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SERIES REPRESENTATIONS OF THE REMAINDERS

IN THE EXPANSIONS FOR CERTAIN TRIGONOMETRIC

FUNCTIONS AND SOME RELATED INEQUALITIES, I

CHAO-PING CHEN AND RICHARD B. PARIS

(Communicated by J. Pečarić)

Abstract. We present series representations of the remainders in the expansions for certain trigono-
metric and hyperbolic functions. From these results, we establish some inequalities for trigono-
metric and hyperbolic functions.

1. Introduction

The Bernoulli numbers Bn and Euler numbers En are defined, respectively, by the
following generating functions:

t
et −1

=
∞

∑
n=0

Bn
tn

n!
(|t| < 2π) and sec t =

∞

∑
n=0

En
tn

n!
(|t| < π).

Series representations of the remainders in the expansions for 2/(et + 1) , secht
and cotht can be found in [5, 11]. For example, for t > 0 and N ∈ N := {1,2, . . .} ,

sech t =
N−1

∑
j=0

E2 j

(2 j)!
t2 j +RN(t)

with

RN(t) =
(−1)N2t2N

π2N−1

∞

∑
k=0

(−1)k

(k+ 1
2 )2N−1

(
t2 + π2(k+ 1

2 )2
) ,

and, in addition,

secht =
N−1

∑
j=0

E2 j

(2 j)!
t2 j + Θ(t,N)

E2N

(2N)!
t2N

Mathematics subject classification (2010): 11B68, 26D05.
Keywords and phrases: Bernoulli numbers, Euler numbers, trigonometric function, hyperbolic func-

tion, inequalities.

c© � � , Zagreb
Paper MIA-20-64

1003

http://dx.doi.org/10.7153/mia-2017-20-64


1004 C.-P. CHEN AND R. B. PARIS

with a suitable 0 < Θ(t,N) < 1. By using the obtained results, Chen and Paris [5] de-
duced some inequalities and completely monotonic functions associated with the ratio
of gamma functions.

This paper is a continuation of our earlier work [5]. In Part I we present series
representations of the remainders in the expansions for certain trigonometric and hy-
perbolic functions. From these results, we establish some inequalities for trigonometric
and hyperbolic functions.

2. Series representations of the remainders

In this section we present expansions for several trigonometric and hyperbolic
functions together with expressions for their remainders. Here, and throughout this
paper, an empty sum is understood to be zero.

THEOREM 1. Let N � 0 be an integer. Then for |t| < π/2 , we have

tan t =
N

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

t2 j−1 + ϑN(t), (1)

where

ϑN(t) =
22N+3t2N+1

π2N

∞

∑
k=1

1

(2k−1)2N
(

π2(2k−1)2−4t2
) . (2)

Proof. It follows from [10, p. 44] that

tan
πx
2

=
4x
π

∞

∑
k=1

1
(2k−1)2− x2 .

Replacement of x by 2t/π yields

tant =
∞

∑
k=1

8t
π2(2k−1)2−4t2

, (3)

which can be written as

tan t =
8t
π2

∞

∑
k=1

1

(2k−1)2

(
1−
(

2t
π(2k−1)

)2
) . (4)

Using the following identities:

1
1−q

=
N−1

∑
j=0

q j +
qN

1−q
(q �= 1) (5)
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and
∞

∑
k=1

1
(2k−1)2n =

(22n−1)π2n|B2n|
2 · (2n)!

(6)

(see [10, p. 8]), we obtain from (4) that

tant =
8t
π2

∞

∑
k=1

1
(2k−1)2

⎛
⎜⎝N−1

∑
j=0

(
2t

π(2k−1)

)2 j

+

(
2t

π(2k−1)

)2N

1−
(

2t
π(2k−1)

)2

⎞
⎟⎠

=
N

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

t2 j−1 + ϑN(t),

where

ϑN(t) =
22N+3t2N+1

π2N

∞

∑
k=1

1

(2k−1)2N
(

π2(2k−1)2−4t2
) .

The proof of Theorem 1 is complete. �
Becker and Stark [3] showed that for 0 < x < π/2,

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 . (7)

The constant 8 and π2 are the best possible. The Becker–Stark inequality (7) has
attracted much interest of many mathematicians and has motivated a large number of
research papers (cf. [2, 4, 8, 9, 12, 14, 16, 17, 18] and the references cited therein). For
example, Banjac et al. [2, Theorem 2.7] proved recently that for 0 < x < π/2,

π2 +
(

π2

3 −4
)

x2 +
(

π2

18 − 2
3

)
x4

π2−4x2 <
tanx

x
<

π2− π2

16 x2 + 1
2x4 − 1

π2 x6

π2−4x2 . (8)

There is no strict comparison between the two lower bounds in (7) and (8). The upper
bound in (8) is sharper than that in (7).

