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Lp –MIXED AFFINE SURFACE AREA

TIAN LI AND WEIDONG WANG

(Communicated by M. A. Hernandez Cifre)

Abstract. Lutwak introduced the notion of Lp -affine surface area by Lp -mixed volume and
obtained some related inequalities. In this article, based on the Lp -mixed quermassintegrals, we
define the concept of the Lp -mixed affine surface area and extend some of Lutwak’s result.

1. Introduction

We say that K is a convex body if K is a compact, convex subset in n -dimensional
Euclidean space R

n with non-empty interior. The set of all convex bodies in R
n is

written as K n , and its subset K n
o denotes the set of convex bodies containing the

origin in their interiors. Similarly, K n
c denotes the set of convex bodies with centroid

at the origin. Let F n (F n
o ) denote the subset of K n (K n

o ) that have a positive
continuous curvature function. Besides S n

o denotes the set of star bodies (with respect
to the origin) and S n

c denotes the set of star bodies whose centroid lie at the origin
in R

n . Let Sn−1 denote the unit sphere in R
n and V (K) denote the n -dimensional

volume of the body K , for the standard unit ball B in R
n , denote ωn = V (B) .

The notion of classical affine surface area was defined first by Blaschke ([1]). For
a smooth convex body K in R

3 , the affine surface area, Ω(K) , of K is given by

Ω(K) =
∫

Sn−1
f (K,u)3/4dS(u),

where f (K, ·) denotes the curvature function of K ∈ K n , and dS(·) denotes the in-
finitesimal of Lebesgue measure S(·) on the unit sphere Sn−1 . Later, Ω(K) was natu-
rally considered for sufficiently smooth K in K n by Leichtweiss ([6]) as

Ω(K) =
∫

Sn−1
f (K,u)

n
n+1 dS(u).

In 1989, Leichtweiβ ([7]) extended the domain of Ω : F n → (0,+∞) from F n

to K n as follows: For K ∈ K n , the affine surface area, Ω(K) , of K is defined by

n−
1
n Ω(K)

n+1
n = inf{nV1(K,Q∗)V (Q)

1
n : Q ∈ S n

o }.
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Here Q∗ denotes the polar body of Q and V1(M,N) denotes the mixed volume of
convex bodies M and N .

Based on the classical affine surface area, Lutwak (see [12]) introduced the clas-
sical notion of mixed affine surface area and obtained some isoperimetric inequalities
for this notion. During the past three decades, the investigations of the classical affine
surface area have received great attention from many articles (see [2, 3, 7, 8, 10, 11, 12,
13, 14, 15, 16, 17, 20, 34, 35, 36]).

In 1996, according to the Lp -mixed volume, Lutwak ([15]) introduced the notion
of Lp -affine surface area. For K ∈ K n

o , p � 1, the Lp -affine surface area, Ωp(K) , of
K is defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ S n

o }.
Here Vp(M,N) denotes the Lp -mixed volume of M,N ∈ K n

o . Obviously, for p = 1,
Ωp(K) is the classical affine surface area Ω(K) .

In 2007, Wang and Leng ([24]) introduced the notion of i th Lp -mixed affine sur-
face area and obtained results related to it. Regarding the studies of the Lp -affine
surface areas also see ([21, 22, 25, 26, 27, 28, 30, 31, 32, 33]).

Based on the definition of Lp -affine surface area, Lutwak ([15]) proved the fol-
lowing results:

THEOREM 1.A a . If p � 1 and K ∈ K n
o , then

[
Ωp(K)n+p

nn+pV (K)n−p

] 1
p

� V (K)V (K∗). (1.1)

Here

[
Ωp(K)n+p

nn+pV (K)n−p

] 1
p

is called the Lp -affine surface area ratio of K .

THEOREM 1.A b . If p � 1 and K ∈ F n
o , then

[
Ωp(K)n+p

nn+pV (K)n−p

] 1
p

� V (K)V (K∗), (1.2)

with equality if and only if K∗ and ΛpK are dilates.

