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CHARACTERIZATIONS OF BOUNDEDNESS FOR GENERALIZED

FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES

EIICHI NAKAI AND GAKU SADASUE

(Communicated by J. Soria)

Abstract. On generalized martingale Morrey spaces we give necessary and sufficient conditions
for the boundedness of generalized fractional integrals as martingale transforms.

1. Introduction

It is well known as the Hardy-Littlewood-Sobolev theorem that the fractional inte-
gral operators Iα on the Euclidean space R

n is bounded from Lp to Lq for 1 < p < q <
∞ , 0 < α < n and −n/p+α = −n/q . The fractional integrals are very useful tools to
analyze function spaces in harmonic analysis and the Hardy-Littlewood-Sobolev the-
orem was generalized and extended to various function spaces. In martingale theory,
based on the result by Watari [16, Theorem 1.1], Chao and Ombe [3] proved the bound-
edness of the fractional integrals for Hp , Lp , BMO and Lipschitz spaces of the dyadic
martingales. These fractional integrals were defined for more general martingales in
[14]. See also Hao and Jiao [8]. On the other hand, martingale Morrey spaces and
their generalization were introduced by [12] and [13], respectively, and the bounded-
ness of fractional integrals as martingale transforms were established. In this paper we
give necessary and sufficient conditions for the boundedness of fractional integrals on
generalized martingale Morrey spaces which are improvement of the results in [13].

Let (Ω,F ,P) be a probability space and let {Fn}n�0 be a nondecreasing se-
quence of sub-σ -algebras of F such that F = σ(

⋃
n Fn) . We suppose that every

σ -algebra Fn is generated by countable atoms, where B ∈ Fn is called an atom
(more precisely a (Fn,P)-atom), if any A ⊂ B with A ∈ Fn satisfies P(A) = P(B)
or P(A) = 0. Denote by A(Fn) the set of all atoms in Fn . The expectation operator
is denoted by E . Let Lp,loc be the set of all measurable functions such that | f |pχB is
integrable for all B ∈ A(F0) . If F0 = {Ω, /0} , then Lp,loc = Lp . An Fn -measurable
function g ∈ L1,loc is called the conditional expectation of f ∈ L1,loc relative to Fn if

E[gχBχG] = E[ f χBχG] for all B ∈ A(F0) and G ∈ Fn.

We denote by En f the conditional expectation of f relative to Fn . We say a sequence
( fn)n�0 in L1,loc is a martingale relative to {Fn}n�0 if it is adapted to {Fn}n�0 and
satisfies En[ fm] = fn for every n � m .

We first recall the definition of generalized fractional integrals of martingales.
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DEFINITION 1. ([13]) Let (γn)n�0 be a non-increasing sequence of non-negative
bounded functions adapted to {Fn}n�0 . For a martingale ( fn)n�0 , its generalized
fractional integral Iγ f = ((Iγ f )n)n�0 is defined as a martingale by

(Iγ f )n =
n

∑
k=0

γk−1( fk − fk−1)

with convention γ−1 = γ0 and f−1 = 0.

Our definition of Iγ is based on the notion of martingale transform in the sense
of Burkholder [2]. For quasi-normed spaces M1 and M2 of functions, we denote by
B(M1, M2) the set of all bounded martingale transforms from M1 to M2 , that is, Iγ ∈
B(M1, M2) means that

sup
n�0

‖(Iγ f )n‖M2 � C sup
n�0

‖ fn‖M1 ,

for all M1 -bounded martingales f = ( fn)n�0 .
Next we state the definition of generalized Morrey spaces.

DEFINITION 2. ([13]) For p ∈ [1,∞) and φ : (0,1] → (0,∞) , let

Lp,φ = { f ∈ Lp,loc : ‖ f‖Lp,φ < ∞},
where

‖ f‖Lp,φ = sup
n�0

sup
B∈A(Fn)

1
φ(P(B))

(
1

P(B)

∫
B
| f |p dP

)1/p

.

Then ‖ ·‖Lp,φ is a norm on Lp,φ . If λ ∈ R and φ(t) = tλ , then Lp,φ = Lp,λ which
was introduced in [12]. We also define weak Morrey spaces. Let L0 be the set of all
measurable functions.

DEFINITION 3. For p ∈ [1,∞) and φ : (0,1]→ (0,∞) , let

wLp,φ = { f ∈ L0 : ‖ f‖wLp,φ < ∞},
where

‖ f‖wLp,φ = sup
n�0

sup
B∈A(Fn)

1
φ(P(B))

(
supt>0 t pP(B∩{| f |> t})

P(B)

)1/p

.

Then ‖ · ‖wLp,φ is a quasi-norm on wLp,φ . It is easy to see that

‖ f‖wLp,φ � ‖ f‖Lp,φ , f ∈ Lp,φ . (1)

REMARK 1. If (Ω,F ,P) is a σ -finite measure space and each atom in A(F0)
has a finite measure, then we also define generalized Morrey spaces Lp,φ and weak
Morrey spaces wLp,φ by using φ : (0,∞) → (0,∞) instead of φ : (0,1] → (0,∞) . See
[15] for martingales on σ -finite measure spaces.
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We denote by MLp,φ the set of all Lp,φ -bounded martingales f = ( fn)n�0 . In this
paper we give necessary and sufficient conditions on p,q,φ ,ψ and γ = (γn)n�0 for

sup
n�0

‖(Iγ f )n‖Lq,ψ � C sup
n�0

‖ fn‖Lp,φ , f ∈ MLp,φ ,

or
sup
n�0

‖(Iγ f )n‖wLq,ψ � C sup
n�0

‖ fn‖Lp,φ , f ∈ MLp,φ .