Here we shall improve on the above inequalities. Write (1) as

tan t
t

=
N

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

t2 j−2

+
22N+3t2N

π2N

⎧⎨
⎩ 1

π2−4t2
+

∞

∑
k=2

1

(2k−1)2N
(

π2(2k−1)2−4t2
)
⎫⎬
⎭ . (9)

Noting that the function

F(t) :=
∞

∑
k=2

1

(2k−1)2N
(

π2(2k−1)2−4t2
)
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is strictly increasing for 0 < t < π/2, we then obtain from (9) that for 0 < t < π/2,

22N+3t2N

π2N+2

∞

∑
k=2

1
(2k−1)2N+2 <

tan t
t

−
N

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

t2 j−2− 22N+3t2N

π2N(π2−4t2)

<
22N+1t2N

π2N+2

∞

∑
k=2

1
k(k−1)(2k−1)2N . (10)

Direct computations yield

∞

∑
k=2

1
(2k−1)4 =

π4

96
−1,

∞

∑
k=2

1
k(k−1)(2k−1)2 = 5− π2

2
.

The choice N = 1 in (10) therefore yields

32t2

π4

(
π4

96
−1

)
<

tan t
t

−1− 32t2

π2(π2−4t2)
<

8t2

π4

(
5− π2

2

)
, 0 < t <

π
2

,

which can be rearranged for 0 < x < π/2 as

π2 + π2−12
3 x2 + 384−4π4

3π4 x4

π2−4x2 <
tanx

x
<

π2 + 72−8π2

π2 x2 + 16π2−160
π4 x4

π2−4x2 . (11)

The inequality (11) improves the inequalities (7) and (8).

THEOREM 2. Let N � 0 be an integer. Then for all t ∈ R , we have

tanht =
N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−1 + τN(t), (12)

where

τN(t) = (−1)N 22N+3t2N+1

π2N

∞

∑
k=1

1

(2k−1)2N
(

π2(2k−1)2 +4t2
) , (13)

and

tanh t =
N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−1 + ξ (t,N)

22N+2(22N+2−1)B2N+2

(2N +2)!
t2N+1, (14)

where 0 < ξ (t,N) < 1 .

Proof. It follows from [10, p. 44] that

tanh
πx
2

=
4x
π

∞

∑
k=1

1
(2k−1)2 + x2 . (15)
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Replacement of x by 2t/π yields

tanht =
∞

∑
k=1

8t
π2(2k−1)2 +4t2

=
8t
π2

∞

∑
k=1

1

(2k−1)2

(
1+
(

2t
π(2k−1)

)2
) . (16)

Using the identity

1
1+q

=
N−1

∑
j=0

(−1) jq j +(−1)N qN

1+q
(q �= −1) (17)

and (6), we obtain from (16) that

tanht =
8t
π2

∞

∑
k=1

1
(2k−1)2

⎛
⎜⎝N−1

∑
j=0

(−1) j
(

2t
π(2k−1)

)2 j

+(−1)N

(
2t

π(2k−1)

)2N

1+
(

2t
π(2k−1)

)2

⎞
⎟⎠

=
N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−1 + τN(t),

where

τN(t) = (−1)N 22N+3t2N+1

π2N

∞

∑
k=1

1

(2k−1)2N
(

π2(2k−1)2 +4t2
) .

Noting that (6) holds, we can rewrite τN(t) as

τN(t) = ξ (t,N)
22N+2(22N+2 −1)B2N+2

(2N +2)!
t2N+1,

where

ξ (t,N) :=
g(t)
g(0)

, g(t) :=
∞

∑
k=1

1

(2k−1)2N
(

π2(2k−1)2 +4t2
) .

