = u

(
1
t

)
, w̃(t) = w

(
1
t

)
1
t2

, ṽ(t) = v

(
1
t

)
1
t2

, t > 0.

Using Theorem 4.1, and then applying substitution of variables mentioned above three
times, we get the statement.

THEOREM 4.4. Let 0 < q < ∞ and let u∈W (0,∞)∩C(0,∞) . Assume that v, w∈
W (0,∞) are such that 0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0 . Denote by

V ∗
1 (x) := sup

x�τ<∞
u(τ)V 2

∗ (τ), x > 0.

Then inequality ∥∥∥∥S∗u

(∫ ∞

x
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖1,V−1∗ ,(0,∞), (4.4)

with the best constant c holds if and only if the following holds:
(i) p � q and A 1

4 +
∥∥S∗

uV2∗
(1)

∥∥
q,w,(0,∞)/‖1‖p,v,(0,∞) < ∞ , where

A 1
4 := sup

x>0

(
[V ∗

1 ]q(x)W∗(x)+
∫ x

0
[V ∗

1 ]q(t)w(t)dt

)1/q

V−1/p(x),
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and in this case c ≈ A 1
4 +

∥∥S∗
uV2∗

(1)
∥∥

q,w,(0,∞)/‖1‖p,v,(0,∞);

(ii) q < p and B1
41 +B1

42 +
∥∥S∗

uV2∗
(1)

∥∥
q,w,(0,∞)/‖1‖p,v,(0,∞) < ∞ , where

B1
41 : =

(∫ ∞

0

(∫ ∞

x
[V ∗

1 ]q(t)w(t)dt

)r/p

[V ∗
1 ]q(x)V−r/p

∗ (x)w(x)dx

)1/r

,

B1
42 : =

(∫ ∞

0
Wr/p

∗ (x)
[

sup
x�τ<∞

[V ∗
1 ](τ)V−1/p(τ)

]r

w(x)dx

)1/r

,

and in this case c ≈ B1
41 +B1

42 +
∥∥S∗

uV2∗
(1)

∥∥
q,w,(0,∞)/‖1‖p,v,(0,∞).

Proof. By change of variables x = 1/t , it is easy to see that inequality (4.4) holds
iff ∥∥∥∥Sũ

(∫ x

0
h

)∥∥∥∥
q,w̃,(0,∞)

� c‖h‖1,Ṽ−1,(0,∞), h ∈ M+ (4.5)

holds, where

ũ(t) = u

(
1
t

)
, w̃(t) = w

(
1
t

)
1
t2

, Ṽ (t) =
∫ t

0
v

(
1
y

)
1
y2 dy, t > 0.

Applying Theorem 4.2, and then using substitution of variables mentioned above three
times, we get the statement.

5. Hardy-operator involving suprema - Tu,b

In this section we give complete characterization of inequality (1.12).

5.1. The case 1 � p < ∞

The following theorem is true.

THEOREM 5.1. Let 0 < q < ∞ , 1 � p < ∞ and let u ∈ W (0,∞)∩C(0,∞) . As-
sume that b, v, w ∈ W (0,∞) are such that

0 < B(t) < ∞, 0 < V (x) < ∞ and 0 < W (x) < ∞ for all x > 0.

Then inequality (1.12) with the best constant c holds if and only if the following holds:
(i) 1 < p � q and A1 +A2 < ∞ , where

A1 := sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q

×
(∫ x

0

(
B(y)
V (y)

)p′

v(y)dy

)1/p′

,

A2 := sup
x>0

([
sup

x�τ<∞

u(τ)
V 2(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)1/q
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×
(∫ x

0
V p′(y)v(y)dy

)1/p′

,

and in this case c ≈ A1 +A2;
(ii) 1 = p � q and B1 +B2 < ∞ , where

B1 := sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q(
sup

0<y�x

B(y)
V (y)

)
,

B2 := sup
x>0

([
sup

x�τ<∞

u(τ)
V 2(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)1/q

V (x),

and in this case c ≈ B1 +B2;
(iii) max{q,1} < p and C1 +C2 +C3 +C4 < ∞ , where

C1 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
B(τ)