It is known that, if there exists a positive constant C0 such that φ(t) � C0φ(s) for
0 < s � t � 1, then, for f ∈ L1,loc and its corresponding martingale ( fn)n�0 ; fn = En f ,
we have

‖ f‖Lp,φ � sup
n�0

‖ fn‖Lp,φ � C0‖ f‖Lp,φ , (2)

see [12, 13].
Next, for a function ρ : (0,1] → (0,∞) such that

∫ 1
0

ρ(t)
t dt < ∞ , let

γn =
∫ bn

0

ρ(t)
t

dt, bn = ∑
B∈A(Fn)

P(B)χB, n = 0,1,2, · · · . (3)

In this case we denote Iγ by Iρ , namely, for a martingale f = ( fn)n�0 ,

Iρ f = ((Iρ f )n)n�0, (Iρ f )n =
n

∑
n=0

(∫ bk−1

0

ρ(t)
t

dt

)
( fk − fk−1). (4)

If ρ(t) = αtα and α > 0, then
∫ bk−1
0

ρ(t)
t dt = (bk−1)α and Iρ is the fractional integrals

introduced by [12] as a generalization of Iα on dyadic martingales investigated in [3].
As corollaries of boundedness of Iγ we get necessary and sufficient conditions for the
boundedness of Iρ . See [9, 10, 4] for Iρ on R

n .
We state main results in the next section. To prove them we establish Doob’s

inequality on martingale Morrey spaces and show several lemmas in Sections 3 and 4,
respectively. Then we prove main results in Section 5.

At the end of this section, we make some conventions. Throughout this paper, we
always use C to denote a positive constant that is independent of the main parameters
involved but whose value may differ from line to line. Constants with subscripts, such
as Cp , is dependent on the subscripts. If f �Cg , we then write f � g or g � f ; and if
f � g � f , we then write f ∼ g .

2. Main results

In this section we state our main results. Theorem 1 gives a sufficient condition
for the boundedness of Iγ which is improvement of [13], and Theorems 2–4 give three
kinds of necessary and sufficient condition under some different restriction which are
independent each other. As corollaries we state results on the boundedness of Iρ . At
the end of this section we give examples to show the independence of Theorems 2–4.
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First we state some notion on functions defined on an interval. Let I be an interval
in (0,∞) . A function θ : I → (0,∞) is said to be almost increasing (almost decreasing)
if there exists a positive constant C such that

θ (r) � Cθ (s) (θ (r) � Cθ (s)) for r � s. (5)

A function θ : I → (0,∞) is said to satisfy the doubling condition if there exists a
positive constant C such that

C−1 � θ (r)
θ (s)

� C for
1
2

� r
s

� 2. (6)

For functions θ ,κ : I → (0,∞) , we denote θ (r)∼κ(r) if there exists a positive constant
C such that

C−1θ (r) � κ(r) � Cθ (r) for r ∈ I.

Let φi : (0,1]→ (0,∞) , i = 1,2. If φ1 ∼ φ2 , then Lp,φ1 = Lp,φ2 with equivalent norms.
Recall that

bn = ∑
B∈A(Fn)

P(B)χB.

The first result is a sufficient condition for the boundedness of Iγ .

THEOREM 1. Let 1 � p < q < ∞ and φ : (0,1]→ (0,∞) . Assume that φ is almost
decreasing. If there exists a positive constant C such that

n

∑
k=0

(γk−1 − γk)φ(bk)+ γnφ(bn) � Cφ(bn)p/q for all n � 0 (7)

with convention γ−1 = γ0 , then Iγ ∈ B(Lp,φ ,wLq,φ p/q) . Moreover, if 1 < p < q < ∞ ,
then Iγ ∈ B(Lp,φ ,Lq,φ p/q) .

REMARK 2. Let supB∈A(Fn) P(B) → 0 (n → ∞) . For example the dyadic mar-
tingales on the interval [0,1] . If φ(r) → 0 (r → 0) , then Lp,φ = {0} . Actually, for
f ∈ Lp,φ and B0 ∈ A(F0) ,∫

B0

| f |p dP = ∑
B∈A(Fn)

∫
B∩B0

| f |p dP � ∑
B∈A(Fn)

φ(P(B))pP(B∩B0)‖ f‖Lp,φ

� sup
B∈A(Fn)

φ(P(B))p ∑
B∈A(Fn)

P(B∩B0)‖ f‖Lp,φ

= sup
B∈A(Fn)

φ(P(B))pP(B0)‖ f‖Lp,φ → 0 (n → ∞).

Therefore, the almost decreasingness of φ is not a strong assumption.

REMARK 3. For an almost decreasing function φ , let ψ(r) = inf0<t�r φ(t) . Then
ψ is non-increasing and satisfies the relation φ ∼ ψ .
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Now we state necessary and sufficient conditions for the boundedness of Iγ . The-
orems 2–4 below are independent each other, see Examples 1–3.

THEOREM 2. Let 1 � p < q < ∞ and φ : (0,1]→ (0,∞) . Assume that φ is almost
decreasing and that there exists a positive constant Cp,φ such that

∫ r

0

φ(t)t1/p

t
dt � Cp,φ φ(r)r1/p for all r ∈ (0,1]. (8)

Then Iγ ∈ B(Lp,φ ,wLq,φ p/q) if and only if (7) holds for some constant C . Moreover, if
1 < p < q < ∞ , then Iγ ∈ B(Lp,φ ,wLq,φ p/q) is equivalent to Iγ ∈ B(Lp,φ ,Lq,φ p/q) .

REMARK 4. If φ is almost decreasing and (8) (or (11) bellow) holds for some
positive constant Cp,φ , then the function t �→ φ(t)t1/p (or t → φ(t)t ) is almost increas-
ing, see the proof of Lemma 5. Hence φ satisfies the doubling condition (6).

