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A REMARK ON WEIGHTED INTEGRABILITY

YI ZHAO AND SONGPING ZHOU

(Communicated by I. Perić)

Abstract. In this paper, we will generalize the result in weighted integrability to include all
positive non-integers γ connecting with derivatives of the sum-functions.

1. Introduction

A real sequence A = {an} is said to satisfy the mean value bounded variation
condition (in real sense) if there is a λ � 2 and a positive constant M0 depending upon
the sequence A and λ only such that for all n we have

2n

∑
k=n

|Δak| :=
2n

∑
k=n

|ak −ak+1| � M0

n

λn

∑
k=n/λ

|ak|, (1)

where
λn
∑

k=n/λ
means ∑

n/λ�k�λn
, and we may assume that M0 > 1 without loss of gener-

ality.
We denote the set of real sequences satisfying (1) as MVBVS (Mean Value Bounded

Variation Sequences)
The MVBV concept is generalized from positive sense (see [9]) to real sense in

[2].
In Fourier analysis, in many important classical results which play a fundamental

role in the field, positivity and monotonicity are two key conditions.
Mean value bounded variation concept is considered not only as the ultimate gen-

eralization to monotonicity ([9]) but also as the natural replacement of positivity ([2]).
Let L2π be the space of integrable functions of period 2π . In weighted integrabil-

ity case, our work [8] proved the following theorem:

Mathematics subject classification (2010): 42A25, 42A50.
Keywords and phrases: Weighted integrability, mean value bounded variation, positivity, monotonic-

ity.
This research is supported by Natural Science Foundation of China under grant number 11601110.

c© � � , Zagreb
Paper MIA-20-60

963

http://dx.doi.org/10.7153/mia-2017-20-60
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THEOREM 1. Suppose that a real sequence {an} satisfies condition (1) , and con-
sider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx

or

S(x) ≡
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) . Let 0 < γ < 1 . Then x−γ f (x) ∈ L2π and {an}
is the Fourier coefficients of f (x) if and only if

∞

∑
n=1

nγ−1|an| < ∞.

The claim for nonnegative sequences is in [6] which generalizes a classical result
of Boas [1] and Heywood [4].

In this paper, we will generalize the above result (Theorem1) to include all positive
non-integers γ connecting with derivatives of the sum-functions.

Throughout the paper, we always use M to stand for a positive constant that may
not be necessarily the same at each occurrence. Sometimes, also use O(1) to indicate
the same meaning.

2. Main result

We establish the following main result.

THEOREM 2. Suppose that a real sequence {an} satisfies condition (1) , and con-
sider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx (2)

or

S(x) ≡
∞

∑
n=1

an cosnx, (3)

and its sum function is denoted by f (x) . Let γ > 0 , γ �= 1,2, · · · , and κγ = [γ] . Then
x−γ+κγ f (κγ )(x) ∈ L2π and {nκγ an} is the Fourier coefficients of f (κγ )(x) if and only if

∞

∑
n=1

nγ−1|an| < ∞. (4)

We divide the proof into several lemmas.

LEMMA 1. Let a real sequence {an} satisfy condition (1) , then, for any natural
number κ � 1 , {nκan} satisfies condition (1) .
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Proof. Let {an} satisfy condition (1) , by writing An = nκan , we check that

|ΔAj| =
∣∣a jΔ jκ +( j +1)κΔa j

∣∣� M
(|a j| jκ−1 + jκ |Δa j|

)
,

so that, by (1),

2n

∑
j=n

|ΔAj| � M
n

(
2n

∑
j=n

jκ |a j|+nκ
λn

∑
j=n/λ

|a j|
)

� M
n

λn

∑
j=n/λ

|Aj|. �

Lemma 1 was also proved in [5] as a discrete case to sine integrals.

LEMMA 2. Let a real sequence {an} satisfy condition (1) , then

|an| � 2M0

n

λn

∑
k=n/λ

|ak|.

This result can be found, for example, in [2, Lemma 2.2].

LEMMA 3. Suppose that a real sequence {an} satisfies condition (1) , and con-
sider the trigonometric series (2) or (3) , which sum function is denoted by f (x) . Let
γ > 0 , γ �= 1,2, · · · . If (4) holds, then x−γ+κγ f (κγ )(x) ∈ L2π and {nκγ an} is the Fourier
coefficients of f (κγ )(x) .

