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Abstract. By making use of the familiar Mathieu series and its generalizations, the authors derive
a number of new integral representations and present a systematic study of probability density
functions and probability distributions associated with some generalizations of the Mathieu se-
ries. In particular, the mathematical expectation, variance and the characteristic functions, related
to the probability density functions of the considered probability distributions are derived. As a
consequence, some interesting inequalities involving complete monotonicity and log-convexity
are derived.

1. Introduction

The following familiar infinite series

i (reRY) 0

(n?+ r2)

is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890
work [13] on elasticity of solid bodies. Let C, R™, N and 7, be the sets of complex
numbers, positive real numbers, positive integers, and non-positive integers, respec-
tively. Integral representations of (1) is given by (see [9])

1 Ntsm
s0=7 [55T @
0
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tion, log-convex function, Turdn type inequality.
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Several interesting problems and solutions dealing with integral representations and
bounds for the following slight generalization of the Mathieu series with a fractional

power
- 2n

Su(”):z(

> ey rERTe>1) ®

can be found in the works by Cerone and Lenard [4], Diananda [7], and Tomovski
and Trencevski [21]. Motivated essentially by the works of Cerone and Lenard [4],
Srivastava and Tomovski in [18] defined a family of generalized Mathieu series

Zag

Sy (rra) = (ri{atizy) 2 7 (no.BueRY) @

where it is tacitly assumed that the positive sequence

a={an}, | ={ai,az,a3,...} (hman = oo)
n—oo

is so chosen that the infinite series in definition (4) converges, that is, that the following

auxiliary series
i 1
po—p

n=1dy
is convergent. Comparing the definitions (1), (3) and (4), we see that S, (r) =S (r) and
Sy (r) :S,(f’l) (r, {n}:’ 1) Furthermore, the special cases S£2’1) (ri{an}p—y), Su(r)=
2D (ri{n},_y), S ( ;{n"},_,) and S(a */2) (r;{n},_,) were investigated by Ce-
rone-Lenard [4], Dlananda [7]; and Tomovski [22]. For more details the interested

reader is referred to the papers [8, 15, 18, 5, 20, 21, 22, 23, 24, 25].
In this paper we consider a power series

©0 n

2a,,

S (i) =S (i) = 3 e +r2" 5)
(no,BueRZ|<1).
We denote
Sl (ras) =S50 (), SIEP) (1) = 557P) (ra) (6)
S (rai—1) =S (ra), - S (ras—1) = P (ra) )

Fora,=n, a=2,B=1,v=1and u with g+ 1 the series (5) was introduced
and considered by Tomovski and Pogany in [25].

This paper is organized as follows: in Sections 2 and 3, we present new integral
and series representations for generalised Mathieu series. In particular, we present a
new type integral for the Mathieu series for a special case. In section 4, we introduce,
develop and investigate probability distribution functions (PDF) associated with the
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Mathieu series and their generalizations. As consequences some inequalities are de-
rived. In Section 5, we show the complete monotonicity and log-convexity properties
for generalised Mathieu series. Moreover, as consequences of these results, we pre-
sented some functional inequalities as well as lower and upper bounds for generalised
Mathieu series.

2. Integral expression of Mathieu series
Our first main results is the next theorem.

THEOREM 1. Let r,o,B,v,1t >0 and y(poe — ) > 1. Then the Mathieu type

power series S,(f‘}ﬁ ) (r,{k"};_,:2) has the integral representation

_ . vz [eopYlo—Bl=1,-1
S W = s |

C(u)Jo (1—ze—t)¥ ™! i[(p, )5 (v (po—B), yor) s =27 dt,
(®)

where ,¥, denotes the Fox-Wright generalization of the hypergeometric pFy function
with p numerator and q denominator parameters, defined by [18, p. 50, Eq. 1.5 (21)]

o I T(oy+nAj) 2
n.

