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TWO–WEIGHT INEQUALITIES FOR

GEOMETRIC MAXIMAL OPERATORS

ADAM OSȨKOWSKI

(Communicated by I. Perić)

Abstract. We study one- and two-weight inequalities for the geometric maximal operator on
probability spaces equipped with a tree-like structure. We provide a characterization of weights,
in terms of Muckenhoupt and Sawyer-type conditions, for which the appropriate strong-type
estimates hold. Our approach rests on Bellman function method, which allows us to identify
sharp constants involved in the estimates.

1. Introduction

Hardy-Littlewood maximal operator M on R
d is an operator acting on measur-

able functions f : R
d → R by the formula

M f (x) = sup

{
1
|Q|

∫
Q
| f (u)|du

}
, x ∈ R

d .

Here the supremum is taken over all cubes Q ⊂ R
d containing x , with sides parallel

to the axis, and |Q| is the Lebesgue measure of Q . A related object, the so-called
geometric maximal operator, is given by

G f (x) = sup exp

{
1
|Q|

∫
Q

log(| f (u)|)du

}
, x ∈ R

d ,

the supremumbeing taken over the same parameters as above. The purpose of this paper
is to investigate sharp versions of one- and two-weight inequalities for the operator G .
Here and below, the word “weight” stands for a nonnegative and integrable function on
R

d . Let us discuss several related results from the literature. The paper [10] by Shi
contains the characterization of weights w such that G is bounded as an operator on
Lp(w) .
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THEOREM 1. Given a weight w, the following conditions are equivalent.
(i) w ∈ A∞ : there exists a finite constant C such that for all cubes Q,(

1
|Q|

∫
Q

wdx

)
exp

(
1
|Q|

∫
Q

log(w−1)dx

)
� C.

(ii) For 0 < p < ∞ , there is a finite Cp such that the inequality

||G f ||Lp(w) � Cp|| f ||Lp(w)

holds for all f ∈ Lp(w) .

Here we have used the notation

|| f ||Lp(w) =
(∫

Rd
| f (x)|pw(x)dx

)1/p

for the usual weighted p -th norm of f . A two-weight version of the result above,
involving a Sawyer-type testing condition, was established by Yin and Muckenhoupt
[17] in the one-dimensional setting. The statement can be formulated as follows.

THEOREM 2. Given a pair of weights (w,v) on R , the following are equivalent:
(i) (w,v) ∈W∞ : there exists a constant C such that for all dyadic intervals I ,

∫
I
G (v−1χI)wdx � C|I|.

(ii) For 0 < p < ∞ , there is a constant Cp < ∞ for which the estimate

||G f ||Lp(w) � Cp|| f ||Lp(v)

holds for all f ∈ Lp(v) .

Two remarks are in order. First, the two theorems above imply that (w,w) ∈W∞
if and only if w ∈ A∞ (possibly with different constants C on the right). Furthermore,
we would also like to mention here that when studying the Lp estimate of Theorem
2, it is enough to consider the case p = 1 only: this follows directly from the identity
G | f |p = (G | f |)p .

For further results in this direction, see e.g. Cruz-Uribe [2], Cruz-Uribe and
Neugebauer [3], Ortega Salvador and Ramı́rez Torreblanca [7] and Osȩkowski [9].

We will study versions of the two theorems above in the dyadic setting, putting
the particular emphasis on the size of the constants involved. Let us first handle the
local context. Suppose that (0,1]d is the unit cube equipped with the family D of all
the dyadic subcubes Q⊆ (0,1]d . The dyadic maximal operator MD and the geometric
maximal operator GD on (0,1]d act on integrable functions f : (0,1]d → R by the
formulae

MD f (x) = sup

{
1
|I|
∫

I
| f (u)|du : x ∈ I, I ∈ D

}
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and

GD f (x) = sup

{
exp

(
1
|I|
∫

I
log(| f (u)|)du

)
: x ∈ I, I ∈ D

}
.

We start the analysis with the one-weight inequalities. The question is: for a given
0 < p < ∞ , characterize those weights w such that for all f ,

||GD f ||Lp(w) � C|| f ||Lp(w),

with C independent of f . Suppose that w has this property, fix ε > 0 and plug f =
(w∨ ε)−1/pχQ for a fixed Q ∈ D . Here and below, we use the notation

a∨b = max{a,b}.

It is easy to compute that then

GD f � exp

(
1
|Q|

∫
Q

log(w∨ ε)−1/pdx

)

on Q and GD f = 0 on the complement of Q . Consequently, the assumed Lp estimate
gives

Cp|Q| � Cp|| f ||pLp(w) � ||GD f ||pLp(w) � exp

(
1
|Q|

∫
Q

log(w∨ ε)−1dx

)
·
∫

Q
wdx.

Letting ε → 0 and using the fact that Q is arbitrary, we see that w must satisfy the
dyadic A∞ condition

[w]A∞ := sup
Q∈D

(
1
|Q|

∫
Q

wdx

)
exp

(
1
|Q|

∫
Q

log(w−1)dx

)
< ∞.