THEOREM 1.B a . If K ∈ K n
o , 1 � p < q, then

[
Ωp(K)n+p

nn+pV (K)n−p

] 1
p

�
[

Ωq(K)n+q

nn+qV (K)n−q

] 1
q

. (1.3)

THEOREM 1.B b . If K ∈ F n
o , 1 � p < q, then

[
Ωp(K)n+p

nn+pV (K)n−p

] 1
p

�
[

Ωq(K)n+q

nn+qV (K)n−q

] 1
q

, (1.4)

with equality if and only if ΛpK and ΛqK are dilates.
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THEOREM 1.C a . If K ∈ K n
o , 1 � p < q < r , then

Ωq(K)(n+q)(r−p) � Ωp(K)(n+p)(r−q)Ωr(K)(n+r)(q−p). (1.5)

THEOREM 1.C b . If K ∈ F n
o , 1 � p < q < r , then

Ωq(K)(n+q)(r−p) � Ωp(K)(n+p)(r−q)Ωr(K)(n+r)(q−p). (1.6)

with equality if and only if ΛpK and ΛrK are dilates.

The main purpose of this article is to define the notion of Lp -mixed affine surface
area by Lutwak’s Lp -mixed quermassintegrals (see [14]). Then by this notion we es-
tablish some inequalities which are extensions of parts of Lutwak’s results in [12] and
[15].

Associated with the Lp -mixed quermassintegrals (see [14]), we first give the no-
tion of Lp -mixed affine surface area as follows:

DEFINITION 1.1. For K ∈K n
o , p � 1 and i = 0,1, · · · ,n−1, the Lp -mixed affine

surface area, Ωp,i(K) , of K is defined by

n−
p

n−i Ωp,i(K)
n+p−i

n−i = inf{nWp,i(K,Q∗)W̃i(Q)
p

n−i : Q ∈ S n
o }. (1.7)

Here Wp,i(M,N) denotes the Lp -mixed quermassintegrals of M,N ∈ K n
o .

Note that above definition is different from the notion of i th Lp -mixed affine sur-
face area in ([24])

We easily see that if i = 0 in (1.7), then Ωp,i(K) is just the Lp -affine surface area.
Further, we establish some inequalities for the Lp -mixed affine surface area which

extend the results of Theorems 1.Aa -1.Cb . Our main results can be stated as follows:

THEOREM 1.1 a . If K ∈ K n
o , p � 1 and i = 0,1, · · · ,n−1 , then

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

� Wi(K)W̃i(K∗). (1.8)

Here

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

may be called the i-th Lp -mixed affine surface area ratio of

K .

THEOREM 1.1 b . If K ∈ F n
o , p � 1 and i = 0,1, · · · ,n−1 , then

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

� Wi(K)W̃i(K∗), (1.9)

with equality if and only if K∗ and Λp,iK are dilates.

THEOREM 1.2 a . If K ∈ K n
o , 1 � p < q and i = 0,1, · · · ,n−1 , then

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

�
[

Ωq,i(K)n+q−i

nn+q−iWi(K)n−q−i

] 1
q

. (1.10)
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THEOREM 1.2 b . If K ∈ F n
o , 1 � p < q and i = 0,1, · · · ,n−1 , then

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

�
[

Ωq,i(K)n+q−i

nn+q−iWi(K)n−q−i

] 1
q

, (1.11)

with equality if and only if Λp,iK and Λq,iK are dilates.

THEOREM 1.3 a . If K ∈ K n
o , 1 � p < q < r and i = 0,1, · · · ,n−1 , then

Ωq,i(K)(n+q−i)(r−p) � Ωp,i(K)(n+p−i)(r−q)Ωr,i(K)(n+r−i)(q−p). (1.12)

THEOREM 1.3 b . If K ∈ F n
o , 1 � p < q < r and i = 0,1, · · · ,n−1 , then

Ωq,i(K)(n+q−i)(r−p) � Ωp,i(K)(n+p−i)(r−q)Ωr,i(K)(n+r−i)(q−p), (1.13)

with equality if and only if Λp,iK and Λr,iK are dilates.

The proofs of Theorems 1.1a -1.3b will be completed in section 3 of this paper.

2. Notations and background materials

2.1. Support function, radial functions and polar set

If K ∈ K n , then its support function, hK = h(K, ·) : R
n → (−∞,∞) , is defined by

(see [4, 19])
h(K,x) = max{x · y : y ∈ K}, x ∈ R

n,

where x · y denotes the standard inner product of x and y . Obviously, h(λK, ·) =
λh(K, ·) , where λ is a positive constant.

