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Abstract. In the article, we present the best possible parameters a,b on the interval (0,∞) such
that the Gautschi double inequality [(xp +a)1/p − x]/a < exp ∫ ∞

x e−t p dt < [(xp +b)1/p − x]/b
holds for all x > 0 and p ∈ (0,1) . As applications, we find new bounds for the incomplete
gamma function Γ(a,x) =

∫ ∞
x ta−1e−t dt .

1. Introduction

Let a > 0 and x > 0. Then the classical gamma function Γ(x) , incomplete gamma
function Γ(a,x) and psi function ψ(x) are defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt, Γ(a,x) =

∫ ∞

x
ta−1e−tdt, ψ(x) =

Γ′(x)
Γ(x)

,

respectively. It is well known that the identities

∫ ∞

x
e−t pdt =

1
p

Γ
(

1
p
,xp

)
,

∫ x

0
e−t pdt =

1
p

Γ
(

1
p

)
− 1

p
Γ

(
1
p
,xp

)
(1.1)

hold for all x, p > 0.
Recently, the bounds and asymptotic expansions for the integral

∫ ∞
x e−t pdt or∫ x

0 e−t pdt have attracted the interest of many researchers. In particular, many remark-
able inequalities and asymptotic formulas for both integrals can be found in the litera-
ture [2, 4, 6, 9, 11, 12, 13, 14, 18, 22, 23, 24, 25, 27, 28, 29, 31]. Let

Ip(x) = exp
∫ ∞

x
e−t pdt. (1.2)

Then we clearly see that

I1(x) = 1, I1/2(x) = 2(
√

x+1), (1.3)
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and Ip(x) is divergent if p � 0. The functions I3(x) and I4(x) can be used to research
the heat transfer problem [36] and electrical discharge in gases [30], respectively.

Komatu [17] and Pollak [26] proved that the double inequality

1√
x2 +2+ x

< I2(x) <
1√

x2 + 4
π + x

holds for all x > 0.
In [8], Gautschi proved that the double inequality

1
a

[
(xp +a)1/p− x

]
< Ip(x) <

1
b

[
(xp +b)1/p− x

]
(1.4)

holds for all x > 0 and p > 1 if and only if a � 2 and

b � λ0 = Γp/(1−p)
(

1+
1
p

)
(1.5)

by use of the monotonicity of the difference of the functions Ip(x) and [(xp +a)− x]/a .
An application of inequality (1.4) in radio propagation mode was given in [7].
Alzer [1] presented the best possible parameters α and β such that the double

inequality

(
1− e−αxp

)1/p
<

1

Γ
(
1+ 1

p

) ∫ x

0
e−t pdt <

(
1− e−β xp

)1/p

holds for all x > 0 and p > 0 with p �= 1.
Motivated by the Gautschi double inequality (1.4), it is natural to ask what are the

best possible parameters a and b on the interval (0,∞) such that the Gautschi double
inequality (1.4) takes place for all x > 0 and p∈ (0,1)? The main purpose of this paper
is to answer this question and present new bounds for the incomplete gamma function
Γ(a,x) =

∫ ∞
x ta−1e−t dt .

2. Lemmas

In order to prove our main results, we first need to introduce an auxiliary function.
Let −∞ � a < b � ∞ , f and g be differentiable on (a,b) , and g′ �= 0 on (a,b) .

Then the function Hf ,g [37, 39] is defined by

Hf ,g(x) =
f ′(x)
g′(x)

g(x)− f (x). (2.1)

LEMMA 2.1. (See [37, Theorem 9]) Let ∞ � a < b � ∞ , f and g be differen-
tiable on (a,b) with f (b−) = g(b−) = 0 and g′(x) < 0 on (a,b) , Hf ,g be defined by
(2.1). Then the following statements are true:
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(1) If Hf ,g(a+) > 0 and there exists λ ∈ (a,b) such that f ′(x)/g′(x) is strictly
decreasing on (a,λ ) and strictly increasing on (λ ,b) , then there exists μ ∈ (a,b) such
that f (x)/g(x) is strictly decreasing on (a,μ) and strictly increasing on (μ ,b);

(2) If Hf ,g(a+) < 0 and there exists λ ∗ ∈ (a,b) such that f ′(x)/g′(x) is strictly
increasing on (a,λ ∗) and strictly decreasing on (λ ∗,b) , then there exists μ∗ ∈ (a,b)
such that f (x)/g(x) is strictly increasing on (a,μ∗) and strictly decreasing on (μ∗,b) .