¥ [((XlaAl)V"a(a aA );(ﬁl;Bl)a"'7(ﬂ aB)’Z]: 7 1—/n . - " B (9)
prq praip )P4 n;) Hf;:lr(ﬁj—i—nBj) !
with
q P
AjeRT j=1,....p;BjeRY, j=1,...,q; 1+ Y Bj— Y A;>0].
j=1 j=1
Proof. First of all, we find from the definition (5) that
(cr,) o N_n N (uime (V)2
Suy (n{ahizy:2) =2 Z,O (“*m 1) (=) Zfl map (10)
m= n=1dy .
So,
S W0 =20 3 () ()" S e
) = = m S (n+ 1)[(#+m)0¢*ﬁ])’(n+ 1!
oo oo 1) Z"
— u+m—1\ (_,2\" (V+ n
ZVZYE()( m >( g ) 'gz)(n+1)[(ﬂ+m)a—l3]7+ln!
—2ve 3 (1m1) (=) 0 (o (1 m) e~ By +1,1).
m=0 mn
Here q)’(, 41 denotes a Hurwitz-Lerch Zeta function, defined by Lin and Srivastava [12]

v W,
q)* — n
V(Z7s7a) n;() I’l' (n+a)5
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(veC;aeC\Zy,seC, |z <1; R(s—v) >1when |z =1).

A special case of @}, with v =1 give us the well-known Hurwitz-Lerch Zeta function

oo

ZSCZ Z

(aeC\Zy,se€C, |z] <1; R(s) > 1 when || =1).

Now, by making use of the familiar integral representation (see [12])

o 1 o 48 1,—at J
5, S8,a) = t
e = |, ey

(R(a) >0; R(s) >0when |z] <1,z#1; R(s) > 1 whenz=1)

we get
P ey )

(Hm=1y om /wty[<u+m)amlez
=2 —d
”’2 e By )y Ty

w,y[ua—ﬁ]—le—t o Htm—1 "
=2 [Eormu(z e ) ]dt
2vz [ e=pl-1,—t
:F(u)/o (1—ze)
This ends the proof.

3. Concluding Remarks

(c,

v 1P [ D)5 (v (o= B yoo) s =207 .

1. As the convergence interval of S, ; v ( {kV};_1:2) is [—1,1], we easily con-

clude the following representations

P 2 Yiwo—Bl-1,-t
S 0 = Fs | e 1 D B e an
(11)
and
a 2 ylwo—pl—1 ,—t )
S:[Sﬂ’/ﬁ) (I’,{k’y})E r(“:i)/o t(1+et)v+l l\Pl l:(lJ, 1) ( (”a_ﬁ)7,ya),_r2t’)/ ]dt
(12)

2. Specially, for z =¢™* < 1, we find that

2ve ™™ /°° fYo—p)=1o—t
0

a.B) Yy L,7X)
(I",{k }kzl’e ) - r(u) (1—67(x+[))v+1

x 11 [(w,1): (y(ua—B)ya) s —r*t] dt,  (13)
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and

2ve ™ [ grHoe—p)=1,-1
l"(,u)/o (1+e‘<x+f))v+1

W (1,15 (y (e — B),yer) ;=217 dr. - (14)

3. In a similar manner, we get

S (e} 9)
= 2v§0 (mem1) (=) @ (z,q [<u+m> - g] 7 1)
7§]71 ., ttm—1

zzvf:t(ql[ize_t)vil Y ) ﬁD(_rth)m di

m:0r<q [(#+m)— o
et
e (e 2) ()

(r,oc,ﬂ,ve]R*; u—g>q*1; qu),

Si) (ke ™) =

where for convenience, A (g;A) abbreviates the array of ¢ parameters

A A+l Adg-1
2o AT gen).
q q q

4. For g = 2, this integral representation, can easily be simplified to the form:

2[/47%]716_,j

S (r,{k2/a}::1;z) = r(z [2v ﬁD /Omt(l_ze,)m

H=4
B 1 22
=+ —;——— | dt,
a+2 4

X 11 (u;u—g,u—

B 1
Ry u—E5>2).
(r,a,ﬁ,ve ;U a>2

5. In a similar manner, a limit case, when 8 — 0 would formally yield the formula:

- o 2U—1 1 22
(0.0) 2/a A / e Fol - LR
Sty <r,{k }k=1’z> r@2u)Jo (1—ze)V*! R R S

1
(r,oc,v eR ;U > —).