]q

×
(∫ x

0

(
B(y)
V (y)

)p′

v(y)dy

)r/p′

w(x)dx

)1/r

,

C2 :=
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

](∫ τ

0

(
B(y)
V (y)

)p′

v(y)dy

)1/p′]r

w(x)dx

)1/r

,

C3 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
V 2(τ)

]q

×
(∫ x

0
V p′(y)v(y)dy

)r/p′

w(x)dx

)1/r

,

C4 :=
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
V 2(y)

](∫ τ

0
V p′(y)v(y)dy

)1/p′]r

w(x)dx

)1/r

,

and in this case c ≈C1 +C2 +C3 +C4;
(iv) q < 1 = p and D1 +D2 +D3 +D4 < ∞ , where

D1 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
B(τ)

]q

×
(

sup
0<y�x

B(y)
V (y)

)r

w(x)dx

)1/r

,

D2 :=
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

](
sup

0<y�τ

B(y)
V (y)

)]r

w(x)dx

)1/r

,

D3 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
V 2(τ)

]q

V r(x)w(x)dx

)1/r

,

D4 :=
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
V 2(y)

]
V (τ)

]r

w(x)dx

)1/r

,
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and in this case c ≈ D1 +D2 +D3 +D4.

Proof. By Theorem 2.2, (1.12) holds iff both

∥∥∥∥Tu,b

(∫ ∞

x
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,V pv1−p,(0,∞), h ∈ M+(0,∞). (5.1)

and

‖Tu,b1‖q,w,(0,∞) � c‖1‖p,v,(0,∞) (5.2)

hold.
Note that

Tu,b

(∫ ∞

t
h

)
(x) = sup

x�τ<∞

u(τ)
B(τ)

∫ τ

0

(∫ ∞

s
h(y)dy

)
b(s)ds

≈ sup
x�τ<∞

u(τ)
B(τ)

∫ τ

0
h(y)B(y)dy+ sup

x�τ<∞
u(τ)

∫ ∞

τ
h(s)ds

= S∗u/B

(∫ τ

0
hB

)
+S∗u

(∫ ∞

τ
h

)
.

Hence, inequality (1.12) holds iff inequalities

∥∥∥∥S∗u/B

(∫ τ

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,B−pV pv1−p,(0,∞), h ∈ M+(0,∞), (5.3)

∥∥∥∥S∗u

(∫ ∞

τ
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,V pv1−p,(0,∞), h ∈ M+(0,∞), (5.4)

and (5.2) hold.
Again by Theorem 2.2, (5.4) with (5.2) is equivalent to

‖S∗u f‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↓). (5.5)

Now by Theorem 2.3, (5.5) is equivalent to

∥∥∥∥S∗u/V2

(∫ x

0
h

)∥∥∥∥
q,w,(0,∞)

� c‖h‖p,V−pv1−p,(0,∞), h ∈ M+(0,∞). (5.6)

Consequently, (1.12) holds iff inequalities (5.3) and (5.6) hold.
(i) and (ii). Let p � q . By Theorem 3.1, (5.3) and (5.6) hold iff both Ai < ∞ ,

i = 1,2, when p > 1, and Bi < ∞ , i = 1,2, when p = 1, respectively.
(iii) and (iv). Let q < p . By Theorem 3.1, (5.3) and (5.6) hold iff Ci < ∞ , i =

1,2,3,4, when p > 1, and Di < ∞ , i = 1,2,3,4, when p = 1, respectively.
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5.2. The case 0 < p < 1

We start with a simple observation. If 0 < p � 1 and t ∈ (0,∞) , then

sup
0<τ�t

f (τ)B(τ) �
∫ t

0
f (y)b(y)dy

�
(∫ t

0
f (y)pB(y)p−1b(y)dy

)1/p

, f ∈ M+((0,∞);↓). (5.7)

Since f is non-increasing, the first inequality in (5.7) is obvious. The second one
follows, for instance, from the fact that (see, for instance, [5, Theorem 3.2], cf. also
[28])

sup
f∈M+((0,∞);↓): f ∼0

∫ ∞
0 f (x)g(x)dx(∫ ∞

0 f (x)pv(x)dx

)1/p
≈ sup

t>0

(∫ t

0
g(x)dx

(∫ t

0
v(x)dx

)−1/p)
.