This condition is also sufficient, as we will prove now. Furthermore, we will identify
the best constant involved in the Lp estimate. Here is the precise statement.

THEOREM 3. Let w be a weight on (0,1]d satisfying the dyadic A∞ condition.
Then for any 0 < p < ∞ we have

||GD f ||Lp(w) � Cp,[w]A∞
|| f ||Lp(w), (1.1)

where Cp,r is the largest positive root of the equation

Cp = erp logC. (1.2)

The result is sharp in the sense that for any 0 < p < ∞ , any 1 � r < ∞ and any C <Cp,r

there are a function f and a weight w with [w]A∞ � r such that

||GD f ||Lp(w) > C|| f ||Lp(w).
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Actually, we will prove a more general statement involving a mixture of two
weights. Consider the two-weight A∞ condition

[w,v]A∞ := sup
Q∈D

(
1
|Q|

∫
Q

wdx

)
exp

(
1
|Q|

∫
Q

log(v−1)dx

)
< ∞. (1.3)

It is well-known that (1.3) is not sufficient for the validity of the Lp(w) → Lp(v)
estimate for GD (cf. [17]). However, we will manage to establish the following gener-
alization of (1.1).

THEOREM 4. Let w, v be two weights on (0,1]d . If the condition (1.3) is satis-
fied, then for any 0 < q < p < ∞ and any f ∈ Lp(v) we have

||GD f ||Lp(w) �
(

[w,v]A∞
p

p−q

)1/q

|| f ||Lp(vp/qw(q−p)/q). (1.4)

The factor p/(p−q) is the best possible: for any 0< q < p < ∞ and any η < p/(p−q)
there are weights w, v and a function f for which

||GD f ||Lp(w) > ([w,v]A∞η)1/q || f ||Lp(vp/qw(q−p)/q).

We turn our attention to two-weight Lp bounds. Pick two weights w , v on (0,1]d ,
a parameter 0 < p < ∞ and assume that there is a finite constant C such that∫

(0,1]d
(GD f )pwdx � C

∫
(0,1]d

| f |pvdx

for all functions f on (0,1]d . Testing this inequality on the functions f = v−1/pχQ ,
where Q is a fixed element of D , we see that w and v must enjoy the bound∫

(0,1]d
GD(v−1χQ)wdx =

∫
(0,1]d

(
GD(v−1/pχQ)

)p
wdx � C|Q|,

or |Q|−1 ∫
Q GD(v−1χQ)wdx � C. In particular, this implies the Sawyer-type condition

(see Theorem 2 above)

Sw,v := sup
Q∈D

1
|Q|

∫
Q

GD(v−1χQ)wdx < ∞. (1.5)

We will show that this condition is sufficient for the validity of the Lp inequality,
at the cost of additional multiplicative factor e1/p . Here is the precise statement.

THEOREM 5. Suppose that w, v are weights on (0,1]d such that Sw,v < ∞ . Then
for any 0 < p < ∞ and any f on (0,1]d we have

||GD f ||Lp(w) � e1/pS1/p
w,v || f ||Lp(v). (1.6)

The constant e1/p is the best possible: for any 0 < p < ∞ and any c < e1/p there are
weights w, v satisfying (1.5) and a function f on (0,1]d such that

||GD f ||Lp(w) > cS1/p
w,v || f ||Lp(v).
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Though the above statements are formulated in the localized setting (i.e., when the
functions and weights are defined on (0,1]d ), a straightforward dilation argument im-
mediately generalizes the results to the case when the underlying space is equal to R

d

(and when the suprema defining A∞ and Sawyer testing conditions are taken over all
dyadic cubes in R

d ).
Actually, all the above results remain valid in the context of probability spaces

equipped with a tree-like structure. Here is the appropriate definition.

DEFINITION 6. Suppose that (X ,μ) is a nonatomic probability space. A set T
of measurable subsets of X will be called a tree if the following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have μ(I) > 0 .

(ii) For every I ∈ T there is a finite subset Ch(I) ⊂ T containing at least two
elements such that

(a) the elements of Ch(I) are pairwise disjoint subsets of I ,

(b) I =
⋃

J∈Ch(I) J .

(iii) T =
⋃

m�0 T m , where T 0 = {X} and Tm+1 =
⋃

I∈T m Ch(I) .

(iv) We have limm→∞ supI∈T m μ(I) = 0 .

It is easy to see that the cube (0,1]d endowed with Lebesgue measure and the tree
of its dyadic subcubes has the properties listed above. Any probability space equipped
with a tree gives rise to the corresponding maximal operator MT and the geometric
maximal operator GT , given by

MT f (x) = sup

{
1

μ(I)

∫
I
| f (u)|dμ(u) : x ∈ I, I ∈ T

}

and

GT f (x) = sup

{
exp

(
1

μ(I)

∫
I
log(| f (u)|)dμ(u)

)
: x ∈ I, I ∈ T

}
.