REMARK 5. If the function t �→ φ(t)t1/p is almost decreasing, then

inf
t∈(0,1]

φ(t)t1/p > 0.

This implies Lp,φ (B0) = Lp(B0) for all B0 ∈ A(F0) . Actually, for f ∈ Lp,loc , B0 ∈
A(F0) and B ∈ ∪∞

n=0A(Fn) with B ⊂ B0 , we have

1
φ(P(B))

(
1

P(B)

∫
B
| f |p dP

)1/p

�
‖ f‖Lp(B0)

φ(P(B))P(B)1/p
�

‖ f‖Lp(B0)

inft∈(0,1] φ(t)t1/p
.

Therefore, the almost increasingness of φ(t)t1/p is not a strong assumption.

THEOREM 3. Let 1 � p < q < ∞ and φ : (0,1] → (0,∞) . Assume that φ is al-
most decreasing, that t �→ φ(t)t1/p is almost increasing and that there exists a positive
constant Cγ,φ such that

n

∑
k=0

(γk−1 − γk)φ(bk) � Cγ,φ γnφ(bn) for all n � 0 (9)

with convention γ−1 = γ0 . Then Iγ ∈ B(Lp,φ ,wLq,φ p/q) if and only if there exists a
positive constant C such that

γn � Cφ(bn)p/q−1 for all n � 0. (10)

Moreover, if 1 < p < q < ∞ , then Iγ ∈ B(Lp,φ ,wLq,φ p/q) is equivalent to Iγ ∈
B(Lp,φ ,Lq,φ p/q) .
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THEOREM 4. Let φ ,ψ : (0,1] → (0,∞) . Assume that φ and ψ are almost de-
creasing and that there exists a positive constant Cφ such that∫ r

0
φ(t)dt � Cφ φ(r)r for all r ∈ (0,1]. (11)

Then the following are equivalent:

(i) There exists a positive constant C such that

n

∑
k=0

(γk−1− γk)φ(bk)+ γnφ(bn) � Cψ(bn) for all n � 0 (12)

with convention γ−1 = γ0 .

(ii) Iγ ∈ B(L1,φ ,L1,ψ) .

(iii) Iγ ∈ B(L1,φ ,wL1,ψ) .

REMARK 6. In Theorem 4, to prove (ii) ⇒ (iii) , there is no need to assume (11).

REMARK 7. If (Ω,F ,P) is a σ -finite measure space and each atom in A(F0)
has a finite measure, then we also have the same results as Theorems 1–4 by using
φ : (0,∞) → (0,∞) instead of φ : (0,1] → (0,∞) .

Next, for a function ρ : (0,1] → (0,∞) such that
∫ 1
0

ρ(t)
t dt < ∞ , let Iρ be the

generalized fractional integral defined by (4). If {Fn}n�0 is regular, that is, there
exists R � 2 such that

En f � REn−1 f (13)

for all non-negative integrable function f , then the inequality bn � bn−1 � Rbn holds,
see [12, Lemma 3.1]. Hence, if φ satisfies the doubling condition (6), then

n

∑
k=0

(γk−1 − γk)φ(bk) =
n

∑
k=1

φ(bk)
∫ bk−1

bk

ρ(t)
t

dt

∼
n

∑
k=1

∫ bk−1

bk

φ(t)ρ(t)
t

dt

=
∫ b0

bn

φ(t)ρ(t)
t

dt.

That is, (7) is equivalent to

φ(bn)
∫ bn

0

ρ(t)
t

dt +
∫ b0

bn

φ(t)ρ(t)
t

dt � Cφ(bn)p/q for all n � 0. (14)

This type inequality was first introduced by Gunawan [6] to extend the result of Adams
[1] on Morrey spaces defined on R

n to generalized Morrey spaces.
Recall that the almost decreasingness of φ and the condition (8) (or (11)) imply

the doubling condition (6) of φ , see Remark 4. For the boundedness of Iρ , we have the
following corollaries:
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COROLLARY 1. Let {Fn}n�0 be regular, 1 � p < q < ∞ and φ : (0,1]→ (0,∞) .
Assume that φ is almost decreasing and satisfies the doubling condition (6). If (14)
holds for some positive constant C , then Iρ ∈ B(Lp,φ ,wLq,φ p/q) . Moreover, if 1 < p <

q < ∞ , then Iρ ∈ B(Lp,φ ,Lq,φ p/q) .

COROLLARY 2. Let {Fn}n�0 be regular, 1 � p < q < ∞ and φ : (0,1]→ (0,∞) .
Assume that φ is almost decreasing and that (8) holds for some positive constant
Cp,φ . Then Iρ ∈ B(Lp,φ ,wLq,φ p/q) , if and only if (14) holds for some positive con-
stant C . Moreover, if 1 < p < q < ∞ , then Iρ ∈ B(Lp,φ ,wLq,φ p/q) is equivalent to
Iρ ∈ B(Lp,φ ,Lq,φ p/q) .

COROLLARY 3. Let {Fn}n�0 be regular, 1 � p < q < ∞ and φ : (0,1]→ (0,∞) .
Assume that φ is almost decreasing and satisfies the doubling condition (6) and that
there exists a positive constant Cρ ,φ such that

∫ 1

r

φ(t)ρ(t)
t

dt � Cρ ,φ φ(r)ρ(r) for all r ∈ (0,1]. (15)

Then Iρ ∈ B(Lp,φ ,wLq,φ p/q) if and only if there exists a positive constant C such that

∫ bn

0

ρ(t)
t

dt � Cφ(bn)p/q−1 for all n � 0. (16)

Moreover, if 1 < p < q < ∞ , then Iρ ∈ B(Lp,φ ,wLq,φ p/q) is equivalent to Iγ ∈
B(Lp,φ ,Lq,φ p/q) .