Our first aim is to prove a reduction theorem for the operator Tu,b . We first note
that, using the monotonicity of

∫ t
0 f b and interchanging the suprema, we get that

(Tu,bg)(t) = sup
t�τ<∞

u(τ)
B(τ)

∫ τ

0
g(y)b(y)dy

= sup
t�τ<∞

(
sup

τ�x<∞

u(x)
B(x)

)∫ τ

0
g(y)b(y)dy, t ∈ (0,∞).

As a consequence, we can safely assume that u(x)/B(x) is non-increasing on (0,∞) ,
since otherwise we would just replace u(x)/B(x) by supτ�x<∞ u(x)/B(x) .

THEOREM 5.2. Let 0 < p � 1 , 0 < q < ∞ . Assume that u ∈ W (0,∞)∩C(0,∞)
and b, v, w ∈ W (0,∞) are such that 0 < B(t) < ∞ for all x > 0 . Then the following
three statements are equivalent:

(∫ ∞

0

(
sup

t�τ<∞

u(τ)
B(τ)

∫ τ

0
f (y)b(y)dy

)q

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓); (5.8)

(∫ ∞

0

(
sup

t�τ<∞

(
u(τ)
B(τ)

)p ∫ τ

0
f (y)B(y)p−1b(y)dy

)q/p

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)v(τ)dτ

)1/p

, f ∈ M+((0,∞);↓); (5.9)

(∫ ∞

0

(
sup

t�τ<∞

u(τ)
B(τ)

sup
0<y�τ

f (y)B(y)
)q

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓). (5.10)
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Proof. Again, in view of (5.7), the implications (5.9) ⇒ (5.8) ⇒ (5.10) are obvi-
ous, and it just remains to show that (5.10) implies (5.9).

Suppose that (5.10) holds. Since u(x)/B(x) is non-increasing, we have

sup
t�τ<∞

u(τ)
B(τ)

sup
0<y�τ

f (y)B(y)

= max

{
sup

t�τ<∞

u(τ)
B(τ)

sup
0<y�t

f (y)B(y), sup
t�τ<∞

u(τ)
B(τ)

sup
t<y�τ

f (y)B(y)
}

= max

{
u(t)
B(t)

sup
0<y�t

f (y)B(y), sup
t�y<∞

f (y)B(y) sup
y�τ<∞

u(τ)
B(τ)

}

= max

{
u(t)
B(t)

sup
0<y�t

f (y)B(y), sup
t�y<∞

f (y)u(y)
}

.

Hence, (5.10) breaks down into the following two inequalities:

(∫ ∞

0

(
sup

0<y�t
f (y)B(y)

)q

w(t)
(

u(t)
B(t)

)q

dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓), (5.11)

(∫ ∞

0

(
sup

t�y<∞
f (y)u(y)

)q

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓). (5.12)

Obviously, (5.11) and (5.12) are equivalent to

(∫ ∞

0

(
sup

0<y�t
f (y)B(y)p

)q/p

w(t)
(

u(t)
B(t)

)q

dt

)p/q

�
∫ ∞

0
f (τ)v(τ)dτ, f ∈ M+((0,∞);↓), (5.13)

(∫ ∞

0

(
sup

t�y<∞
f (y)u(y)p

)q/p

w(t)dt

)p/q

�
∫ ∞

0
f (τ)v(τ)dτ, f ∈ M+((0,∞);↓). (5.14)

(i) Let p � q . By Theorem 3.3, (5.13) holds iff both

sup
x>0

(∫ x

0
u(t)qw(t)dt +B(x)q

∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)1/q

V−1/p(x) < ∞ (5.15)

and (∫ ∞

0
u(t)qw(t)dt

)1/q

�
(∫ ∞

0
v(τ)dτ

)1/p

(5.16)
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hold.
By Theorem 3.6, (5.14) holds iff both

sup
x>0

([
sup

x�y<∞

u(y)p

V 2(y)