Furthermore, one easily defines the corresponding one- and two-weight A∞ conditions,
simply by requiring that appropriate suprema are taken over all Q ∈ T . We will prove
below that the assertions of Theorems 3-5 hold true in this more general context as well.

In a sense, the main “bulding blocks” of this paper are Theorems 4 and 5. These re-
sults will be proved with the use of the so-called Bellman function technique: roughly
speaking, the estimates (1.4) and (1.6) will be deduced from the existence of certain
special functions, enjoying appropriate majorization and concavity. This type of ap-
proach has gathered a lot of interest in the literature: see e.g. [1], [6], [8], [11], [12],
[13], [14], [16] and the references therein.

The next section is devoted to the weighted estimates which follow from the as-
sumption (1.3), i.e., to the proofs of Theorems 3 and 4. The final part of the paper
studies the condition (1.5) and its consequence, Theorem 5.
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2. Mixed-weight estimates

Fix a positive constant c , two exponents 0 < q < p and consider the function
b = bc,p,q : R×R× [0,∞)×R→ R , given by

b(x,y,r,s) = epy
(

r
p
− c

p−q
eq(x−y)−s

)
.

Let us start the properties of this object.

LEMMA 1. (i) If x, r, s ∈ R satisfy res � c, then

b(x,x,r,s) � 0. (2.1)

(ii) For any x, y, r, s ∈ R we have

b(x,y,r,s) � q
p2

(
epyr−

(
pc

p−q

)p/q

epx−ps/qr1−p/q

)
. (2.2)

Proof. (i) We have

b(x,x,r,s) = epx(r/p− ce−s/(p−q)
)
� repx(p−1− (p−q)−1) � 0.

(ii) The majorization is equivalent to the estimate

p−q
p

· r
p

+
p
q

[
p−q/p pc

p−q
eq(x−y)−srq/p−1

]p/q

�
(

r
p

)(p−q)/p[
p−q/p pc

p−q
eq(x−y)−srq/p−1

]
,

which follows directly from Young’s inequality. �
The key property of b is the following concavity. In what follows, the symbols

bx , by , br and bs will stand for the partial derivatives of b with respect to x , y , r and
s .

LEMMA 2. Fix (x,y,r,s) ∈ R×R× [0,∞)×R and h, t and u ∈ R such that
x � y, res � c and (r+ t)es+u � c. Then we have

b(x+h,y∨ (x+h),r+ t,s+u)� b(x,y,r,s)+bx(x,y,r,s)h
+br(x,y,r,s)t +bs(x,y,r,s)u.

(2.3)

Proof. Note first that if x′ > y , then by(x′,y,r,s) = epy(r− ceq(x′−y)) � 0. This
implies

b(x+h,y∨ (x+h),r+ t,s+u)� b(x+h,y,r+ t,s+u), (2.4)
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regardless of whether x+h � y or not. However,

r+ t
p

epy =
r
p
epy +br(x,y,r,s)t

and, using the convexity of the exponential function,

− c
p−q

epy+q(x+h−y)−(s+u) � − c
p−q

epy+q(x−y)−s +bx(x,y,r,s)h+bs(x,y,r,s)u.

Adding these two facts gives

b(x+h,y,r+ t,s+u) � b(x,y,r,s)+bx(x,y,r,s)h
+br(x,y,r,s)t +bs(x,y,r,s)u,

which combined with (2.4) yields the assertion. �
Proof of (1.4). Fix weights w , v as in the statement and a function f on X .

We may assume that f � 0, replacing f with | f | if necessary. Consider functional
sequences ( fn)n�0 , (wn)n�0 and (vn)n�0 given as follows. For any n � 0 and x ∈ X ,
set

fn(x) =
1

μ(Qn(x))

∫
Qn(x)

log fdμ , wn(x) =
1

μ(Qn(x))

∫
Qn(x)

wdμ (2.5)

and

vn(x) =
1

μ(Qn(x))

∫
Qn(x)

log(v−1)dμ ,

where Qn(x) is the unique element of T n which contains x . Furthermore, set gn =
sup0�k�n fk and let b = b[w,v]A∞ ,p,q be the special function corresponding to the param-
eters [w,v]A∞ , p and q (the number [w,v]A∞ is defined in (1.3)). Then, as we will prove
now, the sequence (∫

X
b( fn,gn,wn,vn)dμ

)
n�0

is nonincreasing. To show this, fix n � 0, Q ∈ T n and let Q1 , Q2 , . . . , Qm be the
pairwise disjoint elements of T n+1 whose union is Q . By the definition, the functions
fn , gn , wn and vn are constant on Q : let us denote the corresponding values by x , y ,
r and s . Similarly, fn+1 , gn+1 , wn+1 and wn+1 are constant on each Qj , and hence
there exist real numbers h j , t j and u j such that

x+h j = fn+1|Qj , r+ t j = wn+1|Qj , and s+u j = vn+1|Qj .