COROLLARY 4. Let {Fn}n�0 be regular and φ ,ψ : (0,1]→ (0,∞) . Assume that
φ and ψ are almost decreasing and that (11) holds for some positive constant Cφ .
Then the following are equivalent:

(i) There exists a positive constant C such that

φ(bn)
∫ bn

0

ρ(t)
t

dt +
∫ b0

bn

φ(t)ρ(t)
t

dt � Cψ(bn) for all n � 0, (17)

(ii) Iρ ∈ B(L1,φ ,L1,ψ ) .

(iii) Iρ ∈ B(L1,φ ,wL1,ψ ) .

REMARK 8. The definition (4) is an improvement of [13]. Hence Corollary 1
is also improvement of the corresponding result in [13]. See [5] for necessary and
sufficient conditions for the boundedness of Iρ on generalized Morrey spaces defined
on R

n .

We denote Iρ by Iα if ρ(t) = αtα and α > 0. If φ(t) = tλ , then Lp,φ = Lp,λ
(see [12]). In this case (14) means tα+λ � Ctλ p/q if α + λ < 0. Then we have the
following corollary.
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COROLLARY 5. Let {Fn}n�0 be regular, 1 � p < q < ∞ and −1/p� λ <−α <
0 . Then Iα ∈ B(Lp,λ ,wLq,λ p/q) if and only if λ p/q � α +λ . Moreover, if 1 < p < q <
∞ , then Iα ∈ B(Lp,λ ,wLq,λ p/q) is equivalent to Iα ∈ B(Lp,λ ,Lq,λ p/q) .

If F0 = {Ω, /0} and φ(t) = t−1/p , then Lp,φ = Lp . In this case (14) means
tα−1/p �Ct−1/q if α < 1/p . Then, for the boundedness of Iα on Lebesgue spaces, we
have the following corollary.

COROLLARY 6. Let {Fn}n�0 be regular, F0 = {Ω, /0} , 1 � p < q < ∞ and 0 <
α < 1/p. Then Iα ∈ B(Lp,wLq) if and only if −1/q � α −1/p. Moreover, if 1 < p <
q < ∞ , then Iα ∈ B(Lp,wLq) is equivalent to Iα ∈ B(Lp,Lq) .

The following examples show the independence of Corollary 2–4, which also show
the independence of Theorems 2–4 by setting γn =

∫ bn
0

ρ(t)
t dt .

EXAMPLE 1. Let 1 < p < q < ∞ , μ < 0, β = (p/q−1)μ +1 and

ρ(r) = (log(e/r))−β , φ(r) = (log(e/r))−μ .

Then (8) and (14) hold, but (15) does not hold. More precisely,

∫ r

0

φ(t)t1/p

t
dt ∼ φ(r)r1/p

and

φ(r)
∫ r

0

ρ(t)
t

dt ∼
∫ 1

r

φ(t)ρ(t)
t

dt ∼ (log(e/r))1−β−μ = φ(r)p/q,

but ∫ 1

r

φ(t)ρ(t)
t

dt �� φ(r)ρ(r).

EXAMPLE 2. Let 1 < p < q < ∞ , μ > 0, α = 1/p−1/q , β = (p/q−1)μ and

ρ(r) = rα(log(e/r))−β , φ(r) = r−1/p(log(e/r))−μ .

Then (15) and (16) hold, but (8) does not hold. More precisely,

∫ 1

r

φ(t)ρ(t)
t

dt � φ(r)ρ(r)

and ∫ r

0

ρ(t)
t

dt ∼ ρ(r) = φ(r)p/q−1,

but ∫ r

0

φ(t)t1/p

t
dt =

∫ r

0

(log(e/t))−μ

t
dt �� (log(e/t))−μ = φ(r)r1/p.
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EXAMPLE 3. Let 1 < p < q < ∞ , 0 < λ < 1, β > 1 and

ρ(r) = (log(e/r))−β , φ(r) = r−λ , ψ(r) = r−λ (log(e/r))1−β .

Then (11) and (17) hold, but (14) does not hold. More precisely,
∫ r

0
φ(t)dt ∼ r1−λ = φ(r)r

and

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ 1

r

φ(t)ρ(t)
t

dt ∼ r−λ (log(e/r))1−β = ψ(r),

but

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ 1

r

φ(t)ρ(t)
t

dt ∼ r−λ (log(e/r))1−β �� r−λ p/q = φ(r)p/q.

3. Doob’s inequality on martingale Morrey spaces

In this section we establish Doob’s inequality on martingale Morrey spaces which
we use to prove the boundedness of Iγ .

For a martingale f = ( fn)n�0 relative to {Fn}n�0 , the maximal functions are
defined by

Mn f = sup
0�m�n

| fm|, M f = sup
n�0

| fn|.

For a function f ∈ Lp,loc with p ∈ [1,∞) , let fn = En f , n � 0. Then ( fn)n�0 is a
martingale and lim

n→∞
fn = f in Lp(B) for each B ∈ A(F0) . For this reason a function

f ∈ L1,loc and its corresponding martingale ( fn)n�0 with fn = En f will be denoted by
the same symbol f . In this case

Mn f = sup
0�m�n

|Em f |, M f = sup
n�0

|En f | for f ∈ L1,loc.

It is known as Doob’s inequality that (see for example [17, pages 20–21])

‖M f‖Lp � p
p−1

‖ f‖Lp , f ∈ Lp (p > 1), (18)

‖M f‖wL1 � ‖ f‖L1 , f ∈ L1. (19)

In this section we extend (18) and (19) to generalized Morrey norms.