]q/p ∫ x

0
w(t)dt +

∫ ∞

x

[
sup

t�y<∞

u(y)p

V 2(y)

]q/p

w(t)dt

)1/q

V 1/p(x) < ∞

(5.17)
and (∫ ∞

0

(
sup

t�τ<∞
u(τ)p

)q/p

w(t)dt

)1/q

�
(∫ ∞

0
v(τ)dτ

)1/p

(5.18)

hold.
On the other hand, by Theorem 5.1, (5.9) holds iff inequalities

sup
x>0

([
u(x)
B(x)

]q ∫ x

0
w(t)dt +

∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)1/q

sup
0<τ�x

B(τ)
V 1/p(τ)

< ∞

(5.19)

sup
x>0

([
sup

x�τ<∞

u(τ)p

V 2(τ)

]q/p ∫ x

0
w(t)dt +

∫ ∞

x

[
sup

t�τ<∞

u(τ)p

V 2(τ)

]q/p

w(t)dt

)1/q

V 1/p(x) < ∞

(5.20)

hold.
We will thus be done if we can show that (5.15) together with (5.17) imply (5.19).

The latter can be proved as follows:
Since

sup
x>0

(∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)1/q

sup
0<τ�x

B(τ)
V 1/p(τ)

= sup
x>0

(∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)1/q B(x)
V 1/p(x)

,

it remains to show that

sup
x>0

u(x)
B(x)

(∫ x

0
w(t)dt

)1/q

sup
0<τ�x

B(τ)
V 1/p(τ)

� sup
x>0

u(x)
V 1/p(x)

(∫ x

0
w(t)dt

)1/q

+ sup
x>0

B(x)
V 1/p(x)

(∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)1/q

.

Interchanging the suprema, using the monotonicity of u/B , we get that

sup
x>0

u(x)
B(x)

(∫ x

0
w(t)dt

)1/q

sup
0<τ�x

B(τ)
V 1/p(τ)

= sup
τ>0

B(τ)
V 1/p(τ)

sup
τ�x<∞

u(x)
B(x)

(∫ x

0
w(t)dt

)1/q

� sup
τ>0

B(τ)
V 1/p(τ)

(
sup

τ�x<∞

u(x)
B(x)

)(∫ τ

0
w(t)dt

)1/q
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+ sup
τ>0

B(τ)
V 1/p(τ)

sup
τ�x<∞

u(x)
B(x)

(∫ x

τ
w(t)dt

)1/q

� sup
τ>0

u(τ)
V 1/p(τ)

(∫ τ

0
w(t)dt

)1/q

+ sup
τ>0

B(τ)
V 1/p(τ)

sup
τ�x<∞

(∫ x

τ

[
u(t)
B(t)

]q

w(t)dt

)1/q

= sup
τ>0

u(τ)
V 1/p(τ)

(∫ τ

0
w(t)dt

)1/q

+ sup
τ>0

B(τ)
V 1/p(τ)

(∫ ∞

τ

[
u(t)
B(t)

]q

w(t)dt

)1/q

.

(ii) Let q < p . By Theorem 3.3, (5.13) holds iff

∫ ∞

0

(∫ x

0
u(t)qw(t)dt

)r/p

u(x)qV−r/p(x)w(x)dx < ∞,

∫ ∞

0

(∫ ∞

x

(
u(t)
B(t)

)q

w(t)dt

)r/p[
sup

0<τ�x

B(τ)
V 1/p(τ)

]r

w(x)
(

u(x)
B(x)

)q

dx < ∞.

By Theorem 3.6, (5.14) holds iff

∫ ∞

0

(∫ ∞

x

[
sup

t�y<∞

u(y)p

V 2(y)

]q/p

w(t)dt

)r/p[
sup

x�y<∞

u(y)p

V 2(y)

]q/p

V r/p(x)w(x)dx < ∞,

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
sup

τ�y<∞

u(y)p

V 2(y)

]
V (τ)

)r/p

w(x)dx < ∞.