If K is a compact star-shaped (with respect to the origin) in R
n , then its radial

function, ρK = ρ(K, ·) : R
n \ {0}→ [0,∞) , is defined by (see [4, 19])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n \ {0}.

If ρK is positive and continuous, K will be called a star body (with respect to the
origin). Two star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u)
is independent of u ∈ Sn−1 .

If E is a nonempty subset and contains the origin in R
n , then the polar set, E∗ , of

E is defined by (see [4, 19])

E∗ = {x ∈ R
n : x · y � 1,y ∈ E}.

It is easily verified that (K∗)∗ = K for all K ∈ K n
o . Moreover, for K ∈ S n

o and all
u ∈ Sn−1 ,

ρK(u) =
1

hK∗(u)
. (2.1)
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2.2. Lp -mixed surface area measure and Lp -mixed curvature image

The Lp -mixed surface area measure of convex bodies is introduced by Lutwak
(see[14]). For K ∈ K n

o , real p � 1 and i = 0,1, · · · ,n−1, the Lp -mixed surface area
measure, Sp,i(K, ·) , of K is defined by

dSp,i(K, ·)
dSi(K, ·) = h1−p(K, ·). (2.2)

Equation (2.2) is the Radon-Nikodymderivative of the Lp -surface area measure Sp,i(K, ·)
with the respect to the surface area measure Si(K, ·) .

For i = 0,1, · · · ,n−1, we say K ∈ K n has a curvature function fi(K, ·) : Sn−1 →
R , if measure Si(K, ·) is absolutely continuous with respect to spherical Lebesgue mea-
sure S , and

dSi(K, ·)
dS

= fi(K, ·). (2.3)

Let p � 1 and i = 0,1, · · · ,n− 1. A convex body K ∈ K n
o is said to have a

generalized Lp -curvature function (see[18]), fp,i(K, ·) : Sn−1 →R , if measure Sp,i(K, ·)
is absolutely continuous with respect to spherical Lebesgue measure S , and

dSp,i(K, ·)
dS

= fp,i(K, ·). (2.4)

Obviously, fp,0(K, ·) = fp(K, ·) . Here fp(K, ·) is the Lp -curvature function of K ∈K n
o

(see [15]).
Also, from (2.2), (2.3) and (2.4), we know that for K ∈ F n

o ,

fp,i(K, ·) = h1−p(K, ·) fi(K, ·). (2.5)

Meanwhile, according to the definition of Lp -curvature image, Lu and Wang
([18]) gave the definition of Lp -mixed curvature image as follows: For K ∈F n

o , p � 1
and i = 0,1, · · · ,n−1, the Lp -mixed curvature image, Λp,iK ∈ S n

o , of K is defined by

ρ(Λp,iK, ·)n+p−i =
W̃i(Λp,iK)

ωn
fp,i(K, ·). (2.6)

If i = 0 in (2.6) , then
Λp,0K = ΛpK.

Here ΛpK is called Lp -curvature image that was established by Lutwak (see[15]).

2.3. Quermassintegrals and Lp -mixed quermassintegrals

For K ∈ K n , i = 0,1, · · · ,n−1, the quermassintegrals, Wi(K) , of K are defined
by (see [4, 19])

Wi(K) =
1
n

∫
Sn−1

hK(u)dSi(K,u).
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Here Si(K, ·) (i = 0,1, · · · ,n−1) are the area measure of K ∈ K n . Obviously,

W0(K) =
1
n

∫
Sn−1

hK(u)dS(K,u) = V (K).

For K,L ∈ K n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -Minkowski linear

combination (also called Firey combination), λ ·K +p μ · L ∈ K n
o , of K and L is

defined by (see[14])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p.

Here ‘+p ’ denotes the Lp -Minkowski addition and ‘ ·’ denotes the Firey scalar multi-
plication.

Associated with Lp -mixed surface area measure, Lutwak ([14]) defined the Lp -
mixed quermassintegrals (also called mixed p -quermassintegrals). For K,L ∈ K n

o ,
p � 1, i = 0,1, · · · ,n−1, the Lp -mixed quermassintegrals, Wp,i(K,L) , of K and L are
given by (see [14])

Wp,i(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp,i(K,u). (2.7)

From (2.7) , it follows immediately that for each K ∈ K n
o and all p � 1,

Wp,i(K,K) = Wi(K). (2.8)

Let i = 0 in (2.7), the Lp -mixed volume, Vp(K,L) , of K,L ∈ K n
o is given by

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K,u).