THEOREM 5. Let p ∈ [1,∞) and φ : (0,1] → (0,∞) . Assume that φ is almost
decreasing. Then there exists a positive constant Cp,φ such that, for any f ∈ Lp,φ ,

‖M f‖Lp,φ � Cp,φ‖ f‖Lp,φ , if p > 1,

‖M f‖wL1,φ � C1,φ‖ f‖L1,φ , if p = 1.
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Proof. Case 1: p > 1. For any B ∈ A(Fm) , m � 0, let f = g+h and g = f χB .
Then, using (18), we have∫

B
(Mg)p dP �

∫
Ω
(Mg)p dP �

∫
Ω
|g|p dP =

∫
B
| f |p dP.

Hence
1

φ(P(B))

(
1

P(B)

∫
B
(Mg)p dP

)1/p

� ‖ f‖Lp,φ . (20)

Next, take Bn ∈ A(Fn) , n = 0,1, · · · ,m , such that B = Bm ⊂ Bm−1 ⊂ ·· · ⊂ B0. Then,
for a.s. ω ∈ B ,

Enh(ω) =

⎧⎨
⎩

0 (n � m)
1

P(Bn)

∫
Bn

hdP (n < m).

If n < m , then

|Enh(ω)| �
(

1
P(Bn)

∫
Bn

|h|p dP

)1/p

� φ(P(Bn))‖ f‖Lp,φ � φ(P(B))‖ f‖Lp,φ ,

since φ is almost decreasing. Hence

Mh � φ(P(B))‖ f‖Lp,φ on B . (21)

Then
1

φ(P(B))

(
1

P(B)

∫
B
(Mh)p dP

)1/p

� ‖ f‖Lp,φ . (22)

By (20), (22) and the inequality M f � Mg+Mh , we have

1
φ(P(B))

(
1

P(B)

∫
B
(M f )p dP

)1/p

� ‖ f‖Lp,φ ,

which shows the conclusion.
Case 2: p = 1. Let g and h be as in Case 1. Then, using (19), we have, for all

t > 0,

tP(B∩{Mg > t}) � tP(Mg > t) �
∫

Ω
|g|dP =

∫
B
| f |dP

and then
1

φ(P(B))
tP(B∩{Mg > t})

P(B)
� ‖ f‖L1,φ .

We also have (21) for the case p = 1. Then

1
φ(P(B))

tP(B∩{Mh > t})
P(B)

� ‖ f‖L1,φ .

Therefore we have the conclusion. �
From Theorem 5 we have the following corollary for martingales:
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COROLLARY 7. Let p ∈ [1,∞) and φ : (0,1] → (0,∞) . Assume that φ is almost
decreasing. Then there exists a positive constant Cp,φ such that, for any f = ( fn)n�0 ∈
MLp,φ ,

‖M f‖Lp,φ � Cp,φ sup
n�0

‖ fn‖Lp,φ , if p > 1,

‖M f‖wL1,φ � C1,φ sup
n�0

‖ fn‖L1,φ , if p = 1.

4. Lemmas

In this section we show several lemmas to prove the main results.

LEMMA 1. Let p∈ [1,∞) and φ : (0,1]→ (0,∞) . Let (γn)n�0 be a non-increasing
sequence of non-negative bounded functions adapted to {Fn}n�0 . Let f = ( fn)n�0 ∈
MLp,φ . Suppose that supn�0‖ fn‖Lp,φ = 1 . Then

|(Iγ f )n| �
n

∑
k=0

(γk−1 − γk)φ(bk)+ γnφ(bn) (23)

for all n � 0 with convention γ−1 = γ0 and f−1 = 0 .

Proof. First note that
| fn| � φ(bn). (24)

Actually, for any B ∈ A(Fn) and for a.s. ω ∈ B , we have

| fn(ω)| =
∣∣∣∣ 1
P(B)

∫
B

fn dP

∣∣∣∣�
(

1
P(B)

∫
B
| fn|p dP

)1/p

� φ(P(B)),

since ‖ fn‖Lp,φ � 1. Hence, for n = 0, (23) is easily verified. For n � 1, by resummation
and the assumption on (γn)n�0 , we have

|(Iγ f )n| =
∣∣∣∣∣γ0 f0 +

n

∑
k=1

γk−1( fk − fk−1)

∣∣∣∣∣
=

∣∣∣∣∣
n

∑
k=0

γk−1 fk −
n

∑
k=0

γk fk + γn fn

∣∣∣∣∣
�

n

∑
k=0

(γk−1 − γk)| fk|+ γn| fn|.

Hence, by (24) we obtain (23). �

LEMMA 2. Let (γn)n�0 be a non-increasing sequence of non-negative bounded
functions adapted to {Fn}n�0 . Let f = ( fn)n�0 be a martingale. Then,

|(Iγ f )m − (Iγ f )n−1| � 2γn−1M f (25)

for all 0 � n � m with convention (Iγ f )−1 = f−1 = 0 and γ−1 = γ0 .
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Proof. If n = m , then

|(Iγ f )m − (Iγ f )n−1| = |γn−1( fn − fn−1)| � 2γn−1M f .

If n < m , then, by resummation, we have

|(Iγ f )m − (Iγ f )n−1| =
∣∣∣∣∣

m

∑
k=n

γk−1( fk − fk−1)

∣∣∣∣∣
=

∣∣∣∣∣
m

∑
k=n

γk−1 fk −
m−1

∑
k=n−1

γk fk

∣∣∣∣∣
�

m−1

∑
k=n

(γk−1− γk)| fk|+ γm−1| fm|+ γn−1| fn−1|

�
m−1

∑
k=n

(γk−1− γk)M f + γm−1M f + γn−1M f

= 2γn−1M f .