LEMMA 2.2. (See [3, Theorem 1.25]) Let −∞ < a < b < ∞ , f ,g : [a,b] → R be
continuous on [a,b] and differentiable on (a,b) , and g′(x) �= 0 on (a,b) . If f ′(x)/g′(x)
is increasing (decreasing) on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

,
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.3. The double inequality

x < Γ1/(x−1)(1+ x) < 2 (2.2)

holds for all x ∈ (1,2) , and inequality (2.2) is reversed for all x ∈ (2,∞) .

Proof. Let J1(x) = logΓ(x+1) , J2(x) = x−1 and J(x) = log
[
Γ1/(x−1)(1+ x)

]
.

Then we clearly see that

J1(1) = J2(1) = 0, J(x) =
J1(x)
J2(x)

(2.3)

and J′1(x)/J′2(x) = ψ(x+1) is strict increasing on the interval (1,∞) .
It follows from Lemma 2.2 and (2.3) together with the monotonicity of the function

J′1(x)/J′2(x) on the interval (1,∞) that the function Γ1/(x−1)(1+x) is strictly increasing
on (1,∞) . Therefore, Γ1/(x−1)(1 + x) < 2 for x ∈ (1,2) and Γ1/(x−1)(1 + x) > 2 for
x ∈ (2,∞) follow easily from the monotonicity of the function Γ1/(x−1)(1+ x) on the
interval (1,∞) .

Next, we prove that the inequality

Γ1/(x−1)(1+ x) > (<)x (2.4)

holds for all x ∈ (1,2) (x ∈ (2,∞)) . Let

ϕ(x) = logΓ(x+1)− (x−1) logx. (2.5)

Then we clearly see that
ϕ(1) = ϕ(2) = 0 (2.6)

and

ϕ ′′(x) = ψ ′(x)− 1
x
− 1

x2 < 0 (2.7)
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for x ∈ (1,∞) .
Inequality (2.7) implies that ϕ(x) is strictly concave on (1,∞) . Then equation

(2.6) leads to the conclusion that

ϕ(x) > (2− x)ϕ(1)+ (x−1)ϕ(2)= 0 (2.8)

for all x ∈ (1,2) , and

0 = ϕ(2) >
x−2
x−1

ϕ(1)+
1

x−1
ϕ(x) =

1
x−1

ϕ(x) (2.9)

for x > 2.
Therefore, inequality (2.4) follows easily from (2.5), (2.8) and (2.9). �

LEMMA 2.4. Let p ∈ (0,1) and a,x ∈ (0,∞) . Then the function a → [(xp +
a)1/p− x]/a is strictly increasing on (0,∞) .

Proof. Let

ω1(a) = (xp +a)1/p− x, ω2(a) = a, ω(a) =
ω1(a)
ω2(a)

=
(xp +a)1/p− x

a
. (2.10)

Then we clearly see that
ω1(0) = ω2(0) = 0, (2.11)[

ω ′
1(a)

ω ′
2(a)

]′
=

1− p

p2 (xp +a)(2p−1)/p
> 0 (2.12)

for all p ∈ (0,1) and a,x ∈ (0,∞) .
Therefore, Lemma 2.4 follows easily from Lemma 2.2 and (2.10)–(2.12). �

LEMMA 2.5. Let p ∈ (0,1) and a,x ∈ (0,∞) , Hf ,g(x) be defined by (2.1), and
f1(x) and g1(x) be defined by

f1(x) =
[
(xp +a)1/p− x

]
e−xp

, g1(x) =
∫ ∞

x
e−t pdt, (2.13)

respectively. Then the following statements are true:
(1) Hf1,g1(0

+) = +∞ for a > 1/p;
(2) Hf1,g1(0

+) = −∞ for a < 1/p.