On the other hand, by Theorem 5.1, (5.9) holds iff

∫ ∞

0

(∫ ∞

x

[
u(t)
B(t)

]q

w(t)dt

)r/p[
sup

0<t�τ

B(t)p

V (t)

]r/p

w(x)
[

u(x)
B(x)

]q

dx < ∞,

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

])r/p

w(x)dx < ∞,

∫ ∞

0

(∫ ∞

x

[
sup

t�y<∞

u(y)p

V 2(y)

]q/p

w(t)dt

)r/p[
sup

x�y<∞

u(y)p

V 2(y)

]q/p

V r/p(x)w(x)dx < ∞,

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
sup

τ�y<∞

u(y)p

V 2(y)

]
V (τ)

)r/p

w(x)dx

=
∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

u(τ)p

V (τ)

)r/p

w(x)dx < ∞.

Obviously, it remains to show that

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

])r/p

w(x)dx

�
∫ ∞

0

(∫ ∞

x

(
u(t)
B(t)

)q

w(t)dt

)r/p[
sup

0<τ�x

B(τ)
V 1/p(τ)

]r

w(x)
(

u(x)
B(x)

)q

dx
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+
∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

u(τ)p

V (τ)

)r/p

w(x)dx.

We will prove the assertion only in the case when
∫ ∞
0 w(τ)dτ = ∞ . Let {xk} be such

that
∫ xk
0 w(τ)dτ = 2k . Then

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

])r/p

w(x)dx

≈ ∑
k∈Z

2kr/q
(

sup
xk�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

])r/p

.

Note that

sup
xk�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

]

≈ sup
xk�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�xk

B(t)p

V (t)

]
+ sup

xk�τ<∞

[
u(τ)
B(τ)

]p[
sup

xk�t�τ

B(t)p

V (t)

]

=
[

u(xk)
B(xk)

]p[
sup

0<t�xk

B(t)p

V (t)

]
+ sup

xk�t<∞

B(t)p

V (t)
sup

t�τ<∞

[
u(τ)
B(τ)

]p

=
[

u(xk)
B(xk)

]p[
sup

0<t�xk

B(t)p

V (t)

]
+ sup

xk�t<∞

u(t)p

V (t)

≈
[

u(xk)
B(xk)

]p[
sup

0<t�xk−1

B(t)p

V (t)

]
+

[
u(xk)
B(xk)

]p[
sup

xk−1<t�xk

B(t)p

V (t)

]
+ sup

xk�t<∞

u(t)p

V (t)

�
[

u(xk)
B(xk)

]p[
sup

0<t�xk−1

B(t)p

V (t)

]
+ sup

xk−1�t<xk

u(t)p

V (t)
+ sup

xk�t<∞

u(t)p

V (t)

�
[

u(xk)
B(xk)

]p[
sup

0<t�xk−1

B(t)p

V (t)

]
+ sup

xk−1�t<∞

u(t)p

V (t)
.

Hence,

∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
u(τ)
B(τ)

]p[
sup

0<t�τ

B(t)p

V (t)

])r/p

w(x)dx

� ∑
k∈Z

2kr/q
([

u(xk)
B(xk)

]p[
sup

0<t�xk−1

B(t)p

V (t)

])r/p

+ ∑
k∈Z

2kr/q
(

sup
xk−1�t<∞

u(t)p

V (t)

)r/p

≈ ∑
k∈Z

(∫ xk

xk−1

(∫ xk

x
w

)r/p

w(x)dx

)([
u(xk)
B(xk)

]p[
sup

0<t�xk−1

B(t)p

V (t)

])r/p

+ ∑
k∈Z

(∫ xk−1

xk−2

(∫ x

xk

w

)r/p

w(x)dx

)(
sup

xk−1�t<∞

u(t)p

V (t)

)r/p

� ∑
k∈Z

∫ xk

xk−1

(∫ ∞

x

(
u(t)
B(t)

)q

w(t)dt

)r/p[
sup

0<τ�x

B(τ)
V 1/p(τ)