This is the conclusion. �

LEMMA 3. Let (γn)n�0 be a non-increasing sequence of non-negative bounded
functions adapted to {Fn}n�0 . Let f = ( fn)n�0 ∈ML1,φ such that supn�0 ‖ fn‖L1,φ = 1 .
If 0 � n � m, then

χB

P(B)

∫
B
|(Iγ f )m − (Iγ f )n|dP � 2χBγnφ(P(B)) for all B ∈ A(Fn).

Proof. If n = m , then it is clear. If n+1 = m , then

|(Iγ f )m − (Iγ f )n| = |γm−1( fm − fm−1)| � γn| fm|+ γn| fn|.

If n+2 � m , then, by resummation as in the proof of the previous lemma, we have

|(Iγ f )m − (Iγ f )n| �
m−1

∑
k=n+1

(γk−1− γk)| fk|+ γm−1| fm|+ γn| fn|.

Using the fact | fk| � Ek| fm| , where n � k � m , for B ∈ A(Fn) , we have

1
P(B)

∫
B
(γk−1 − γk)| fk|dP � 1

P(B)

∫
B
(γk−1 − γk)| fm|dP,

and
1

P(B)

∫
B

γn| fn|dP � 1
P(B)

∫
B

γn| fm|dP.
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Then,

χB

P(B)

∫
B
|(Iγ f )m − (Iγ f )n|dP

� χB

P(B)

∫
B

(
m−1

∑
k=n+1

(γk−1 − γk)| fm|+ γm−1| fm|+ γn| fm|
)

dP

=
χB

P(B)

∫
B
2γn| fm|dP

� 2χBγnφ(P(B))‖ fm‖L1,φ .

Since ‖ fm‖L1,φ � 1, we have the conclusion. �

LEMMA 4. Let 1 � p < q < ∞ and φ : (0,1] → (0,∞) . Assume that φ is al-
most decreasing and that t �→ φ(t)t1/p is almost increasing. Then, for any atom
B ∈ ∪∞

n=0A(Fn) , its characteristic function χB is in Lp,φ and

‖χB‖Lp,φ � C
φ(P(B))

,

where the positive constant C is independent of B.

Proof. Let B′ ∈ ∪∞
n=0A(Fn) such that P(B′ ∩B) > 0. Then, B′ ⊂ B or B′ ⊃ B . If

B′ ⊂ B , then

(
1

P(B′)

∫
B′

χB dP

)1/p

=
(

1
P(B)

∫
B

χB dP

)1/p

= 1

and φ(P(B)) � φ(P(B′)) , since φ is almost decreasing. Hence,

1
φ(P(B′))

(
1

P(B′)

∫
B′

χB dP

)1/p

� 1
φ(P(B))

(
1

P(B)

∫
B

χB dP

)1/p

=
1

φ(P(B))
.

If B′ ⊃ B , then (∫
B′

χB dP

)1/p

=
(∫

B
χB dP

)1/p

and φ(P(B))P(B)1/p � φ(P(B′))P(B′)1/p , since t �→ φ(t)t1/p is almost increasing.
Hence,

1

φ(P(B′))P(B′)1/p

(∫
B′

χB dP

)1/p

� 1

φ(P(B))P(B)1/p

(∫
B

χB dP

)1/p

=
1

φ(P(B))
.

Therefore, we have the conclusion. �
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LEMMA 5. Let 1 � p < q < ∞ and φ : (0,1] → (0,∞) . Assume that φ is almost
decreasing and that (8) holds some positive constant Cp,φ . For any n and any atom
B ∈ A(Fn) , take a sequence

B = Bn ⊂ Bn−1 ⊂ ·· · ⊂ Bk ⊂ ·· · ⊂ B0, Bk ∈ A(Fk),

and let

f B =
n−1

∑
k=0

φ(P(Bk))(χBk − χBk+1)+ φ(P(Bn))χBn . (26)

Then f B is in Lp,φ and

‖ f B‖Lp,φ � C,

where the positive constant C is independent of B and n.

Proof. First note that, from the almost decreasingness of φ and (8) it follows that

φ(r)r1/p �
∫ r

0

φ(t)t1/p

t
dt �

∫ s

0

φ(t)t1/p

t
dt � φ(s)s1/p for r < s .

This shows that t �→ φ(t)t1/p is almost increasing. Then we have

∫ r

0
φ(t)p dt =

∫ r

0

(φ(t)t1/p)p

t
dt

� (φ(r)r1/p)p−1
∫ r

0

φ(t)t1/p

t
dt � (φ(r)r1/p)p = φ(r)pr for r > 0.

(27)

See also Lemma 7.1 in [11] for these type inequalities.
Now, for any atom B′ ∈ ∪∞

�=1A(F�) , if P(B′ ∩B0) = 0, then

∫
B′
| f B|p dP = 0.

If P(B′ ∩B0) > 0, then B′ ⊂ B0 . Let k0 = max{k � n : B′ ⊂ Bk} . Then we have three
cases:

k0 < n and B′ = Bk0 ,

k0 < n and B′ ⊂ Bk0 \Bk0+1,

k0 = n and B′ ⊂ Bk0 = Bn.

In all cases we have

(
1

P(B′)

∫
B′
| f B|p dP

)1/p

�
(

1
P(Bk0)

∫
Bk0

| f B|p dP

)1/p

,
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since φ is almost decreasing. Then we have

‖ f B‖Lp,φ � sup
0�k�n

1
φ(P(Bk))

(
1

P(Bk)

∫
Bk

| f B|p dP

)1/p

.

By the definition of f B and (27) we have

∫
Bk

| f B|p dP =
n−1

∑
j=k

φ(P(Bj))p(P(Bj)−P(Bj+1))+ φ(P(Bn))pP(Bn)

=
n−1

∑
j=k

∫ P(Bj)

P(Bj+1)
φ(P(Bj))p dt +

∫ P(Bn)

0
φ(P(Bn))p dt

�
∫ P(Bk)

0
φ(t)p dt � φ(P(Bk))pP(Bk).