Proof. Let

u = u(x) =
(

xp +a
xp

)1/p

∈ (1,∞). (2.14)

Then from (2.13) and (2.14) one has

f1(0) = a1/p, g1(0) =
1
p

Γ
(

1
p

)
= Γ

(
1+

1
p

)
> 0, (2.15)
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f ′1(x)
g′1(x)

= −
(

xp +a
xp

)1/p−1

+ pxp

[(
xp +a

xp

)1/p

−1

]
+1 (2.16)

= 1+
(pa−1)u+u1−p− pa

up−1
.

It follows from (2.1), (2.15) and (2.16) that

Hf1,g1(0
+) = lim

x→0+

f ′1(x)
g′1(x)

lim
x→0+

g1(x)− lim
x→0+

f1(x) (2.17)

= Γ
(

1+
1
p

)[
1+ lim

u→∞

(pa−1)u+u1−p− pa
up−1

]
−a1/p.

Note that

lim
u→∞

(pa−1)u+u1−p− pa
up−1

=

{
+∞, a > 1

p ,

−∞, a < 1
p .

(2.18)

Therefore, Lemma 2.5 follows from (2.17) and (2.18). �

LEMMA 2.6. Let p ∈ (0,1/2)∪ (1/2,1) , a,x ∈ (0,∞) , Ip(x) be defined by (1.2)
and the function x → Rp(a,x) be defined by

Rp(a,x) =
(xp +a)1/p− x

Ip(x)
. (2.19)

Then the following statements are true:
(1) The function x→Rp(a,x) is strictly decreasing on (0,∞) if a � max{1/p,2} ;
(2) The function x→ Rp(a,x) is strictly increasing on (0,∞) if a � min{1/p,2} ;
(3) There exists x0 ∈ (0,∞) such that the function x→ Rp(a,x) is strictly increas-

ing on (0,x0) and strictly decreasing on (x0,∞) if p∈ (0,1/2) and 2 = min{1/p,2}<
a < max{1/p,2}= 1/p;

(4) There exists x∗ ∈ (0,∞) such that the function x→Rp(a,x) is strictly decreas-
ing on (0,x∗) and strictly increasing on (x∗,∞) if p∈ (1/2,1) and 1/p = min{1/p,2}
< a < max{1/p,2}= 2 .

Proof. Let f1(x) and g1(x) be defined by (2.13), u = u(x) ∈ (1,∞) be defined by
(2.14), and and h(u) and h1(u) be defined by

h(u) = (p−1)(ap−1)u2p−ap2u2p−1 +(2p+ap−2)up+1− p, (2.20)

h1(u) = 2(p−1)(ap−1)up−ap(2p−1)up−1+2p+ap−2. (2.21)

Then we clearly see that

f1(∞) = g1(∞) = 0, g′1(x) = −exp
< 0, (2.22)

Rp(a,x) =
f1(x)
g1(x)

. (2.23)
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It follows from (2.14), (2.16), (2.20) and (2.21) that

h(1) = h1(1) = 0, (2.24)

[
f ′1(x)
g′1(x)

]′
=

d
du

[
1+ (pa−1)u+u1−p−pa

up−1

]
dx
du

=
(up−1)1/p−1

a1/pu2p−1
h(u), (2.25)

h′(u) = pup−1h1(u), (2.26)

h′1(u) = p(p−1)up−2[2(ap−1)(u−1)+(a−2)]. (2.27)

We divide the proof into six cases.
Case 1 p ∈ (1/2,1) and a � max{1/p,2} . Then we clearly see that a � 2 >

1/p and (2.24)–(2.27) lead to the conclusion that f ′1(x)/g′1(x) is strictly decreasing on
(0,∞) . Therefore, the function x → Rp(a,x) is strictly decreasing on (0,∞) follows
from (2.22), (2.23) and Lemma 2.2 together with the monotonicity of f ′1(x)/g′1(x) on
the interval (0,∞) .

Case 2 p ∈ (1/2,1) and a � min{1/p,2} . Then we clearly see that a � 1/p <
2 and (2.24)–(2.27) lead to the conclusion that f ′1(x)/g′1(x) is strictly increasing on
(0,∞) . Therefore, the function x → Rp(a,x) is strictly increasing on (0,∞) follows
from (2.22), (2.23) and Lemma 2.2 together with the monotonicity of f ′1(x)/g′1(x) on
the interval (0,∞) .