Note that gn+1|Qj = max{gn|Qj , fn+1|Qj} = y∨ (x+ h j) . Furthermore, the parameters
introduced above satisfy the following conditions. First, we have x � y , since gn � fn
on X . Furthermore, we have res � [w,v]A∞ and (r + t j)es+u j � [w,v]A∞ , which is a
direct consequence of the assumption (1.3) (applied to the sets Q and Qj ). Finally,
observe that the obvious identity

1
μ(Q)

∫
Q

fdμ =
m

∑
j=1

μ(Qj)
μ(Q)

· 1
μ(Qj)

∫
Qj

fdμ ,
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with similar versions for w and v , implies that

m

∑
j=1

μ(Qj)
μ(Q)

h j = 0,
m

∑
j=1

μ(Qj)
μ(Q)

t j = 0 and
m

∑
j=1

μ(Qj)
μ(Q)

u j = 0. (2.6)

Let us apply the estimate (2.3) to h = h j , t = t j and u = u j , multiply both sides by
μ(Qj)/μ(Q) and sum over j to obtain

m

∑
j=1

μ(Qj)
μ(Q)

b(x+h j,y∨ (x+h j),r+ t j,s+u j) � b(x,y,r,s)

(here we have exploited the identities (2.6)), or, equivalently,∫
Q

b( fn+1,gn+1,wn+1,vn+1)dμ �
∫

Q
b( fn,gn,wn,vn)dμ .

Summing over all Q ∈ T n , we get the aforementioned monotonicity of the sequence
(
∫
X b( fn,gn,wn,vn)dμ)n�0 . Therefore, for any n we have∫

X
b( fn,gn,wn,vn)dμ �

∫
X

b( f0,g0,w0,v0)dμ = b( f0,g0,w0,v0) � 0, (2.7)

where the latter inequality follows from (2.1). Now we carry out a (partial) limiting
procedure. By the very definition, the function wn is a conditional expectation of w
with respect to the σ -algebra generated by T n (see (2.5)), so

1
p

∫
X

epgnwndμ =
1
p

∫
X

epgnwdμ .

Furthermore, fn , vn are conditional expectations of w and log(v−1) , so by Jensen’s
inequality,

− c
p−q

∫
X

eq fn−vn+(p−q)gndμ � − c
p−q

∫
X

eq log f−log(v−1)+(p−q)gndμ .

If we add the two statements above, we get∫
X

b( fn,gn,wn,vn)dμ �
∫

X
b(log f ,gn,w, log(v−1))dμ .

Combining this with (2.2) and (2.7) yields

∫
X

[
epgnw−

(
pc

p−q

)p/q

ep log f−p log(v−1)/qw1−p/q

]
dμ � 0.

However, note that gn ↑ supk�0 fk and hence epgn ↑ (GT f )p . Therefore, the claim
follows from Lebesgue’s monotone convergence theorem. �

The sharpness of the above estimate is a more delicate issue. We start with the
following lemma, which can be found in [5].
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LEMMA 3. For every I ∈ T and every α ∈ (0,1) there is a subfamily F(I) ⊂ T
consisting of pairwise disjoint subsets of I such that

μ

⎛
⎝ ⋃

J∈F(I)

J

⎞
⎠= ∑

J∈F(I)
μ(J) = αμ(I).

We will also need the following simple geometric fact (see Figure 1 below). In
what follows, we will use the following notation: for a given positive number a , set

γa = {(x,y) ∈ R
2 : xey = a}.

LEMMA 4. Let a < b be two positive numbers. For (x0,y0) ∈ γa , let �x0,y0 denote
the line passing through (x0,y0) and tangent to the curve γb at some point (x1,y1) with
x1 > x0 . Then there is a constant κ = κa,b ∈ (0,1) depending only on a and b such
that slope of the line �x0,y0 is equal to −κa,b/x0 .

Proof. Suppose that the line �1,loga is given by the equation y =−κx+B . Clearly,
κ < 1: the slope of �1,loga must be bigger than the slope of the line tangent to γa (which
is equal to −1). It remains to check that for any (x0,y0) ∈ γa , the equation for �x0,y0 is
given by y = − κ

x0
x+B− logx0 . �

Sharpness. Fix 0 < q < p , a parameter ε > 0 and let L be the optimal constant
in the inequality∫

X
(GT f )pwdμ � (L[w,v]A∞)p/q

∫
X

f pvp/qw(q−p)/qdμ . (2.8)

We will construct an example showing that L � p
(p−q)(1+2ε) ; since ε has been chosen

arbitrarily, this will complete the proof. For the sake of clarity, we have decided to split
the reasoning into several separate parts.

Step 1. Auxiliary parameters. It is straightforward to check that

lim
K→p/(p−q)

lim
δ→0

δ
K + δ

(
1− Ke−qδ/p

K + δ

)−1

=
p−q

p

and

lim
K→p/(p−q)

lim
δ→0

⎡
⎢⎣ q(K + δ )

pδ
K+δ

(
1− Ke−qδ/p

K+δ

)−1− peqδ/p
+

K + δ
δ

(
1− Ke−qδ/p

K + δ

)⎤⎥⎦= 0.