Proof. We only prove the case for sine series here, the other case can be treated
similarly. Considering the series

∞

∑
n=1

An sin(nx+ κγπ/2), (5)

where An = nκγ an . From conditions (1) and (4), it is not difficult to see that

lim
n→∞

An = 0,
∞

∑
n=1

|ΔAn| < ∞. (6)

Indeed, by condition (4), we have
nλ

∑
k=n/λ

kγ−1|ak|< ε for arbitrary ε > 0 and sufficiently

large n , noticing that κγ < γ and combining with Lemma 2, we derive that

nκγ |an| � 2M0n
κγ−1

λn

∑
k=n/λ

|ak| � M
nλ

∑
k=n/λ

kγ−1|ak| < ε.

Since ε is arbitrary, it is obvious that nκγ an → 0, n→∞ . At the same time, by Lemma
1,

∞

∑
k=1

|ΔAk| =
∞

∑
j=0

2 j+1

∑
k=2 j

|ΔAk| �
∞

∑
j=0

M
2 j

2 jλ

∑
k=2 j/λ

|Ak|

� M
∞

∑
j=0

2 jλ

∑
k=2 j/λ

kγ−1|ak| � M
∞

∑
k=0

kγ−1|ak| < ∞,
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this proves the second inequality in (6).
By the classical results (see, e.g., [10] or [7]), the series (5) converges to its sum

function g(x) in (0,π ] . Assume that x ∈ [ π
n+1 , π

n ) , by using the inequality |sinx| � |x|
and Abel’s transformation, we get

|g(x)| �
n

∑
j=1

|Aj|+ n+1
π

∞

∑
j=n

|ΔAj|.

Therefore,∫ π

0
x−γ+κγ |g(x)|dx �

∞

∑
n=1

(
n+1

π

)γ−κγ ∫ π/n

π/(n+1)
|g(x)|dx

�
∞

∑
n=1

(
n+1

π

)γ−κγ π
n(n+1)

n

∑
j=1

|Aj|

+
∞

∑
n=1

(
n+1

π

)γ−κγ +1 π
n(n+1)

∞

∑
j=n

|ΔAj| =: I1 + I2.

In view of 0 < γ −κγ < 1, a direct calculation leads to that

I1 � M
∞

∑
n=1

nγ−κγ−2
n

∑
j=1

|Aj| � M
∞

∑
n=1

|An|
∞

∑
j=n

jγ−κγ−2

� M
∞

∑
n=1

nγ−κγ−1|An| � M
∞

∑
n=1

nγ−1|an|. (7)

At the same time, since {an} satisfies (1), by Lemma 1, {An} satisfies (1). Then, for
any sufficiently large n , there is a λ � 2 such that

∞

∑
j=n

|ΔAj| �
∞

∑
j=0

2 j+1n

∑
l=2 jn

|ΔAl| � M
∞

∑
j=0

1
2 jn

λ2 jn

∑
l=2 jn/λ

|Al| � M
∞

∑
l=n/λ

|Al|
l

.

It follows that
∞

∑
n=λ+1

nγ−κγ−1
∞

∑
j=n

|ΔAj| � M
∞

∑
n=λ+1

nγ−κγ−1
∞

∑
j=n/λ

|Aj|
j

� M
∞

∑
n=1

nγ−κγ−1
∞

∑
j=n

|Aj|
j

� M
∞

∑
n=1

|An|
n

n

∑
j=1

jγ−κγ−1

� M
∞

∑
n=1

nγ−κγ−1|An|,

that is,

I2 � M
∞

∑
n=1

nγ−κγ−1|An| � M
∞

∑
n=1

nγ−1|an|. (8)
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Combining (7) with (8), we have x−γ+κγ g(x) ∈ L2π , consequently g(x) ∈ L2π . From
condition (6) and that the series (5) converges to its sum function g(x) in (0,π ] , we
already know that {An} is the Fourier coefficients of g(x) . Also it is easy to see that
g(x) = f (κγ )(x) almost everywhere by termwise integration. Lemma 3 is proved. �

LEMMA 4. Suppose that a real sequence {An} satisfies condition (1) , and con-
sider the trigonometric series

S(x) ≡
∞

∑
n=1

An sinnx

or

S(x) ≡
∞

∑
n=1

An cosnx,

and its sum function is denoted by g(x) . Let 0 < α < 1 . If x−αg(x) ∈ L2π and {An} is
the Fourier coefficients of g(x) , then

limsup
n→∞

nα−1
λn

∑
k=n/λ

|Ak| < ∞.

This was proved in [8, Thorem 2.6].

LEMMA 5. Let a real sequence {an} satisfy condition (1) , 0 < α < 1 . Then, for
any n, ∣∣∣∣∣

n

∑
k=1

ak sinkx

∣∣∣∣∣= O(x−α)

holds if and only if
n1−αan = O(1). (9)

This result was established in [3, Theorem 3.1]. It also holds for cosine sums.
Write Ik = {2k,2k +1, · · · ,2k+1 −1} , and select disjoint subsets S1, . . . ,Sμk of Ik

according to the property of sequence {An} as follows. Set

m1 = min{m ∈ Ik : Am �= 0} .