If i = 0 and p = 1 in (2.7), then the mixed volume, V1(K,L) , of convex bodies K and
L is defined by

V1(K,L) =
1
n

∫
Sn−1

hL(u)dS(K,u).

2.4. Dual quermassintegrals and Lp -dual mixed quermassintegrals

For K ∈ S n
o and real i , the dual quermassintegrals, W̃i(K) , of K is defined by

(see[9])

W̃i(K) =
1
n

∫
Sn−1

ρn−i
K (u)dS(u). (2.9)

Obviously, for i = 0,

W̃0(K) =
1
n

∫
Sn−1

ρn
K(u)dS(u) = V (K).

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic radial

combination, λ ×K+̃−pμ ×L ∈ S n
o , of K and L is defined by (see[15])

ρ(λ ×K+̃−pμ ×L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p.
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Associated with the Lp -harmonic radial combination of star bodies, Wang and
Leng (see[23]) introduced the notion of Lp -dual mixed quermassintegrals as follows:
For K,L∈S n

o , p � 1 and real i �= n , the Lp -dual mixed quermassintegrals, W̃−p,i(K,L) ,
of K and L is defined by

W̃−p,i(K,L) =
1
n

∫
Sn−1

ρn+p−i
K (u)ρ−p

L (u)dS(u). (2.10)

From (2.9) and (2.10) , it follows immediately that for each K ∈ S n
o and all p � 1,

W̃−p,i(K,K) = W̃i(K). (2.11)

The Minkowski’s inequality for the Lp -dual mixed quermassintegrals is (see[23]):

Let K,L ∈ S n
o , p � 1 and real i �= n, then for i < n or n < i < n+ p,

W̃−p,i(K,L) � W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i , (2.12)

for i > n+ p, the inequality (2.12) is reversed. Equality holds in each inequality if and
only if K and L are dilates.

3. Proofs of Theorems

In this section, we complete the proofs of Theorems 1.1a -1.3b . Here, we first give
a property of the Lp -mixed affine surface area Ωp,i(K) as follows:

THEOREM 3.1. If K ∈ F n
o , p � 1 and i = 0,1, · · · ,n−1 , then

Ωp,i(K)n+p−i = nn+p−iωn−i
n W̃i(Λp,iK)p. (3.1)

LEMMA 3.1. [18] If K ∈F n
o , p � 1 and i = 0,1, · · · ,n−1 , then for any Q∈S n

o ,

W̃−p,i(Λp,iK,Q) =
W̃i(Λp,iK)

ωn
Wp,i(K,Q∗). (3.2)

Proof of Theorem 3.1. According to (2.12) , for i < n , we have for any Q ∈ S n
o

W̃−p,i(Λp,iK,Q) � W̃i(Λp,iK)
n+p−i

n−i W̃i(Q)−
p

n−i . (3.3)

Using (3.2) , (3.3) and definition (1.7) , yield

n−
p

n−i Ωp,i(K)
n+p−i

n−i = inf{nWp,i(K,Q∗)W̃i(Q)
p

n−i : Q ∈ S n
o }

= inf

{
nωn

W̃i(Λp,iK)
W̃−p,i(Λp,iK,Q)W̃i(Q)

p
n−i : Q ∈ S n

o

}

� inf

{
nωn

W̃i(Λp,iK)
W̃i(Λp,iK)

n+p−i
n−i W̃i(Q)−

p
n−i W̃i(Q)

p
n−i : Q ∈ S n

o

}

= inf

{
nωnW̃i(Λp,iK)

p
n−i : Q ∈ S n

o

}
= nωnW̃i(Λp,iK)

p
n−i . (3.4)
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On the other hand, combining with definition (1.7) and (3.2) , we obtain for any
Q ∈ S n

o

n−
p

n−i Ωp,i(K)
n+p−i

n−i � nWp,i(K,Q∗)W̃i(Q)
p

n−i

=
nωn

W̃i(Λp,iK)
W̃−p,i(Λp,iK,Q)W̃i(Q)

p
n−i . (3.5)

Taking Q for Λp,iK in (3.5) and using (2.11) , then

n−
p

n−i Ωp,i(K)
n+p−i

n−i � nωnW̃i(Λp,iK)
p

n−i . (3.6)

From (3.4) and (3.6) , we see that

n−
p

n−i Ωp,i(K)
n+p−i

n−i = nωnW̃i(Λp,iK)
p

n−i .

i.e.
Ωp,i(K)n+p−i = nn+p−iωn−i

n W̃i(Λp,iK)p.