Therefore there are K < p/(p−q) and δ > 0 such that

p−q
p

(1+ ε) � δ
K + δ

(
1− Ke−qδ/p

K + δ

)−1

� p−q
p

(1+ ε) (2.9)
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and

q(K + δ )
pδ

K+δ

(
1− Ke−qδ/p

K+δ

)−1− peqδ/p
+ κ · K + δ

δ

(
1− Ke−qδ/p

K + δ

)
< 0. (2.10)

Finally, let a = eKq/p(p−q)(1+ε)/p , b = eKq/p(p−q)(1+2ε)/p and let κ = κa,b ∈
(0,1) be the number guaranteed by the preceding lemma.

Step 2. Construction of f , w and v. First we introduce an appropriate family
(An)n�0 of subsets of X , such that each An is a union of at most countable collection of
pairwise disjoint elements of T (called the atoms of An ): An =

⋃
Q∈Fn

Q . We proceed
by induction: to start, put A0 = X . Suppose that we have successfully defined An =⋃

Q∈Fn
Q . Then, by Lemma 3, for each Q ∈ Fn there is a family F(Q) ⊂ T of subsets

of Q such that μ(
⋃

R∈F(Q) R) = Kμ(Q)/(K +δ ) ; we set Fn+1 =
⋃

Q∈Fn
F(Q) . Directly

from this definition, we see that A0 ⊃ A1 ⊃ A2 ⊃ . . . and μ(An) = (K/(K+δ ))n . Next,
introduce f : X → R by

f = exp((−K +nδ )/p) on An \An+1, n = 0, 1, 2, . . . . (2.11)

Finally, consider the weights v = w = f−q .

Step 3. Integral properties of f . Let k � 0 and let Q ∈ Fk be an atom of Ak . By
the above construction, we have

1
μ(Q)

∫
Q

log fdμ =
∞

∑
n=k

−K +nδ
p

[(
K

K + δ

)n−k

−
(

K
K + δ

)n−k+1
]

=
−K + kδ

p
+

∞

∑
m=0

mδ
p

(
K

K + δ

)m δ
K + δ

=
−K + kδ

p
+

K
p

=
kδ
p

,

(2.12)

where in the second passage we have used the substitution m = n− k . Consequently,
we have (GT f )p � e−kδ on Ak ; since f p = eK−kδ on Ak \Ak+1 and k was arbitrary,
we conclude that

(GT f )p � eK f p on X . (2.13)

A similar calculation shows that for any atom Q of Ak and any r � p−q we have

1
μ(Q)

∫
Q

f rdμ =
∞

∑
m=0

exp

(
r(−K +(m+ k)δ )

p

)(
K

K + δ

)m δ
K + δ

=
δ

K + δ
exp

(
r(−K + kδ )

p

) ∞

∑
m=0

(
Kerδ/q

K + δ

)m

.

If δ is sufficiently small, then the above geometric series converges; this is due to

Kerδ/p

K + δ
= 1+

(
r
p
− 1

K

)
δ +o(δ ) � 1+

(
p−q

p
− 1

K

)
δ +o(δ ) < 1,
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since K < p/(p−q) , as we have assumed at the beginning. So, we obtain

1
μ(Q)

∫
Q

f rdμ =
δ

K + δ
exp

(
r(−K + kδ )

p

)(
1− Kerδ/p

K + δ

)−1

< ∞. (2.14)

Step 4. Back to the weighted estimate. Using (2.13) and (2.14), we obtain∫
X

f pvp/qw(q−p)/qdμ =
∫

X
f p−qdμ � e−K

∫
X

GT f pwdμ .

Plugging these facts into (2.8) and dividing throughout by the finite quantity
∫
X f p−qdμ ,

we see that L[w,v]A∞ � eKq/p . Now we will show that [w,v]A∞ � eKq/p(p− q)(1 +
2ε)/p , which will yield the desired claim. We need to show that for any R ∈ T we
have(

1
μ(R)

∫
R
wdμ

)
exp

(
1

μ(R)

∫
R
log(v−1)dμ

)
� eKq/p (p−q)(1+2ε)

p
. (2.15)

There is a positive integer k such that R ⊆ Ak−1 and R 
⊆ Ak , and the set R splits into
R∩Ak and R \Ak . If Q is an atom of Ak contained in R , then by (2.14) applied to
r = −q ,

1
μ(Q)

∫
Q

wdμ =
1

μ(Q)

∫
Q

f−qdμ =
δ

K + δ
eq(K−kδ )/p

(
1− Ke−qδ/p

K + δ

)−1

. (2.16)

Furthermore, by (2.12),

exp

(
1

μ(Q)

∫
Q

log(v−1)dμ
)

= exp

(
q

μ(Q)

∫
Q

log fdμ
)

= eqkδ/p. (2.17)

Multiply (2.16) throughout by μ(Q) and sum over all Q as above to obtain

xR∩Ak :=
1

μ(R∩Ak)

∫
R∩Ak

wdμ =
δ

K + δ
eq(K−kδ )/p

(
1− Ke−qδ/p

K + δ

)−1

.