2
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6. On the other hand, we have
[(n+ir)+ (n—ir)](v),7"
[(n+ir) (n—ir)*n! (15)

=5 (@] (z,2,ir) — D}, (2,2, —ir)]

2.1 o -
SED (kY 52) -2
1

As a matter of fact, in terms of the Riemann-Liouville fractional derivative operator
DY, defined by

i 5 G0 e (R(w) <0)
_ T(—p) J0
DW(Z”‘{;;; D571} m—1<R(@w) <m) (meN)

it is easily seen from the series definitions in (5) and (15) that

1
q)t (Z,S,a) = —D¥71 {valq)(z,&a)}

I(v)
we obtain
o 1 v . v :
S(z\/l) (r’ {n}n:1 ’Z) = zlrl—*(v) {DZ : [Zv lq)(z727lr)] _DZ ! I:ZV lq)(z727 _lr)] } I
(16)
where 0 < Re(v) < 1.
7. In [10], the authors defined generalized B -Mittag-Leffler functions
DI g
Egy ()= ————. 17
Py = [C(vk+ )P

For v=y=1 and § € N, we get the hyper-Bessel function. We define a new family
of f-Mittag-Leffler functions

k

(1) - (T)sx
Ef ()= (18)

Bv. ST (vk+ )
. -G
Specially, for T = 1, we obtain Elgiy(x) =Ep (%)

(a

The Mathieu series S, ) (r{T(yn+90)},_,,z) admits the following series rep-
resentation:

SEB) (1 Ty + 8) Y7, ,2)

(
i <u+m 1)( 2" 2 (V)n?"

= S (yn + 5)] (utmjoa=p

<I~l+m71> (_r2)m

m

1

v)
E & r oy p

(u+m)o—B.y,8

Il
M s

0

mn
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8. The Mathieu series S ( {T(yn+9)},_,,z) admits the following series
representation:

SP (r AT (m+8))7,2)

I
DM
S
=
'3
N
T
~
(3]
SN—
3
M s
— | &
=
+
5
Q
=

3

[
N
Ms &

3
Il
<}

I
M

i
f=l

In the next Theorem we give an integral expression of Mathieu series Sg /213 1> (r;a;1),
by using the Fourier transform.

THEOREM 2. Let rya, 3 >0 and a = (a)x>1 be a sequences such that the func-
tion ( 5 2)
< 2(a%tt—r
fr(ouﬁ)(t) _ 2 ra n
n=1a 2 (

2 U (a%? +r2)?

19)

converges for all t > 0. Then we have
Sg72ﬁ1 (r;a,1) / Vi fraﬁ

Proof. In [26, Eq. 6.6], the author give the Fourier transform of the function
Qe (x) = m with ¢ >0 and pu > 1/2:

2l-m 12
ﬁ%u(é):mm” Ky 12(clE]), (20)

where K, is the modified Bessel function of the second kind. On the other hand, using
the representation integral (see for example [2, Theorem 4.17]),
1

X\ & toe a—l 1
K =— (= / (-1 2dr, a>—=, x>0. (21
a(%) VA (a+ 1) <2) G 2 @D

and Fubini’s Theorem that the even function x*K, (x) belongs to L'[0,). So, by using
the inversion formula and (20) we deduce that

1—
ponl) = o (167 Kl )

2 -
= W)’Jcﬂ—lﬂ/o cos(x&)EH 12Ky jp(c&)dE

In view of the representation integral (see [26, Def. 5.10])

(22)

Ku(z) = /O e300 cosh(ur)dr, (23)
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and (22) we obtain
221

Pen) = =2, co(la=1/2)) [ eostugygu ek

(24)

Now, let u = 3/2. Combining the following formula (see [6, Eq. 2. p. 391])

o 2 2.2
—ccosh(t)éd _ c COSh(Z) —-X 25
/o cos(xs )oe s (c2cosh(z)? +x2)? 25)
and (24) we obtain
1 > (c?cosh(t)? — x?)
_ h

Pe 3/2( x) = JAT(/2) / cos (Z)( 2COSh( )2 +x2)2 06)