This yields (3.1) . �

Let i = 0 in Theorem 3.1 to get the following result which was obtained by Lutwak
(see [15]).

COROLLARY 3.1. Suppose K ∈ F n
o , p � 1 , then

Ωp(K) = nω
n

n+p
n V (ΛpK)

p
n+p .

Proof of Theorem 1.1a . From definition (1.7) , we obtain for any Q ∈ S n
o ,

Ωp,i(K)
n+p−i

n−i � n
n+p−i

n−i Wp,i(K,Q∗)W̃i(Q)
p

n−i , (3.7)

Since Q∗ ∈ K n
o , thus taking Q∗ = K in (3.7) , then

Ωp,i(K)
n+p−i

n−i � n
n+p−i

n−i Wi(K)W̃i(K∗)
p

n−i ,

Hence [
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

� Wi(K)W̃i(K∗).

This gives (1.8) . �

Proof of Theorem 1.1b . Let Q∗ = K in (3.2), and together (2.8) and inequality
(2.12), we have that for all i < n ,

Wi(K) =
ωn

W̃i(Λp,iK)
W̃−p,i(Λp,iK,K∗)

� ωn

W̃i(Λp,iK)
W̃i(Λp,iK)

n+p−i
n−i W̃i(K∗)−

p
n−i .
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Then [
ωn−i

n W̃i(Λp,iK)p

Wi(K)n−p−i

] 1
p

� Wi(K)W̃i(K∗).

Using (3.1), we get

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

� Wi(K)W̃i(K∗). (3.8)

According to the equality condition of (2.12) , we see that equality holds in (3.8) if
and only if K∗ and Λp,iK are dilates. This yields (1.9) . �

In order to prove Theorem 1.2a , the following lemma obtained by Wei and Wang
(see[29]) is needed.

LEMMA 3.2. If K,L ∈ K n
o , 1 � p < q and i = 0,1, · · · ,n−1 , then

[
Wp,i(K,L)

Wi(K)

] 1
p

�
[
Wq,i(K,L)

Wi(K)

] 1
q

,

with equality if and only if K and L are dilates.

Proof of Theorem 1.2a . For any Q ∈ S n
o , we have Q∗ ∈ K n

o . Hence, by Lemma
3.2, we get for 1 � p < q ,

[
Wp,i(K,Q∗)

Wi(K)

] 1
p

�
[
Wq,i(K,Q∗)

Wi(K)

] 1
q

, (3.9)

with equality if and only if K is a dilate of Q∗ .
Combining with definition (1.7) and (3.9) , if i = 0,1, · · · ,n−1, then we yield

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

=
[

Ωp,i(K)
n+p−i

n−i

n
n+p−i

n−i Wi(K)
n−p−i

n−i

] n−i
p

= inf

{[
Wp,i(K,Q∗)

Wi(K)

] n−i
p

Wi(K)W̃i(Q) : Q ∈ S n
o

}

� inf

{[
Wq,i(K,Q∗)

Wi(K)

] n−i
q

Wi(K)W̃i(Q) : Q ∈ S n
o

}

=
[

Ωq,i(K)n+q−i

nn+q−iWi(K)n−q−i

] 1
q

.

Hence [
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

�
[

Ωq,i(K)n+q−i

nn+q−iWi(K)n−q−i

] 1
q

.

This yields (1.10) . �
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Proof of Theorem 1.2b . From (3.2), we have

[
Wp,i(K,Q∗)

Wi(K)

] 1
p

=
[

ωnW̃−p,i(Λp,iK,Q)
Wi(K)W̃i(Λp,iK)

] 1
p

,

[
Wq,i(K,Q∗)

Wi(K)

] 1
q

=
[

ωnW̃−q,i(Λq,iK,Q)
Wi(K)W̃i(Λq,iK)

] 1
q

.