Similarly, if we rise (2.17) to power μ(Q) and multiply over all Q as above, we get

eyR∩Ak := exp

(
1

μ(R∩Ak)

∫
R∩Ak

log(v−1)dμ
)

= eqkδ/p.

An application of (2.9) yields

xR∩Ake
yR∩Ak =

δeKq/p

K + δ

(
1− Ke−qδ/p

K + δ

)−1

� eKq/p (p−q)
p

(1+ ε). (2.18)

Next, observe that since f is constant on R\Ak , so are w and log(v−1) , and hence

xR\Ak
:=

1
μ(R\Ak)

∫
R\Ak

wdμ = w|R\Ak
= eq(K−(k−1)δ )/p
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and

eyR\Ak := exp

(
1

μ(R\Ak)

∫
R\Ak

log(v−1)dμ
)

= v−1|R\Ak
= e−Kq/p · eq(k−1)δ/p.

Step 5. Application of Lemma 4. Observe that the point

(xR,yR) :=
(

1
μ(R)

∫
R
wdμ ,

1
μ(R)

∫
R
log(v−1)dμ

)

lies on the line segment I joining the points (xR∩Ak ,yR∩Ak) , (xR\Ak
,yR\Ak

) : indeed,

(xR,yR) =
μ(R∩Ak)

μ(R)
(xR∩Ak ,yR∩Ak)+

μ(R\Ak)
μ(R)

(xR\Ak
,yR\Ak

).

We will show that this line segment lies entirely under the curve γb , where, as above,
b = eKq/p(p−q)(1+2ε)/p : this will immediately yield (2.15).

Figure 1: The line segment with endpoints (xR∩Ak ,yR∩Ak) , (xR\Ak
,yR\Ak

) lies below the curve
γb

First, note that by (2.18), the point (xR∩Ak ,yR∩Ak) lies below the curve γa (where
a = eKq/p(p− q)(1+ ε)/p ). Furthermore, we have yR\Ak

� yR∩Ak . Therefore, if we
take (x0,y0) ∈ γa with x0 = xR∩Ak , then it suffices to show that the slope of the segment
I is not bigger than the slope of the line �x0,y0 . By Lemma 4, this is equivalent to saying
that

yR∩Ak − yR\Ak

xR∩Ak − xR\Ak

� − κa,b

xR∩Ak

,

which, after some lengthy but straightforward computations, reduces to (2.10). �
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REMARK 7. The proof shows that the weight w = v constructed above satisfies

[w]A∞ � exp

(
q

p−q

)
p−q

p
(1+2ε),

which follows from (2.15) and the assumption K < p/(q− p) . Increasing K if neces-
sary, we may assume that

[w]A∞ � exp

(
q

p−q

)
p−q

p
(1−2ε).

This follows from (2.16), (2.17) and the left bound in (2.9): there is Q ∈ T with

(
1

μ(Q)

∫
Q

wdμ
)

exp

(
1

μ(Q)

∫
Q

log(w−1)dμ
)

=
δeKq/p

K + δ

(
1− Ke−qδ/p

K + δ

)−1

� exp

(
q

p−q

)
p−q

p
(1−2ε).

The final part of this section is devoted to the proof of Theorem 3.

Proof of (1.1). Pick q ∈ (0, p) and apply (1.4) to v = w to obtain

||GT f ||Lp(w) �
(

[w]A∞
p

p−q

)1/q

|| f ||Lp(w). (2.19)

Now we optimize over q . Consider two cases. If [w]A∞ = 1, then we let q ↓ 0 to
get ||GT f ||Lp(w) � e1/p|| f ||Lp(w) = Cp,[w]A∞

|| f ||Lp(w), as desired. If [w]A∞ > 1, then

Cp,[w]A∞
> e1/p : indeed, if we plug C = e into (1.2), then the left-hand side is smaller

that the right-hand side; on the other hand, this inequality is reversed for sufficiently
large C . Therefore, the number q = p− (logCp,[w]A∞

)−1 belongs to (0, p) , and plug-
ging it into (2.19) yields (1.1), because

[w]A∞
p

p−q
= [w]A∞ logCp

p,[w]A∞
= Cp

p,[w]A∞
e−1

= Cq
p,[w]A∞

exp
(
(p−q) logCp,[w]A∞

−1
)

= Cq
p,[w]A∞

. �

Sharpness of (1.1), the case r = 1 . The required condition [w]A∞ = 1 forces
that w is constant (by Jensen’s inequality). Fix an arbitrary constant K ∈ (0,1) . We
will be done if we show construct a nonnegative, μ -integrable function f for which∫
X GT fdμ � eK ∫

X fdμ ; this will yield the sharpness for p = 1, for other values of the
exponent p , the function f 1/p will do the job, since

[
GT ( f 1/p)