Case 3 p ∈ (1/2,1) and min{1/p,2} < a < max{1/p,2} . Then we clearly see
that

1
p

< a < 2 (2.28)

and (2.27) can be rewritten as

h′1(u) = 2p(ap−1)(p−1)up−2(u−u0) (2.29)

with u0 = 1+(2−a)/[2(ap−1)]∈ (1,∞) .
It follows from (2.20), (2.21), (2.28) and (2.29) that

h(∞) = −∞, h1(∞) = −∞ (2.30)

and h1(u) is strictly increasing on (1,u0) and strictly decreasing on (u0,∞) . Then
(2.24), (2.26) and (2.30) lead to the conclusion that there exists u1 ∈ (1,∞) such that
h(u) is strictly increasing on (1,u1) and strictly decreasing on (u1,∞) .

From (2.14) we clearly see that the function x → u = u(x) is strictly decreasing
from (0,∞) onto (1,∞) . Then from (2.24), (2.25) and (2.30) together with the piece-
wise monotonicity of h(u) on the interval (0,∞) we know that there exists x1 ∈ (0,∞)
such that f ′1(x)/g′1(x) is strictly decreasing on (0,x1) and strictly increasing on (x1,∞) .

Therefore, part (4) follows from Lemma 2.5(1), (2.22) and (2.28) together with
the piecewise monotonicity of f ′1(x)/g′1(x) on the interval (0,∞) and Lemma 2.1(1).

Case 4 p ∈ (0,1/2) and a � max{1/p,2} . Then we clearly see that a � 1/p >
2 and (2.24)–(2.27) lead to the conclusion that f ′1(x)/g′1(x) is strictly decreasing on
(0,∞) . Therefore, the function x → Rp(a,x) is strictly decreasing on (0,∞) follows
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from Lemma 2.2, (2.22), (2.23) and the monotonicity of the function f ′1(x)/g′1(x) on
the interval (0,∞) .

Case 5 p ∈ (0,1/2) and a � min{1/p,2} . Then we clearly see that a � 2 <
1/p and (2.24)–(2.27) lead to the conclusion that f ′1(x)/g′1(x) is strictly increasing on
(0,∞) . Therefore, the function x → Rp(a,x) is strictly increasing on (0,∞) follows
from Lemma 2.2, (2.22), (2.23) and the monotonicity of the function f ′1(x)/g′1(x) on
the interval (0,∞) .

Case 6 p ∈ (0,1/2) and min{1/p,2} < a < max{1/p,2} . Then we clearly see
that

2 < a < 1/p, (2.31)

and (2.20), (2.21) and (2.29) lead to the conclusion that

h(∞) = +∞, h1(∞) = +∞ (2.32)

and h1(u) is strictly decreasing on (1,u0) and strictly increasing on (u0,∞) .
It follows from (2.24), (2.26), (2.32) and the piecewise monotonicity of the func-

tion h1(u) on the interval (1,∞) that there exists u2 ∈ (1,∞) such that h(u) is strictly
decreasing on (1,u2) and strictly increasing on (u2,∞) . Then (2.24), (2.25), (2.32) and
the monotonicity of the function x → u = u(x) lead to the conclusion that there exists
x2 ∈ (0,∞) such that f ′1(x)/g′1(x) is strictly increasing on (0,x2) and strictly decreasing
on (x2,∞) .

Therefore, part (3) follows from Lemma 2.1(2), Lemma 2.5(2), (2.22), (2.23) and
(2.31) together with the piecewise monotonicity of f ′1(x)/g′1(x) on (0,∞) . �

REMARK 2.7. Let Rp(a,x) be defined by (2.19). Then from (2.15), (2.16), (2.22)
and (2.23) we clearly see that

Rp(a,0+) =
a1/p

Γ
(
1+ 1

p

) , (2.33)

Rp(a,∞) = lim
x→∞

f ′1(x)
g′1(x)

= 1+ lim
u→1−

(pa−1)u+u1−p− pa
up−1

= a. (2.34)

REMARK 2.8. Let p ∈ (0,1/2)∪ (1/2,1) , a,x ∈ (0,∞) and Rp(a,x) be defined
by (2.19). Then from Lemma 2.6(3) and (4) we know that the equation

dRp(a,x)
dx

= 0

has a unique solution x = μ0 on the interval (0,∞) if min{1/p,2}< a < max{1/p,2} .