Using (3.9), we get that for 1 � p < q ,

[
ωnW̃−p,i(Λp,iK,Q)
Wi(K)W̃i(Λp,iK)

] 1
p

�
[

ωnW̃−q,i(Λq,iK,Q)
Wi(K)W̃i(Λq,iK)

] 1
q

. (3.10)

Taking Q = Λq,iK in (3.10), and using (2.11) and inequality (2.12), we obtain

[
ωn

Wi(K)

] 1
q

�
[

ωnW̃−p,i(Λp,iK,Λq,iK)

Wi(K)W̃i(Λp,iK)

] 1
p

�
[

ωnW̃i(Λp,iK)
p

n−i W̃i(Λq,iK)−
p

n−i

Wi(K)

] 1
p

.

So, we get [
ωnW̃i(Λp,iK)

p
n−i

Wi(K)

] 1
p

�
[

ωnW̃i(Λq,iK)
q

n−i

Wi(K)

] 1
q

.

From (3.1), we have

[
Ωp,i(K)n+p−i

nn+p−iWi(K)n−p−i

] 1
p

�
[

Ωq,i(K)n+q−i

nn+q−iWi(K)n−q−i

] 1
q

. (3.11)

According to the equality condition of (2.12) , we see that equality holds in (3.11) if
and only if Λp,iK and Λq,iK are dilates. This yields (1.11) . �

Proof of Theorem 1.3a . Since for any Q1,Q2 ∈ S n
o , there exists Q3 ∈ S n

o such
that

ρ(Q3, ·)q(r−p) = ρ(Q1, ·)p(r−q)ρ(Q2, ·)r(q−p). (3.12)

Then for any u ∈ Sn−1 , this yields

ρQ3(u)n−i = ρQ1(u)
(n−i)p(r−q)

q(r−p) ρQ2(u)
(n−i)r(q−p)

q(r−p) .

Since 1 � p < q < r , then q(r−p)
p(r−q) > 1. According to the Hölder’s integral inequality
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(see[5]) and definition (2.9) , we get

W̃i(Q1)
p(r−q)
q(r−p) W̃i(Q2)

r(q−p)
q(r−p)

=
[
1
n

∫
Sn−1

ρQ1(u)n−idS(u)
] p(r−q)

q(r−p)
[
1
n

∫
Sn−1

ρQ2(u)n−idS(u)
] r(q−p)

q(r−p)

=
{

1
n

∫
Sn−1

[
ρQ1(u)

(n−i)p(r−q)
q(r−p)

] q(r−p)
p(r−q)

dS(u)
} p(r−q)

q(r−p)

×
{

1
n

∫
Sn−1

[
ρQ2(u)

(n−i)r(q−p)
q(r−p)

] q(r−p)
r(q−p)

dS(u)
} r(q−p)

q(r−p)

� 1
n

∫
Sn−1

ρQ1(u)
(n−i)p(r−q)

q(r−p) ρQ2(u)
(n−i)r(q−p)

q(r−p) dS(u)

=
1
n

∫
Sn−1

ρQ3(u)n−idS(u) = W̃i(Q3).

Since q(r− p) > 0, then

W̃i(Q3)q(r−p) � W̃i(Q1)p(r−q)W̃i(Q2)r(q−p). (3.13)

From (3.12) , we see that for any u ∈ Sn−1 ,

ρQ3(u)−qhK(u)1−q = [ρQ1(u)−phK(u)1−p]
r−q
r−p [ρQ2(u)−rhK(u)1−r]

q−p
r−p . (3.14)

Then for 1 � p < q < r , i.e. r−p
r−q > 1, according to the Hölder’s integral inequality,

(2.1) , (2.7) and (3.14) , we get

Wp,i(K,Q∗
1)

r−q
r−pWr,i(K,Q∗

2)
q−p
r−p

=
[
1
n

∫
Sn−1

hQ∗
1
(u)phK(u)1−pdSi(K,u)

] r−q
r−p

×
[
1
n

∫
Sn−1

hQ∗
2
(u)rhK(u)1−rdSi(K,u)

] q−p
r−p

=
[
1
n

∫
Sn−1

[ρQ1(u)−phK(u)1−p]
r−q
r−p

r−p
r−q dSi(K,u)