]p = GT f .
Actually, the appropriate construction has been carried out above. Fix δ > 0 and

let f be the function given by (2.11), with the use of parameters K , δ and p = 1. By
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(2.13), we have GT f � eK f and hence all we need is the μ -integrability of f . To this
end, we proceed as in the proof of (2.14) and compute that

∫
X

fdμ =
δ

K + δ
e−K

∞

∑
m=0

(
Keδ

1+ δ

)m

,

which is finite for sufficiently small δ , since K < 1. �

Sharpness of (1.1), the case r > 1 . Fix ε ∈ (0,(r− 1)/2) and η < 1. It is easy
to check that the function ξ (x) = ex−1/x , x ∈ (1,∞) , is strictly increasing from 1 to
infinity. Therefore, there is a unique number q = q(ε) ∈ (0, p) such that

r
1+2ε

= ξ
(

p
p−q

)
= exp

(
q

p−q

)
p−q

p
,

which is equivalent to Cp,r/(1+2ε) = exp(1/(p− q)) . Note that q(ε) is bounded away
from 0 as ε → 0; furthermore, observe that for a fixed p , the function r 
→ Cp,r is
continuous (being the inverse to the continuous and strictly increasing function C 
→
Cp/(ep logC) , C � e1/p ). Putting the above facts together, we see that if ε is suffi-
ciently close to 0, then

(
1−2ε
1+2ε

)1/q

Cp,r/(1+2ε) > ηCp,r. (2.20)

Fix such an ε . By Remark 7, decreasing ε if necessary, we can construct a weight w
and a function f such that r(1−2ε)/(1+2ε) � [w]A∞ � r and

||GT f ||Lp(w) >

(
[w]A∞

p
(p−q)(1+2ε)

)1/q

|| f ||Lp(w).

Consequently,

||GT f ||Lp(w) >

(
r(1−2ε)
(1+2ε)2

p
p−q

)1/q

|| f ||Lp(w)

=
(

1−2ε
1+2ε

)1/q

exp

(
1

p−q

)
|| f ||Lq(w)

=
(

1−2ε
1+2ε

)1/q

Cp,r/(1+2ε)|| f ||Lp(w)

> ηCp,r|| f ||Lp(w).

This is precisely the desired sharpness. �
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3. Proof of Theorem 5

The proof of the strong-type result rests on the following exponential estimate for
Carleson sequences, which is of independent interest.

THEOREM 8. Let K be a positive constant and let αQ , Q ∈ T , be nonnegative
numbers satisfying

1
μ(R) ∑

Q⊆R

αQ � K (3.1)

for all R ∈ T . Then for any integrable function f on X we have

∑
Q∈T

αQ exp

(
1

μ(Q)

∫
Q

fdμ
)

� Ke
∫

X
e f dμ . (3.2)

Proof. By homogeneity, we may and do assume that K = 1. Consider the func-
tional sequences ( fn)n�0 , (gn)n�0 and (zn)n�0 given by

fn(x) =
1

μ(Qn(x))

∫
Qn(x)

e f dμ , gn(x) =
1

μ(Qn(x))

∫
Qn(x)

fdμ

and

zn(x) =
1

μ(Qn(x))
∑

Q⊆Qn(x)
αQ

(recall that Qn(x) is the unique element of T n which contains x ). Introduce the func-
tion B : R

3 → R by the formula B(x,y,z) = ex− ey−z+1 . Clearly, this function is con-
cave on R

3 , so for any x , y , z , h , k and � we have

B(x+h,y+ k,z+ �)

� B(x,y,z)+
∂B
∂x

(x,y,z)h+
∂B
∂y

(x,y,z)k+
∂B
∂ z

(x,y,z)�.
(3.3)

Now we will show that the sequence (
∫
X B( fn,gn,zn)dμ)n�0 enjoys a certain monoto-

nicity-type property. To this end, fix n � 0, Q ∈ T n and pairwise disjoint elements
Q1 , Q2 , . . . , Qm of T n+1 whose union is Q . Put x = fn|Q , y = gn|Q and z = zn|Q ;
furthermore, for any j = 1, 2, . . . , m , let x+ h j = fn+1|Qj , y+ k j = gn+1|Qj and z+
� j = hn+1|Qj . Observe that z and z+� j belong to the interval [0,1] , by the assumption
of the lemma (and the equality K = 1 we imposed at the beginning). Furthermore,
arguing as in the proof of the weak-type estimate, we see that

m

∑
j=1

μ(Qj)
μ(Q)

h j =
m

∑
j=1

μ(Qj)
μ(Q)

k j = 0. (3.4)
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Finally, concerning the dynamics of the sequence (zn)n�0 , we easily check that

z =
1

μ(Q) ∑
R⊆Q

αR =
αQ

μ(Q)
+

m

∑
j=1

μ(Qj)
μ(Q)

· 1
μ(Qj)

∑
R⊂Qj

αR

=
αQ

μ(Q)
+

m

∑
j=1

μ(Qj)
μ(Q)

(z+ � j),

which is equivalent to
m

∑
j=1

μ(Qj)
μ(Q)

� j = − αQ

μ(Q)
. (3.5)

Let us apply (3.3), with h = h j , k = k j , � = � j , multiply throughout by μ(Qj)/μ(Q)
and sum the obtained estimates over j . By (3.4) and (3.5), we get

n

∑
j=1

μ(Qj)
μ(Q)

B(x+h j,y+ k j,z+ � j) � B(x,y,z)− ∂B
∂ z

(x,y,z) · αQ

μ(Q)
.