From Lemma 2.6 and Remarks 2.7 and 2.8 we get Corollary 2.9 immediately.

COROLLARY 2.9. Let p ∈ (0,1/2)∪ (1/2,1) , a,x ∈ (0,∞) , Ip(x) be defined by
(1.2) and μ0 be defined by Remark 2.8. Then the following statements are true:
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(1) If a � max{1/p,2} , then the double inequality

Γ
(
1+ 1

p

)
a1/p

[
(xp +a)1/p− x

]
< Ip(x) <

1
a

[
(xp +a)1/p− x

]
(2.35)

holds for all x ∈ (0,∞) , and inequality (2.35) is reversed if a � min{1/p,2} ;
(2) If p ∈ (0,1/2) and 2 = min{1/p,2} < a < max{1/p,2} = 1/p, then the

double inequality

1
Rp(a,μ0)

[
(xp +a)1/p− x

]
� Ip(x) < max

⎧⎨
⎩

Γ
(
1+ 1

p

)
a1/p

,
1
a
,

⎫⎬
⎭

[
(xp +a)1/p− x

]

takes place for all x ∈ (0,∞);
(3) If p ∈ (1/2,1) and 1/p = min{1/p,2} < a < max{1/p,2} = 2 , then the

double inequality

min

⎧⎨
⎩

Γ
(
1+ 1

p

)
a1/p

,
1
a
,

⎫⎬
⎭

[
(xp +a)1/p− x

]
< Ip(x) � 1

Rp(a,μ0)

[
(xp +a)1/p− x

]

is valid for all x ∈ (0,∞) .

REMARK 2.10. Let a,x > 0 and Rp(a,x) be defined by (2.19). Then from (1.3)
we clearly see that

R1/2(a,x) = a+
a(a−2)

2(1+
√

x)
, R1/2(2,x) = 2,

the identities (2.33) and (2.34) are also valid for p = 1/2, R1/2(a,x) is strictly de-
creasing from (0,∞) onto (a,a2/2) if a > 2 and strictly increasing from (0,∞) onto
(a2/2,a) if a < 2, inequality (2.35) holds for p = 1/2 and all x > 0 if a > 2 and the
reversed inequality of (2.35) takes place for p = 1/2 and all x > 0 if a < 2.

3. Main results

THEOREM 3.1. Let p ∈ (0,1) , a,b > 0 , x > 0 , Ip(x) be defined by (1.2) and λ0

be defined by (1.5). Then the following statements are true:
(1) If p ∈ (0,1/2) , then the double inequality

1
a

[
(xp +a)1/p− x

]
< Ip(x) <

1
b

[
(xp +b)1/p− x

]
(3.1)

holds for all x > 0 if and only if a � 2 and b � λ0 ;
(2) If p ∈ (1/2,1) , then inequality (3.1) takes place for all x > 0 if and only if

a � λ0 and b � 2 ;
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(3) If p = 1/2 , then inequality (3.1) is valid for all x > 0 if and only if a < 2 and
b > 2 ;

(4) If p = 1/2 and a = 2 , then the identity

Ip(x) =
1
a

[
(xp +a)1/p− x

]
(3.2)

holds for all x > 0 .

Proof. (1) For p ∈ (0,1/2) , we first prove that the inequality

Ip(x) >
1
a

[
(xp +a)1/p− x

]
(3.3)

holds for all x > 0 if and only if a � 2.
If p ∈ (0,1/2) and a � 2, then a � min{1/p,2}= 2 < 1/p and Corollary 2.9(1)

leads to the conclusion that inequality (3.3) holds for all x > 0.
If p ∈ (0,1/2) and inequality (3.3) holds for all x > 0, then we use the proof by

contradiction to prove that a � 2. We divide the proof into two cases.
Case 1 p ∈ (0,1/2) and a � 1/p . Then a � max{1/p,2} and Corollary 2.9(1)

leads to the conclusion that Ip(x)<
[
(xp +a)1/p− x

]
/a for all x > 0, which contradicts

with inequality (3.3).
Case 2 p ∈ (0,1/2) and 2 < a < 1/p . Then min{1/p,2} < a < max{1/p,2} .