Obviously, the even function g(t) > 0 and is strictly decreasing for t > 0. Hence,
for t �= 0, 0 < g(t) < g(0) and thus 0 < ξ (t,N) < 1. The proof of Theorem 2 is
complete. �

From (12), we obtain the following

COROLLARY 1. For t �= 0 , we have

(−1)N

(
tanht

t
−

N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−2

)
> 0,

that is,

2m

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−2 <

tanh t
t

<
2m−1

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−2. (18)
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We now establish an inequality for tanht/t analogous to that in (8). Write (12) as

(−1)N

(
tanht

t
−

N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−2

)

=
22N+3t2N

π2N

⎧⎨
⎩ 1

π2 +4t2
+

∞

∑
k=2

1

(2k−1)2N
(

π2(2k−1)2 +4t2
)
⎫⎬
⎭ . (19)

Noting that the even function

G(t) :=
∞

∑
k=2

1

(2k−1)2N
(

π2(2k−1)2 +4t2
)

is strictly decreasing for t > 0, we then obtain from (19) that for t �= 0,

(−1)N

(
tanht

t
−

N

∑
j=1

22 j(22 j −1)B2 j

(2 j)!
t2 j−2

)

<
22N+3t2N

π2N

{
1

π2 +4t2
+

∞

∑
k=2

1
π2(2k−1)2N+2

}
. (20)

The choice N = 1 and N = 2 in (20), respectively, yields

1− 32t2

π2(π2 +4t2)
− 32t2

π4

∞

∑
k=2

1
(2k−1)4 <

tanht
t

(21)

and

tanh t
t

< 1− 1
3
t2 +

128t4

π4(π2 +4t2)
+

128t4

π6

∞

∑
k=2

1
(2k−1)6 . (22)

Noting that

∞

∑
k=2

1
(2k−1)4 =

π4

96
−1,

∞

∑
k=2

1
(2k−1)6 =

π6

960
−1,

we obtain from (21) and (22) that for t �= 0,

π2 +
(
4− π2

3

)
t2−

(
4
3 − 128

π4

)
t4

π2 +4t2
<

tanht
t

<
π2 +

(
4− π2

3

)
t2−

(
4
3 − 2π2

15

)
t4 +

(
8
15 − 512

π6

)
t6

π2 +4t2
, (23)

which is an analogous result to (8).
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THEOREM 3. Let N � 0 be an integer. Then for |t| < π/2 , we have

sec t =
N−1

∑
j=0

|E2 j|
(2 j)!

t2 j + ωN(t), (24)

where

ωN(t) =
22N+2t2N

π2N−1

∞

∑
k=1

(−1)k+1

(2k−1)2N−1
(

π2(2k−1)2−4t2
) . (25)

Proof. It follows from [10, p. 44] that

sec
πx
2

=
4
π

∞

∑
k=1

(−1)k+1 2k−1
(2k−1)2− x2 .

Replacement of x by 2t/π yields

sec t =
4
π

∞

∑
k=1

(−1)k+1

(2k−1)
(
1− ( 2t

π(2k−1)

)2) . (26)

Using (5) and the following identity:

∞

∑
k=1

(−1)k+1

(2k−1)2n+1 =
π2n+1

22n+1(2n)!
|E2n| (27)

(see [10, p. 8]), we obtain from (26) that

sec t =
4
π

∞

∑
k=1

(−1)k+1

2k−1

⎛
⎜⎝N−1

∑
j=0

(
2t

π(2k−1)

)2 j

+

(
2t

π(2k−1)

)2N

1−
(

2t
π(2k−1)

)2

⎞
⎟⎠

=
N−1

∑
j=0

|E2 j|
(2 j)!

t2 j + ωN(t),

where

ωN(t) =
22N+2t2N

π2N−1

∞

∑
k=1

(−1)k+1 1

(2k−1)2N−1
(

π2(2k−1)2−4t2
) .

The proof of Theorem 3 is complete. �
Chen and Sandor [7, Theorem 3.1(i)] proved that for 0 < |t| < π/2,

π2

π2−4t2
< sec t <

4π
π2−4t2

. (28)
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The constants π2 and 4π are best possible. To improve on this inequality write (24) as

sec t =
N−1

∑
j=0

|E2 j|
(2 j)!

t2 j +
22N+2t2N

π2N−1

⎧⎨
⎩ 1

π2−4t2
+

∞

∑
k=2

(−1)k+1

(2k−1)2N−1
(

π2(2k−1)2−4t2
)
⎫⎬
⎭

=
N−1

∑
j=0

|E2 j|
(2 j)!

t2 j +
22N+2t2N

π2N−1(π2−4t2)

+
22N+2t2N

π2N−1

∞

∑
k=2

(−1)k+1 1

(2k−1)2N−1
(

π2(2k−1)2−4t2
) . (29)

Let

H(t) =
∞

∑
k=2

(−1)k+1 1

(2k−1)2N−1
(

π2(2k−1)2−4t2
) .

Differentiation yields

H ′(t) = −8t
∞

∑
k=2

(−1)kηk, ηk =
1

(2k−1)2N−1
(

π2(2k−1)2−4t2
)2 .