1 /—
/ 2t2 +x

(3
Letting ¢ = a; and x = r in the (26), we get
Zan / \/— Za,, O‘tz—r2) dr

(a% +r?) 32~ 0‘/2(aat2+r2)2

The interchanging between integral and summation gives the desired result. [

4. Mathieu probability distribution

The main objective of this section is to introduce, develop and investigate prob-
ability distribution functions (PDF) associated with the Mathieu series and their gen-
eralizations. We define a discrete random variable X defined on some fixed standard
probability space (Q, F ,P) possesing a Mathieu distribution with parameter r > 0,

(a,00) 2n% (V)n 1
P,y (nr)=P(X=n)= (27
u.v (na + r2)l~l n! Sl(ﬁ",a) (r)
(ra,u, veR*), neN,
where Sﬂf‘{,a) (r)= ( {n}r_). P ﬂv )(n,r) is normalized, since

© pl0.0) <
P )=
& Fun ) = 2 G i

THEOREM 3. The expected value EX of a Mathieu distribution P,El?“}a) (n,r) is
(o, 04+1)
Sp,v (r)

S and variance Var (X) is given by

r)

2
ST (S ()= ST )]
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Moreover the following Turdn type inequality holds true

2
S ST () = (s ) 28)
Proof. By computation we have
oo < ypotl 1 S(O‘va+l)
EX= Y bt ==y 2 e L Sur ()
il amt (%) nlg 2O Gy sy h ()
and
oo o p0+2 S(a,a+2)
EX2=Y n’P(X=n)=Y — 2(‘2 ( 1) = U}
n=1 n=1 (na+r) nlS#OtvO( (V) Sﬂava (r)
Thus

2
S () s () = [sise Y]

(s ()’

Using the fact that Var(x) is nonnegative, we easy get that the Turédn type inequality
(28) holds true. [

Var(X) = EX* — (EX)* =

THEOREM 4. The characteristic funtion of the Mathieu distribution Pp(l +l)v (n,r),
r >0 is given by

=3

uv  u1/2
0= (2r)“1/21"f+1)Su7v(1’)0/ o (Rew) > —3).
where Jy,_y/5(.) is the Bessel function. =
Proof. Using the formula:
(n2+2:;)ﬂ+1 _ o 1/2/e nt ll+l/2_] _12(rt)dt
r
0

1
(300> -3)
we obtain

_ < itn 21’1(V>n !
[ (1) _r;e (n2+r2)“+ln!Sﬂ~,V (r)

=3

7 \/E ( )/uﬂ+l/2JH_1/2 (ru) [Z (v)n (e—ueit)"‘| du

PP (A ) S (r =l
NG /°° uvup+1/2 ()
_ ru u.
T 2R T (1) S () oy 12

0
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So, the proof of Theorem 4 is complete. [
COROLLARY 1. Let v >0 and u > 1. Then the following inequality holds
S (DS () = S ()] (30)

In particular,

D)) SED () > [E2 (n ()]

Proof. We consider a special case

2n(v), 1
(n2+r2)" n! SE\}) (r)

PR (nr)=P(Y =n) =

€1V

(r,u,v€R+), neN.

Then 22
Sy’ (r{n})
Ey =—£Y 1 0
o) (r{n})
Sty (r.{n})
Ey?=-“#v U0
) (rn})

Applying the elementary inequality EY? > (E Y)2 ,we obtain
) 2
V) SEY (rfnd) =[SV nh)] T O
THEOREM 5. Let v > 1. Then the following inequality

B0 0 () B 0 () > 22880 () + [0 )] )

holds true.

Proof. From Corollary 1, we have

[Sg?,vl) (r{n}) — 2850 {n})] ST (rAn}) = {3%2) (r, {n})} EE)

On the other hand, using the fact that the function v — (Vv),, is increasing on [1, ), we
deduce that

(&0 tnp)]” = [ ()] (34
and

(22 (e np)]” = [ (e )] (33)
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In [28], Wilkins proved the following inequality

2
M

n=1

oo

(36)

(n2+r2)3

n=1

Combining (34) and (36) we get

(&0 ()] > 2580 () (37)
In view of (37) and (35) we get the inequality (32). O

5. Functional inequalities for Mathieu series

Before we present our main results in this section, we recall some standard defini-
tions and basic facts. A non-negative function f defined on (0,) is called completely
monotonic if it has derivatives of all orders and

(=1 f"(x) 20, n>1

and x > 0 [16, 3, 14]. This inequality is known to be strict unless f is a constant. By
the celebrated Bernstein theorem, a function is completely monotonic if and only if it
is the Laplace transform of a non-negative measure [16, Theorem 1.4].