]r[ u(x)
B(x)

]q

w(x)dx
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+ ∑
k∈Z

∫ xk+1

xk−1

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

u(τ)p

V (τ)

)r/p

w(x)dx

�
∫ ∞

0

(∫ ∞

x

(
u(t)
B(t)

)q

w(t)dt

)r/p[
sup

0<τ�x

B(τ)
V 1/p(τ)

]r

w(x)
(

u(x)
B(x)

)q

dx

+
∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

u(τ)p

V (τ)

)r/p

w(x)dx. �

REMARK 5.3. Note that Theorem5.2, namely the fact that (5.9)⇔ (5.8)⇔ (5.10) ,
when b ≡ 1, was proved in [16].

As a corollary we obtain that for all the three operators mentioned in (5.7), the
corresponding weighted inequalities are equivalent. It is worth noticing that this is not
so when p > 1.

COROLLARY 5.4. Assume that 0 < p � 1 , 0 < q < ∞ , and v, w ∈ W (0,∞) . Let
b be a weight on (0,∞) such that 0 < B(t) < ∞ for every t ∈ (0,∞) . Then the following
three statements are equivalent:

(∫ ∞

0

(∫ t

0
f (τ)b(τ)dτ

)q

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓); (5.21)

(∫ ∞

0

(∫ t

0
f (τ)pB(τ)p−1b(τ)dτ

)q/p

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓); (5.22)

(∫ ∞

0

(
sup

0<τ�t
f (τ)B(τ)

)q

w(t)dt

)1/q

�
(∫ ∞

0
f (τ)pv(τ)dτ

)1/p

, f ∈ M+((0,∞);↓). (5.23)

This fact was proved in [16, Theorem 2.1], when b ≡ 1. Recently, in [17, Theo-
rem 3.9], it was proved that (5.21) ⇔ (5.23) for more general Volterra operators with
continuous Oinarov kernels in the case when 0 < q < p � 1.

Proof. The proof immediately follows from Theorem 5.2 by taking u ≡ 1.
By the way, we have proved the following statement.

THEOREM 5.5. Let 0 < p � 1 , 0 < q < ∞ . Assume that u ∈ W (0,∞)∩C(0,∞)
and b, v, w ∈ W (0,∞) are such that 0 < V (t) < ∞ and 0 < B(t) < ∞ for all x > 0 .
Then inequality (1.12) with the best constant c holds if and only if the following holds:
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(i) p � q and E1 +E2 < ∞ , where

E1 := sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q ∫ x

0
w(t)dt +

∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q

sup
0<y�x

B(y)
V 1/p(y)

;

E2 := sup
x>0

([
sup

x�y<∞

u(y)p

V 2(y)

]q/p ∫ x

0
w(t)dt +

∫ ∞

x

[
sup

t�y<∞

u(y)p

V 2(y)

]q/p

w(t)dt

)1/q

V 1/p(x),

and in this case c ≈ E1 +E2;
(ii) q < p and F1 +F2 +F3 +F4 < ∞ , where

F1 :=
(∫ ∞

0

(∫ x

0
w(t)dt

)r/p[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

]p(
sup

0<y�τ

B(y)p

V (y)

)]r/p

w(x)dx

)1/r

,

F2 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

0<τ�x

Bp(τ)
V (τ)

]r/p

×
[

sup
x�τ<∞

u(τ)
B(τ)

]q

w(x)dx

)1/r

,

F3 :=
(∫ ∞

0

(∫ x

0
w(t)dt

)r/p(
sup

x�τ<∞

[
sup

τ�y<∞

u(y)p

V 2(y)

]
V (τ)

)r/p

w(x)dx

)1/r

,

F4 :=
(∫ ∞

0

(∫ ∞

x

[
sup

t�y<∞

u(y)p

V 2(y)

]q/p

w(t)dt

)r/p[
sup

x�y<∞

u(y)p

V 2(y)

]q/p

V r/p(x)w(x)dx

)1/r

,

and in this case c ≈ F1 +F2 +F3 +F4.
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