Then it is easily seen that η2k > η2k+1 for k ∈ N , 0 < t < π/2 and N ∈ N ; thus
H ′(t) < 0 for 0 < t < π/2. Hence, for all 0 < t < π/2 and N ∈ N , we have H(π/2) <
H(t) < H(0) . We then obtain from (29) that for 0 < |t| < π/2,

N−1

∑
j=0

|E2 j|
(2 j)!

t2 j +
22N+2t2N

π2N−1(π2−4t2)
+

22Nt2N

π2N+1

∞

∑
k=2

(−1)k+1

k(k−1)(2k−1)2N−1

< sec t <
N−1

∑
j=0

|E2 j|
(2 j)!

t2 j +
22N+2t2N

π2N−1(π2−4t2)
+

22N+2t2N

π2N+1

∞

∑
k=2

(−1)k+1

(2k−1)2N+1 . (30)

Direct computations yield

∞

∑
k=2

(−1)k+1

k(k−1)(2k−1)
= 3−π ,

∞

∑
k=2

(−1)k+1

(2k−1)3 =
π3

32
−1.

The choice N = 1 in (30) then yields, for 0 < |t| < π/2,

π2 + 28−8π
π t2 + −48+16π

π3 t4

π2−4t2
< sec t <

π2− 8−π2

2 t2− 4π3−128
2π3 t4

π2−4t2
, (31)

which improves the inequality (28).

THEOREM 4. For 0 < |t| < π , we have

cott =
1
t
−

N

∑
j=1

22 j|B2 j|
(2 j)!

t2 j−1 + θN(t), (32)
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where

θN(t) =
2t2N+1

π2N

∞

∑
k=1

1

k2N
(
t2−π2k2

) . (33)

Proof. It follows from [13, p. 118] that

cott =
1
t

+2t
∞

∑
k=1

1
t2−π2k2 , (34)

which can be written as

cott =
1
t
−2t

∞

∑
k=1

1

(kπ)2
(
1− ( t

kπ
)2) . (35)

Using (5) and the following identity:

∞

∑
k=1

1
k2n =

22n−1π2n

(2n)!
|B2n| (36)

(see [10, p. 8]), we obtain from (35) that

cott =
1
t
−2t

∞

∑
k=1

1
(kπ)2

(
N−1

∑
j=0

( t
kπ

)2 j
+

(
t

kπ
)2N

1− ( t
kπ
)2
)

=
1
t
−2

N

∑
j=1

22 j−1|B2 j|
(2 j)!

t2 j−1 + θN(t),

where

θN(t) =
2t2N+1

π2N

∞

∑
k=1

1

k2N
(
t2−π2k2

) .
The proof of Theorem 4 is complete. �

THEOREM 5. For 0 < |t| < π , we have

csc t =
1
t

+
N

∑
j=1

(22 j −2)|B2 j|
(2 j)!

t2 j−1 + rN(t), (37)

where

rN(t) =
2t2N+1

π2N

∞

∑
k=1

(−1)k+1

k2N
(
π2k2 − t2

) . (38)
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Proof. It follows from [13, p. 118] that

csc t =
1
t

+2t
∞

∑
k=1

(−1)k+1

(kπ)2 − t2
, (39)

which can be written as

csc t =
1
t

+2t
∞

∑
k=1

(−1)k+1

(kπ)2
(
1− ( t

kπ
)2) . (40)

Using (5) and the following identity:

∞

∑
k=1

(−1)k+1

k2n =
(22n−1−1)π2n

(2n)!
|B2n| (41)

(see [10, p. 8]), we obtain from (40) that

csc t =
1
t

+2t
∞

∑
k=1

(−1)k+1

(kπ)2

(
N−1

∑
j=0

( t
kπ

)2 j
+

(
t

kπ
)2N

1− ( t
kπ
)2
)

=
1
t

+
N

∑
j=1

(22 j −2)|B2 j|
(2 j)!

t2 j−1 + rN(t),

where

rN(t) =
2t2N+1

π2N

∞

∑
k=1

(−1)k+1

k2N
(
π2k2 − t2

) .
The proof of Theorem 5 is complete. �

Theorems 4 and 5 will be used in Part II.

3. A double inequality for the remainder in the expansion for secx

Let Sn(x) denote

Sn(x) =
n

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−1, |x| < π
2

.