Let Rp(a,x) be defined by (2.19), then from Lemma 2.6(3) and (2.34) we clearly see

that there exists x0 ∈ (0,∞) such that Ip(x) <
[
(xp +a)1/p− x

]
/a for all x ∈ (x0,∞) ,

which also contradicts with inequality (3.3).
Next, we prove that the inequality

Ip(x) <
1
b

[
(xp +b)1/p− x

]
(3.4)

holds for all p ∈ (0,1/2) and x > 0 if and only if b � λ0 .
It follows from (1.5) and Lemma 2.3 together with Corollary 2.9(2) that 2 =

min{1/p,2}< λ0 < max{1/p,2}= 1/p , 1/λ0 = Γ(1+1/p)/λ 1/p
0 and

Ip(x) < max

⎧⎨
⎩

Γ
(
1+ 1

p

)
λ 1/p

0

,
1
λ0

⎫⎬
⎭

[
(xp + λ0)

1/p− x
]

(3.5)

=
1
λ0

[
(xp + λ0)

1/p− x
]

for all x > 0.
Therefore, inequality (3.4) holds for p ∈ (0,1/2) , b � λ0 and all x > 0 follows

from Lemma 2.4 and (3.5).
If inequality (3.4) holds for p ∈ (0,1/2) and all x > 0. Then from (2.19) and

(2.33) we get
Rp(b,0+)

b
=

b1/p−1

Γ
(
1+ 1

p

) � 1, b � λ0.
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(2) For p ∈ (1/2,1) , we first prove that the inequality

Ip(x) >
1
a

[
(xp +a)1/p− x

]
(3.6)

holds for all x > 0 if and only if a � λ0 .
If p ∈ (1/2,1) , then from (1.5), Lemma 2.3 and Corollary 2.9(3) we clearly see

that 1/p = min{1/p,2}< λ0 < max{1/p,2}= 2, 1/λ0 = Γ(1+1/p)/λ 1/p
0 and

Ip(x) > min

⎧⎨
⎩

Γ
(
1+ 1

p

)
λ 1/p

0

,
1
λ0

⎫⎬
⎭

[
(xp + λ0)

1/p− x
]

(3.7)

=
1
λ0

[
(xp + λ0)

1/p− x
]

for all x > 0. Therefore, inequality (3.6) holds for p ∈ (1/2,1) , a � λ0 and all x > 0
follows from Lemma 2.4 and (3.7).

If p ∈ (1/2,1) and inequality (3.6) holds all x > 0, then equations (2.19) and
(2.33) lead to the conclusion that

Rp(a,0+)
a

=
a1/p−1

Γ
(
1+ 1

p

) � 1, a � λ0.

Next, we prove that the second inequality of (3.1) holds for all p ∈ (1/2,1) and
x > 0 if and only if b � 2.

If p ∈ (1/2,1) and b � 2. Then b � max{1/p,2} = 2 > 1/p and the second
inequality of (3.1) holds for all x > 0 follows from Corollary 2.9(1).

We use the proof by contradiction to prove that b � 2 if p ∈ (1/2,1) and the
second inequality of (3.1) holds for all x > 0. We divide the proof into two cases.

Case 1 p ∈ (1/2,1) and b � min{1/p,2}= 1/p . Then Corollary 2.9(1) leads to

the conclusion that Ip(x) >
[
(xp +b)1/p− x

]
/b for all x > 0, which contradicts with

the second inequality of (3.1).
Case 2 p ∈ (1/2,1) and 1/p = min{1/p,2}< b < max{1/p,2}= 2. Then from

Lemma 2.6(4) and (2.34) we know that there exists x∗ ∈ (0,∞) such that the function
x → Rp(b,x) is strictly decreasing on (0,x∗) and strictly increasing on (x∗,∞) and