This shows that

1
φ(P(Bk))

(
1

P(Bk)

∫
Bk

| fn|p dP

)1/p

� 1 for 0 � k � n,

and the desired conclusion. �

5. Proofs of main results

In this section we prove Theorems 1–4. First we show the following pointwise
estimate by the method of Hedberg [7].

PROPOSITION 1. Under the assumption in Theorem 1, there exists a positive con-
stant C such that, for all f = ( fn)n�0 ∈ MLp,φ satisfying supn�0‖ fn‖Lp,φ = 1 ,

M(Iγ f ) � C(M f )p/q. (28)

Proof. We may assume that φ is non-increasing by Remark 3. Let f = ( fn)n�0 ∈
MLp,φ such that supn�0‖ fn‖Lp,φ = 1. Combining (7) and Lemmas 1 and 2, we have,
for all n � 0,

|(Iγ f )n| � Cφ(bn)p/q, (29)

and, if 0 � n � m ,
|(Iγ f )m − (Iγ f )n−1| � Cφ(bn)p/q−1M f , (30)

with convention (Iγ f )−1 = 0, since (7) implies γn−1 � φ(bn)p/q−1 . Let

N =
∞

∑
n=0

χ{φ(bn)�M f},

and define measurable subsets Ω1 , Ω2 and Ω3 by

Ω1 = {N = ∞}, Ω2 = {N = 0}, Ω3 = {0 < N < ∞}.
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Case 1: Let ω ∈ Ω1 . Since φ(bn) in non-decreasing with respect to n , we have
φ(bn(ω)) � (M f )(ω) for all n � 0. Hence, we have

|(Iγ f )n(ω)| � Cφ(bn(ω))p/q � C(M f )(ω)p/q

by (29), that is, (28) holds on Ω1 .
Case 2: Let ω ∈ Ω2 . Combining the fact M f (ω) � φ(b0(ω)) and (30) with

n = 0, we have

|(Iγ f )m(ω)| � φ(b0(ω))p/q−1M f (ω) � (M f (ω))p/q−1M f (ω) = (M f (ω))p/q,

that is, (28) holds on Ω2 .
Case 3: Let ω ∈ Ω3 . Then, we can take an integer n such that

φ(bn−1(ω)) � M f (ω) and φ(bn(ω)) > M f (ω).

If m � n−1, then we have |(Iγ f )m(ω)| � CM f (ω)p/q by (29). If m � n , then, using
(29) and (30), we have

|(Iγ f )m(ω)| � |(Iγ f )n−1(ω)|+ |(Iγ f )m(ω)− (Iγ f )n−1(ω)|
� φ(bn−1(ω))p/q + φ(bn(ω))p/q−1M f (ω)

� M f (ω)p/q +{M f (ω)}p/q−1M f (ω)

� M f (ω)p/q.

That is, (28) holds on Ω3 and we have the conclusion. �
Now, using the above pointwise estimate, we prove Theorem 1.

Proof of Theorem 1. Let f = ( fn)n�0 ∈ MLp,φ such that supn�0‖ fn‖Lp,φ = 1.
Then, using (28) and Corollary 7, we have

sup
n�0

‖(Iγ f )n‖wL
q,φ p/q

� ‖M(Iγ f )‖wL
q,φ p/q

� ‖(M f )p/q‖wL
q,φ p/q

= (‖M f‖wLp,φ )p/q �
(

sup
n�0

‖ fn‖Lp,φ

)p/q

= 1.

Moreover, 1 < p < q < ∞ , then, using the boundedness of M on MLp,φ , we have the
desired conclusion. �

Proof of Theorem 2. It is enough to prove the necessity by Theorem 1. For B ∈
A(Fn) , let f B be the function defined by (26). Then ‖ f B‖Lp,φ � 1 by Lemma 5 and

Ek f B � χBφ(bk), 0 � k � n. (31)

We regard f B as a martingale f B = (Ek f B)k�0 . By resummation and (31), we obtain

χB(Iγ f B)n = χB

n

∑
k=0

(γk−1− γk)Ek f B + χBγnEn f B

� χB

(
n

∑
k=0

(γk−1 − γk)φ(bk)+ χBγnφ(bn)

)
.
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Then, noting (2), we have

χB

(
n

∑
k=0

(γk−1 − γk)φ(bk)+ γnφ(bn)

)
� χB(Iγ f B)n

= χB sup
t>0

t

(
P(B∩{|(Iγ f B)n| > t})

P(B)

)1/q

� χBφ(P(B))p/q‖(Iγ f B)n‖wL
q,φ p/q

� χBφ(bn)p/q sup
k�0

‖(Iγ f B)k‖wL
q,φ p/q

� χBφ(bn)p/q sup
k�0

‖Ek f B‖Lp,φ

� χBφ(bn)p/q‖ f B‖Lp,φ

� χBφ(bn)p/q.

This shows the conclusion. �

Proof of Theorem 3. If (9) and (10) hold, then (7) holds. Therefore, by Theorem 1,
we have Iγ ∈ B(Lp,φ ,wLq,φ p/q) if 1 � p < q < ∞ and Iγ ∈ B(Lp,φ ,Lq,φ p/q) if 1 < p <

q < ∞ . Conversely, assume that (9) holds and that Iγ ∈ B(Lp,φ ,wLq,φ p/q) . For the
martingale χB = (EmχB)m�0 with B ∈ A(Fn) , we have

(Iγ χB)n =
n

∑
k=0

(γk−1 − γk)EkχB + γnχB (32)

by resummation. Therefore, noting that γk−1 − γk � 0 and using the fact ‖χB‖Lp,φ �
C/φ(P(B)) (Lemma 4) and (2), we have

χBγn � χB(Iγ χB)n

= χB sup
t>0

t

(
P(B∩{|(Iγ χB)n| > t})

P(B)

)1/q

� χBφ(P(B))p/q‖(Iγ χB)n‖wL
q,φ p/q

� χBφ(bn)p/q sup
k�0

‖(Iγ χB)k‖wL
q,φ p/q

� χBφ(bn)p/q sup
k�0

‖EkχB‖Lp,φ

� χBφ(bn)p/q‖χB‖Lp,φ

� χBφ(bn)p/q−1.