] r−q
r−p

×
[
1
n

∫
Sn−1

[ρQ2(u)−rhK(u)1−r]
q−p
r−p

r−p
q−p dSi(K,u)

] q−p
r−p

� 1
n

∫
Sn−1

ρQ3(u)−qhK(u)1−qdSi(K,u)

= Wq,i(K,Q∗
3),

i.e.
Wq,i(K,Q∗

3)
r−p � Wp,i(K,Q∗

1)
r−qWr,i(K,Q∗

2)
q−p. (3.15)
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Hence, combining with (3.13) and (3.15) , we get for i = 0,1, · · · ,n−1,

[Wq,i(K,Q∗
3)W̃i(Q3)

q
n−i ]r−p

� [Wp,i(K,Q∗
1)W̃i(Q1)

p
n−i ]r−q[Wr,i(K,Q∗

2)W̃i(Q2)
r

n−i ]q−p.

This together with (1.7) yields

Ωq,i(K)(n+q−i)(r−p) � Ωp,i(K)(n+p−i)(r−q)Ωr,i(K)(n+r−i)(q−p).

This gives (1.12). �

Finally, we give the proof of Theorem 1.3b . The following lemma is required.

LEMMA 3.3. If K ∈ F n
o , 1 � p < q < r and i = 0,1, · · · ,n−1 , then

W̃i(Λq,iK)q(r−p) � W̃i(Λp,iK)p(r−q)W̃i(Λr,iK)r(q−p), (3.16)

with equality if and only if Λp,iK and Λr,iK are dilates.

Proof. From the formula (2.5), it follows that for i = 0,1, · · · ,n−1,

fq,i(K, ·)r−p = fp,i(K, ·)r−q fr,i(K, ·)q−p.

Thus, by (2.6), we get for any u ∈ Sn−1 ,

W̃i(Λq,iK)p−rρ(Λq,iK,u)(n+q−i)(r−p)

= [W̃i(Λp,iK)q−rρ(Λp,iK,u)(n+p−i)(r−q)][W̃i(Λr,iK)p−qρ(Λr,iK,u)(n+r−i)(q−p)],

that is

W̃i(Λq,iK)
(p−r)(n−i)

(n+q−i)(r−p) ρ(Λq,iK,u)n−i

= [W̃i(Λp,iK)
(q−r)(n−i)

(n+q−i)(r−p) (ρ(Λp,iK,u)n−i)
(n+p−i)(r−q)
(n+q−i)(r−p) ]

× [W̃i(Λr,iK)
(p−q)(n−i)

(n+q−i)(r−p) (ρ(Λr,iK,u)n−i)
(n+r−i)(q−p)
(n+q−i)(r−p) ]. (3.17)

Using the H ö lder inequality and (2.9) in (3.17), we obtain

W̃i(Λq,iK)q(r−p) � W̃i(Λp,iK)p(r−q)W̃i(Λr,iK)r(q−p). (3.18)

From the equality condition of the H ö lder inequality, we see that equality holds in
(3.18) if and only if Λp,iK and Λr,iK are dilates. This yields (3.16). �

Proof of Theorem 1.3b . From (3.1) and (3.16), we have

Ωq,i(K)(n+q−i)(r−p) = [nn+q−iωn−i
n ]r−pW̃i(Λq,iK)q(r−p)

� [nn+q−iωn−i
n ]r−pW̃i(Λp,iK)p(r−q)W̃i(Λr,iK)r(q−p)

= Ωp,i(K)(n+p−i)(r−q)Ωr,i(K)(n+r−i)(q−p). (3.19)
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According to the equality condition of (3.16), we know that equality holds in (3.19)
if and only if Λp,iK and Λr,iK are dilates. This gives (1.13). �
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[2] W. S. CHEUNG AND C. ZHAO, Width-intgrals and affine surface area of convex bodies, Banach J.

Math. Anal., 2, 1 (2008), 70–77.
[3] Y. FENG AND W. WANG, Blaschke-Minkowski homomorphisms and affine surface area, Publ. Math.

Debrecen, 85, 3–4 (2014), 297–308.
[4] R. J. GARDNER, Geometric Tomography, Cambridge Univ. Press, Cambridge, UK, 2nd edition, 2006.
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