Since z � 1, we see that ∂B
∂ z (x,y,z) = ey−z+1 � ey and hence the above estimate implies

∫
Q

B( fn+1,gn+1,zn+1)dμ �
∫

Q
B( fn,gn,zn)dμ −αQ exp

(
1

μ(Q)

∫
Q

fdμ
)

.

Summing over all Q ∈ T n we get∫
X

B( fn+1,gn+1,zn+1)dμ �
∫

X
B( fn,gn,zn)dμ − ∑

Q∈T n

αQ exp

(
1

μ(Q)

∫
Q

fdμ
)

and hence for each n we have∫
X

B( fn+1,gn+1,zn+1)dμ �
∫

X
B( f0,g0,z0)dμ − ∑

Q∈T k,k�n

αQ exp

(
1

μ(Q)

∫
Q

fdμ
)

.

Observe that the assumption zn+1 � 1 and Jensen’s inequality imply

B( fn+1,gn+1,zn+1) � e fn+1− egn+1+1 � 0.

Consequently, the preceding estimate implies

∑
Q∈T k,k�n

αQ exp

(
1

μ(Q)

∫
Q

fdμ
)

� B( f0,g0,z0) � e f0 = e
∫

X
e f dμ .

It remains to let n → ∞ to complete the proof. �
Proof of Theorem 5. Fix f , w and v as in the statement. As previously, we may

assume that f � 0 and p = 1, replacing f with | f |1/p if necessary. Consider the
“truncated” geometric maximal operator G n

T , given by

G n
T ( f )(x) = max

0�k�n
exp

(
1

μ(Qk(x))

∫
Qk(x)

log fdμ
)

.
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Let us apply Theorem 8 to the sequence (αQ)Q∈T defined as follows. For any x ∈
X there is a set Qx belonging to T 0 ∪T 1 ∪ . . . ∪T n and containing x such that

G n
T ( f )(x) = exp

(
1

μ(Qx)
∫
Qx log | f |dμ

)
. There might be several sets with this property;

if this is the case, we choose Qx to be the set of the largest measure. For Q ∈ T 0 ∪
T 1∪ . . .∪T n , define

αQ =
∫
{x∈X :Qx=Q}

exp

(
1

μ(Q)

∫
Q

log(v−1)dμ
)

wdμ

and for other Q’s, put αQ = 0. This sequence satisfies the condition (3.1) with K = Sw,v

(the number Sw,v was defined in (1.5)). Indeed, this is clear if R ∈ T k for some k > n ,
since then the sum on the left is zero. If R ∈ T k for some k � n , then we observe that
the sets ({x ∈ X : Qx = Q})Q⊆R are pairwise disjoint and contained in R . Furthermore,
we have

αQ =
∫
{x∈X :Qx=Q}

exp

(
1

μ(Q)

∫
Q

log(v−1)dμ
)

wdμ

�
∫
{x∈X :Qx=Q}

GT (v−1χR)wdμ

and therefore
1

μ(R) ∑
Q⊆R

αQ � 1
μ(R)

∫
R
GT (v−1χR)wdμ � Sw,v.

Consequently, the inequality (3.2) applied to the function log( f v) gives
∫

X
G n

T ( f )wdμ = ∑
Q∈T

∫
{x∈X :Qx=Q}

G n
T ( f )wdμ

= ∑
Q∈T

∫
{x∈X :Qx=Q}

exp

(
1

μ(Q)

∫
Q

log fdμ
)

wdμ

= ∑
Q∈T

αQ exp

(
1

μ(Q)

∫
Q

log( f v)dμ
)

� eSw,v

∫
X

elog( f v)dμ = eSw,v

∫
X

f vdμ .

It remains to note that if we let n → ∞ , then G n
T ( f ) increases to GT f . Therefore, the

claim follows from Lebesgue’s monotone convergence theorem. �

Sharpness of the factor e1/p . This follows at once from the fact that the constant
e1/p is optimal even in the unweighted context, as we have already shown above. �
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Math. 54 (2010), 1393–1428.

[16] J. WITTWER, Survey article: a user’s guide to Bellman functions, Rocky Mountain J. Math. 41 (2011),
631–661.

[17] X. YIN AND B. MUCKENHOUPT, Weighted inequalities for the maximal geometric mean operator,
Proc. Amer. Math. Soc. 124 (1996), 75–81.

(Received October 26, 2016) Adam Osȩkowski
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