THEOREM 6. Let o, 3, v, >0 and 0<z<1. Then the function rl—>Sﬂ v (\/_ r,a,z)
is completely monotonic and log-convex on (0,0). In particular, for ri,ry,v > 0, the
following chain of inequalities:

2
r +r
s (P3| <smaosPiman

< 28uw (0B, )SP (Vi T raa.2)

holds true if the following auxiliary series

oo

Conlepr)= 3 W

al n'aa“ B
is convergent.
2a£(v)nz"

n!(a%+r)H
o, B,u,v > 0. Using the fact that sums of completely monotonic functions are com-

Proof. As the function r — is completely monotonic on (0,e0) for all

pletely monotonic too, we deduce that the function r — S (\/_ a,z) is completely
monotonic and log-convex on (0,e0), since every completely monotonic function is
log-convex (see [27, p. 167]). Thus for all r{,r, >0, and 7 € [0, 1] we get

t 1—1¢
S,I(La{/ﬁ) < w7a7z> < [S[(Jofvﬁ)( rl,a,z)]t[sl(ff\’/ﬁ)( r27a7z)}l—t. (39)
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Choosing ¢ = 1/2, the above inequality reduce to the first inequality in (38). For the
second inequality in (38), we observe that the function r — Sﬂf‘(,ﬁ )(\/?, a,z) is decreas-
ing on (0,c), and thus

=

aﬁ(faz) S‘f‘vﬁ 0,a,z) =

_ZCu vio,B,z).

- sl (Vra) , . .
So, the function r +— (e Maps (0,00) into (0,1) and its completely monotonic

on (0,e0). On the other hand, according to Kimberling [11], if a function f, defined on
(0,00), is continuous and completely monotonic on (0,e) into (0, 1), then the log f is
super-additive, that is for all x,y > 0, we have

log f(x+y) = log f(x) +log f(y) or f(x+y) = f(x)f()-

Therefore we conclude the second inequality in (38). [

LEMMA 1. [1] Let f,g: [a,b] — R, be two continuous functions which are dif-
ferentiable on (a,b). Further, let g/(x) # 0 on (a,b). If f'/g is increasing (or de-
creasing) on (a,b), then the functions

)= fla@) )= fb)
g(x) —g(a) g(x)—g(b)’

are also increasing (or decreasing) on (a,b).

COROLLARY 2. Let o,B,1t > 0 and 0 < z < 1. Then the following inequality

Cva“rB )

28y (0, Byz)e M V@B < S0P (ra,2) (40)

holds true if the following auxiliary series

oo

CMV(OC?ﬁ?Z) Z (V)nzn

P 1n'aa“ B

is convergent.

s (Vraz)
Proof. Since the function r — ’?(705[52 is log-convexon (0,e) foral o, 3,v >
a.B)
0, we obtain that r — % is increasing on (0,e0). Let
ra,z
5(@B) a,
F(r)=log M , and G(r)=r.
2€u7v(a,ﬁ,z)
Then the function
F(r) _ F(r)—F(0
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is increasing on (0,e0), by means of Lemma 1. So, by using the I"Hospital’s rule we
get

Siiad ) (V7.a.2) b8,
ZC[J,V((XaB’Z) 2CM,V((X’B?Z) .

Therefore we conclude the asserted inequality (40). O

log > rF'(0) = (41)

REMARKS.
1. Taking z=B =v=1,a= (n),> and oo =2 in (40), we obtain the following
inequality
C2u+1) 2

<
21 }\Sy(r), r>0, (42)

22— l)eXP{—u

where {(.) denotes the Riemann zeta function defined by

-

{(p) = il

2. We note that if we choose y =2 and u = 3/2 in (42) we obtain the following

inequalities
&) »
28(3)exp {—Z—r < S(r), 43)
4€))
and ) -
T Tr
3 eXP{_—IO } < 83)2(7), (44)
holds true for all » > 0.
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