Let ν1 = k0 for which am1+k0 is the first element with m1 + k0 ∈ Ik of opposite sign to
am1 . Define now

S1 = {m1, m1 +1, · · · ,m1 + ν1−1} .

In case otherwise {An} keeps sign in Ik , simply take m1 +ν1 = 2k+1 , and define S1 in
the same manner.

Next, set m2 = min(Ik \ S1) if this latter set is not empty, and using the same
procedure we select ν2 and define

S2 = {m2, m2 +1, · · · ,m2 + ν2−1} .
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We continue this procedure until we reach an Sμk for which Ik \ (S1 ∪ ·· · ∪ Sμk) = /0 .
Set I+k to be the union of all subsets {S j} whose elements An keep positive sign, and
I−k the union of all subsets {S j} whose elements An keep negative sign. Also, define

J(1)
k = {∪S j : |S j| � 2k/(32λ 2M0),1 � j � μk},

J(2)
k = {∪S j : |S j| < 2k/(32λ 2M0),1 � j � μk},

where M0 is the positive constant appearing in (1). With these symbols, we have

LEMMA 6. Let 0 < α < 1 , {An} satisfy condition (1) . Then for sufficiently large
k0 and arbitrary N we have

N

∑
k=k0

∑
m∈J

(2)
k

mα−1|Am|� 2

⎛
⎜⎝ N

∑
k=k0

∑
m∈J

(1)
k

mα−1|Am|+
2k0−1

∑
n=2k0/λ

nα−1|An|+
λ2N

∑
n=2N+1

nα−1|An|

⎞
⎟⎠ .

See [8, Corollary 2.8].
Also by using the above symbols, let 0 < α < 1, for sufficiently large k0 and

k = k0,k0 +1, · · · , set

dm =

⎧⎪⎨
⎪⎩

mα−1, m ∈ J(1)
k ∩ I+k ,

−mα−1, m ∈ J(1)
k ∩ I−k ,

0, m ∈ J(2)
k .

LEMMA 7. Under the above symbols, {dm} satisfies condition (1) .

See [8, Lemma 2.9].

Proof of Theorem 2. We need only prove the conclusion for sine series, the other
case can be treated in the same manner. Write g(x) = f (κγ )(x) , then g(x) ∈ L2π , and
{An} is the Fourier coefficients of g(x) . We clearly see that An = nκγ an . Using α =
γ −κγ , we know that 0 < α < 1. Also {An} satisfies (1) by Lemma 1. Hence

N

∑
k=k0

∑
m∈J(1)

k

mγ−1|am| =
N

∑
k=k0

⎛
⎜⎝ ∑

m∈J(1)
k ∩I+k

mα−1Am + ∑
m∈J(1)

k ∩I−k

mα−1(−Am)

⎞
⎟⎠

=
2
π

N

∑
k=k0

⎛
⎜⎝ ∑

m∈J
(1)
k ∩I+k

mα−1
∫ π

0
g(x)sinmxdx+ ∑

m∈J
(1)
k ∩I−k

(−mα−1)
∫ π

0
g(x)sinmxdx

⎞
⎟⎠

=
2
π

∫ π

0
g(x)

(
2N−1

∑
m=2k0

dm sinmx

)
dx,
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or
N

∑
k=k0

∑
m∈J

(1)
k

mγ−1|am| � 2
π

∫ π

0
|g(x)|

∣∣∣∣∣
2N−1

∑
m=2k0

dm sinmx

∣∣∣∣∣dx.

By Lemma 5 and Lemma 7, we immediately deduce that∣∣∣∣∣
2N−1

∑
m=2k0

dm sinmx

∣∣∣∣∣= O(x−α),

so that
N

∑
k=k0

∑
m∈J

(1)
k

mγ−1|am| � M
∫ π

0
x−γ+κγ | f (κγ )(x)|dx.

Then it follows from Lemma 6 that

2N

∑
m=2k0

mγ−1|am|� M

⎛
⎝∫ π

0
x−γ+κγ | f (κγ )(x)|dx+

2k0−1

∑
n=2k0/λ

nγ−1|an|+
λ2N

∑
n=2N+1

nγ−κγ−1|An|
⎞
⎠ ,

in connecting with Lemma 4 we have

2N

∑
m=2k0

mγ−1|am| � M
∫ π

0
x−γ+κγ | f (κγ )(x)|dx+O(1),

that already completes the proof of necessity.
Sufficiency can be derived from Lemma 3. �

3. Remark

In Theorem 2, we assume that γ �= 1,2, · · · , and it is natural to ask what happens for
these positive integers? In this section, we give an answer for nonnegative coefficients,
while leave an open problem in general case.