By using induction, Chen and Qi [6] (see also [15]) established a double inequality for
the difference tanx−Sn(x) :

22n+2(22n+2−1)|B2n+2|
(2n+2)!

x2n tanx < tanx−Sn(x) <

(
2
π

)2n

x2n tanx (42)

for 0 < x < π/2 and n ∈ N , where the the constants

22n+2(22n+2−1)|B2n+2|
(2n+2)!

and

(
2
π

)2n
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are the best possible.
It is well known [10, p. 43] that

secx =
∞

∑
j=0

|E2 j|
(2 j)!

x2 j, |x| < π
2

. (43)

Let sN(x) denote

sN(x) =
N−1

∑
j=0

|E2 j|
(2 j)!

x2 j, |x| < π
2

. (44)

In this section, we establish a double inequality for the difference secx− sN(x) , which
is an analogous result to (42) given by Theorem 6.

THEOREM 6. Let N � 0 be an integer. Then for 0 < x < π/2 , we have

|E2N |
(2N)!

x2N−1 tanx < secx− sN(x) <

(
2
π

)2N−1

x2N−1 tanx, (45)

where the constants |E2N |/(2N)! and (2/π)2N−1 are the best possible.

Proof. From the expansion [10, p. 42]

tanx =
∞

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−1, |x| < π
2

and (43), the left-hand side inequality (45) can be written for 0 < x < π/2 as

∞

∑
j=N

|E2N |
(2N)!

22 j−2N+2(22 j−2N+2−1)|B2 j−2N+2|
(2 j−2N +2)!

x2 j <
∞

∑
j=N

|E2 j|
(2 j)!

x2 j,

or

∞

∑
j=N+1

{ |E2N |
(2N)!

22 j−2N+2(22 j−2N+2−1)|B2 j−2N+2|
(2 j−2N +2)!

− |E2 j|
(2 j)!

}
x2 j < 0.

We now prove that

|E2N |
(2N)!

22 j−2N+2(22 j−2N+2−1)|B2 j−2N+2|
(2 j−2N +2)!

<
|E2 j|
(2 j)!

, j � N +1. (46)

Using the following inequalities (see [1, p. 805])

2

(2π)2n (1−21−2n)
>

|B2n|
(2n)!

>
2

(2π)2n , n � 1,
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4n+1

π2n+1

(
1

1+3−1−2n

)
<

|E2n|
(2n)!

<
4n+1

π2n+1 , n = 0,1,2, . . . ,

it suffices to show that

4N+1

π2N+1

22 j−2N+2(22 j−2N+2−1)2

(2π)2 j−2N+2 (1−21−2( j−N+1)
) <

4 j+1

π2 j+1

(
1

1+3−1−2 j

)
, j � N +1,

which can be rearranged as

8
π2

4 j−N+1−1
4 j−N+1−2

<
32 j+1

32 j+1 +1
,

8
π2

(
1+

1
4 j−N+1−2

)
< 1− 1

32 j+1 +1
,

8
π2(4 j−N+1−2)

+
1

32 j+1 +1
< 1− 8

π2 .

Noting that the sequence

8
π2(4 j−N+1−2)

+
1

32 j+1 +1

is strictly decreasing for j � N +1, it is enough to prove the following inequality:

4
7π2 +

1
32N+3 +1

< 1− 8
π2 ,

which can be rearranged as

32N+3 >
60

7π2−60
= 6.60267151 . . .. (47)

Obviously, (47) holds for all integers N � 0. This proves (46). Hence, the left-hand
side inequality (45) holds.

By Theorem 3 and (3), the right-hand side inequality (45) can be rearranged for
0 < x < π/2 as

∞

∑
k=1

(−1)k+1

(2k−1)2N−1
(

π2(2k−1)2−4x2
) <

∞

∑
k=1

1
π2(2k−1)2−4x2 ,

or

∞

∑
k=2

{
1− (−1)k+1

(2k−1)2N−1

}
1

π2(2k−1)2−4x2 > 0. (48)

Obviously, (48) holds. Hence, the right-hand side inequality (45) holds.
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Write (45) as

|E2N |
(2N)!

<
secx−∑N−1

j=0
|E2 j |
(2 j)!x

2 j

x2N−1 tanx
<

(
2
π

)2N−1

.

We find

lim
x→0

secx−∑N−1
j=0

|E2 j |
(2 j)!x

2 j

x2N−1 tanx
=

|E2N |
(2N)!

and

lim
x→ π

2

secx−∑N−1
j=0

|E2 j |
(2 j)!x

2 j

x2N−1 tanx
=
(

2
π

)2N−1

.

Hence, the inequality (45) holds, where the constants |E2N |/(2N)! and (2/π)2N−1 are
the best possible. The proof of Theorem 6 is complete. �
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