Ip(x) >
[
(xp +b)1/p− x

]
/b for all x ∈ (x∗,∞) , which also contradicts with the second

inequality of (3.1).
(3) If p = 1/2, then inequality (3.1) holds for a < 2, b > 2 and all x > 0 follows

easily from Remark 2.10.
If p = 1/2 and inequality (3.1) holds for all x > 0. Then from (1.3) and (3.1) we

get
2
√

x+a < 2(
√

x+1) < 2
√

x+b

and
a < 2, b > 2.
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(4) If p = 1/2 and a = 2, then from (1.3) we clearly see that

Ip(x) =
1
a

[
(xp +a)1/p− x

]
= 2(

√
x+1). �

It is well known that the incomplete gamma function Γ(a,x) =
∫ ∞
x ta−1e−t dt has

many important applications in the fields of special functions [16, 32, 35], statistics
[15], integral equations [10], semiconductors [20] and transcendence [21]. For more
information about the incomplete gamma function, we refer the interested readers to
see [5, 19, 33, 34, 38, 40, 41, 42, 43, 44, 45]. As applications of Theorem 3.1, we next
present new bounds for the incomplete gamma function to end this article.

Let p ∈ (0,1) , a,x > 0, q = 1/p ∈ (1,∞) and u = xp > 0. Then from (1.1) and
(1.2) one has

Ip(x) = qeuΓ(q,u), (xp +a)1/p− x = (u+a)q−uq,

and Corollary 2.9, Remark 2.10 and Theorem 3.1 lead to Corollaries 3.2 and 3.3 imme-
diately.

COROLLARY 3.2. Let q > 1 , a > 0 and u > 0 . Then the following statements
are true:

(1) If (q,a) ∈ {(q,a)|a � q > 2}∪{(q,a)|a � 2 > q > 1}∪{(q,a)|a > q = 2} ,
then the double inequality

Γ(1+q) [(u+a)q−uq]
qaq < euΓ(q,u) <

(u+a)q−uq

qa
(3.8)

holds for all u > 0 , and inequality (3.8) is reversed if (q,a) ∈ {(q,a)|q > 2 � a}∪
{(q,a)|a � q,1 < q < 2}∪{(q,a)|a < q = 2} ;

(2) If q > a > 2 , then the double inequality

eu0Γ(q,u0)
(u0 +a)q−uq

0
[(u+a)q−uq] � euΓ(q,u) < max

{
Γ(1+q)

aq ,
1
a

}
(u+a)q−uq

q

takes place for all u > 0 , where u0 is the unique solution of the equation

d
du

[
(u+a)q−uq

euΓ(q,u)

]
= 0

on the interval (0,∞);
(2) If 1 < q < a < 2 , then the double inequality

min

{
Γ(1+q)

aq ,
1
a

}
(u+a)q−uq

q
< euΓ(q,u) � eu0Γ(q,u0)

(u0 +a)q−uq
0
[(u+a)q−uq]

is valid for all u > 0 .
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COROLLARY 3.3. Let q > 1 and a,b,u > 0 and λ0 be defined by (1.5). Then the
following statements are true:

(1) If q > 2 , then the double inequality

(u+a)q−uq

qa
< euΓ(q,u) <

(u+b)q−uq

qb
(3.9)

holds for all u > 0 if and only if a � 2 and b � λ0 ;
(2) If 1 < q < 2 , then inequality (3.9) takes place for all u > 0 if and only if

a � λ0 and b � 2 ;
(3) If q = 2 , then inequality (3.9) is valid for all u > 0 if and only if a < 2 and

b > 2 ;
(4) If a = q = 2 , then the identity

euΓ(q,u) =
(u+a)q−uq

qa

holds for all u > 0 .
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Statist. Appl. Res. Un. Jap. Sci. Engrs. 4, (1956), 110–110.

[27] F. QI, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Math.
Inequal. Appl. 5, (1) (2002), 61–67.

[28] F. QI AND S.-L. GUO, Inequalities for the incomplete gamma and related functions, Math. Inequal.
Appl. 2, (1) (1999), 47–53.

[29] F. QI AND J.-Q. MEI, Some inequalities of the incomplete gamma and related functions, Z. Anal.
Anwendungen 18, (3) (1999), 793–799.

[30] W. O. SCHUMANN, Elektrische Durchbruchfeldstäke von Gasen, Springer, Berlin, 1923.
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