THEOREM 3. Suppose that a nonnegative sequence {an} satisfies condition (1) ,
and consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx,

and its sum function is denoted by f (x) .
(i) Let γ = 1,3,5, · · · . Then x−1 f (γ−1)(x) ∈ L2π and {nγ−1an} is the Fourier

coefficients of f (γ−1)(x) if and only if

∞

∑
n=1

nγ−1an < ∞.
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(ii) Let γ = 2,4,6, · · · . Then if 0 <
∞
∑

n=1
nγ−1an < ∞ , we have

∫ π

0
x−1| f (γ−1)(x)|dx = ∞.

THEOREM 4. Suppose that a nonnegative sequence {an} satisfies condition (1) ,
and consider the trigonometric series

S(x) ≡
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) .
(i) Let γ = 2,4,6, · · · . Then, x−1 f (γ−1)(x) ∈ L2π and {nγ−1an} is the Fourier

coefficients of f (γ−1)(x) if and only if

∞

∑
n=1

nγ−1an < ∞.

(ii) Let γ = 1,3,5, · · · . Then if 0 <
∞
∑

n=1
nγ−1an < ∞ , we have

∫ π

0
x−1| f (γ−1)(x)|dx = ∞.

The proof of these two results is a combination of the following propositions.

PROPOSITION 5. For any nonnegative sequence {an} satisfying (1) and

0 <
∞

∑
n=1

an < ∞,

we have ∫ π

0
x−1|g0(x)|dx = ∞

for the cosine series g0(x) =
∞
∑

n=1
an cosnx .

Proof. Note now that the series
∞
∑

n=1
an cosnx uniformly and absolutely converges

to g0(x) . We see that

cos jx = 1+ cos jx−1 = 1−2sin2 jx
2

.
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By the inequality |sinx| � |x| and Abel’s transformation, for x ∈ [ π
n+1 , π

n ) , we clearly
see that

|g0(x)| �
n

∑
j=1

a j −2
n

∑
j=1

a j sin2 jx
2
− (n+1)

∞

∑
j=n+1

|Δa j|− (n+1)an+1

�
n

∑
j=1

a j − x
n

∑
j=1

ja j − (n+1)
∞

∑
j=n+1

|Δa j|− (n+1)an+1.

Hence ∫ π

0
x−1|g0(x)|dx �

∞

∑
n=1

n
π

∫ π/n

π/(n+1)
|g0(x)|dx

�
∞

∑
n=1

n
π

π
n(n+1)

n

∑
j=1

a j −
∞

∑
n=1

n
π

π2

2
2n+1

n2(n+1)2

n

∑
j=1

ja j

−
∞

∑
n=1

∞

∑
j=n+1

|Δa j|−
∞

∑
n=1

an+1

=: J− (J1 + J2 + J3).

A similar calculation to the proof of Theorem 2 yields that

J1 � M
∞

∑
n=1

an, J2 � M
∞

∑
n=1

an, J3 �
∞

∑
n=1

an.

Since
∞
∑

n=1
an is convergent, say,

∞
∑

n=1
an = B > 0, then there is an N0 such that

N0

∑
n=1

an � B
2

.

For arbitrarily large N , one get

J � M
∞

∑
n=1

n−1
n

∑
j=1

a j � M
N

∑
n=N0

n−1
N0

∑
j=1

a j � MB log(N/N0).

Combining all the above estimates, we derive that∫ π

0
x−1|g0(x)|dx � MB log(N/N0)

for any sufficiently large N . Proposition 5 is proved. �

PROPOSITION 6. Suppose that a nonnegative sequence {an} satisfies condition
(1) , and consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx, (10)
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and its sum function is denoted by f (x) . Then, x−1 f (x) ∈ L2π and {an} is the Fourier
coefficients of f (x) if and only if

∞

∑
n=1

ak < ∞.

This was proved in [6, Theorem 2].
Finally, we pose an open problem for coefficients that may not be necessarily

nonnegative.

PROBLEM 7. Suppose that a real sequence {an} satisfies condition (1) , and con-
sider the trigonometric series (10) , and its sum function is denoted by f (x) . Then,
whether it is true that x−1 f (x) ∈ L2π and {an} is the Fourier coefficients of f (x) if and
only if

∞

∑
n=1

|an| < ∞?
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