Then (10) holds. �

Proof of Theorem 4. Proof of (i) ⇒ (ii) : Let f = ( fn)n�0 ∈ ML1,φ such that
supn�0 ‖ fn‖L1,φ = 1. Combining (12) and Lemmas 1 and 3, we have

|(Iγ f )m| � Cψ(bm) for all m � 0 , (33)
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and, if 0 � n � m ,

1
P(B)

∫
B
|(Iγ f )m − (Iγ f )n|dP � Cψ(P(B)) for all B ∈ A(Fn) . (34)

Now, for any m,n and any atom B ∈ A(Fn) , if m � n , then, using (33) and the almost
decreasingness of ψ , we have

|(Iγ f )m| � ψ(bm) � ψ(bn) = ψ(P(B)) on B .

Hence
1

P(B)

∫
B
|(Iγ f )m|dP � ψ(P(B)).

If m > n , then, using (33) and (34), we have

1
P(B)

∫
B
|(Iγ f )m|dP � 1

P(B)

∫
B
|(Iγ f )n|dP+

1
P(B)

∫
B
|(Iγ f )m − (Iγ f )n|dP

� ψ(P(B)).

From these two cases, we have

sup
m�0

‖(Iγ f )m‖L1,ψ � 1,

which shows Iγ ∈ B(L1,φ ,L1,ψ ) .
Proof of (ii) ⇒ (iii) : It is clear.
Proof of (iii) ⇒ (i) : Taking p = q = 1 and replacing φ p/q by ψ in the proof of

Theorem 2 above, we have the conclusion. �

Acknowledgement. The authors would like to thank the referee for her/his care-
ful reading and useful comments. The first author was supported by Grant-in-Aid
for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Sci-
ence. The second author was supported by Grant-in-Aid for Scientific Research (C),
No. 16K05203, Japan Society for the Promotion of Science.

RE F ER EN C ES

[1] D. R. ADAMS, A note on Riesz potentials, Duke Math. J., 42, 4 (1975), 765–778.
[2] D. L. BURKHOLDER, Martingale transforms, Ann. Math. Stat., 37 (1966), 1494–1504.
[3] J.-A. CHAO AND H. OMBE, Commutators on dyadic martingales, Proc. Japan Acad., 61, Ser. A

(1985), 35–38.
[4] ERIDANI, H. GUNAWAN AND E. NAKAI, On generalized fractional integral operators, Sci. Math.

Jpn., 60 (2004), 539–550.
[5] ERIDANI, H. GUNAWAN, E. NAKAI AND Y. SAWANO, Characterizations for the generalized frac-

tional integral operators on Morrey spaces, Math. Inequal. Appl., 17, 2 (2014), 761–777.
[6] H. GUNAWAN, A note on the generalized fractional integral operators, J. Indones. Math. Soc., 9, 1

(2003), 39–43.
[7] L. I. HEDBERG, On certain convolution inequalities, Proc. Amer. Math. Soc., 36 (1972), 505–510.



FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES 947

[8] Z. HAO AND Y. JIAO, Fractional integral on martingale Hardy spaces with variable exponents, Fract.
Calc. Appl. Anal. 18, 5 (2015), 1128–1145.

[9] E. NAKAI, On generalized fractional integrals, Taiwanese J. Math., 5, 3 (2001), 587–602.
[10] E. NAKAI, On generalized fractional integrals on the weak Orlicz spaces, BMOφ , the Morrey spaces

and the Campanato spaces, Function spaces, interpolation theory and related topics, 389–401, de
Gruyter, Berlin, 2002.

[11] E. NAKAI, A generalization of Hardy spaces Hp by using atoms, Acta Math. Sinica 24 (2008), 1243–
1268.

[12] E. NAKAI AND G. SADASUE, Martingale Morrey-Campanato spaces and fractional integrals, J.
Funct. Spaces Appl., 2012 (2012), Article ID 673929, 29 pages.

[13] E. NAKAI, G. SADASUE AND Y. SAWANO, Martingale Morrey-Hardy and Campanato-Hardy
Spaces, J. Funct. Spaces Appl., 2013 (2013), Article ID 690258, 14 pages. DOI:10.1155/2013/690258

[14] G. SADASUE, Fractional integrals on martingale Hardy spaces for 0 < p � 1 , Mem. Osaka Kyoiku
Univ. Ser. III Nat. Sci. Appl. Sci., 60, 1 (2011), 1–7.

[15] H. TANAKA AND Y. TERASAWA, Positive operators and maximal operators in a filtered measure
space, J. Funct. Anal. 264, 4 (2013), 920–946.

[16] C. WATARI, Multipliers for Walsh Fourier series, Tohoku Math. J. 16 (1964), 239–251.
[17] F. WEISZ, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in

Mathematics, 1568, Springer-Verlag, Berlin, 1994.

(Received September 14, 2016) Eiichi Nakai
Department of Mathematics

Ibaraki University
Mito, Ibaraki 310-8512, Japan

e-mail: eiichi.nakai.math@vc.ibaraki.ac.jp

Gaku Sadasue
Department of Mathematics

Osaka Kyoiku University
Kashiwara, Osaka 582-8582, Japan

e-mail: sadasue@cc.osaka-kyoiku.ac.jp

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


