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Abstract. In this paper, we consider the monotonicity of certain combinations of the Gaussian
hypergeometric functions F(a−1,b;a+b;1−xc) and F(a−1−δ ,b+δ ;a+b;1−xd ) on (0,1)
for δ ∈ (a−1,0) , and study the problem of comparing these two functions, thus get the largest
value δ1 = δ1(a,c,d) such that the inequality F(a−1,b;a+b;1−xc ) < F(a−1−δ ,b+δ ;a+
b;1− xd ) holds for all x ∈ (0,1) .

1. Introduction

In this paper we consider the Gaussian hypergeometric function

F(a,b;c;x) =2 F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, (1)

for x ∈ (−1,1) , where (a,n) denotes the shifted factorial function (a,n) ≡ a(a +
1) · · ·(a + n− 1) , n = 1,2, · · · , and (a,0) = 1 for a �= 0. It is well known that the
function F(a,b;c;x) has many important applications in geometric function theory,
theory of mean values, and in several other contexts, and many classes of elementary
functions and special functions in mathematical physics are particular or limiting cases
of this function [2, 3, 4, 5, 6, 7, 9, 11, 12, 13].

For r ∈ (0,1) and a ∈ (0,1) , the generalized elliptic integrals of the first and
second kinds are defined as

Ka(r) =
π
2

F(a,1−a;1;r2), Ea(r) =
π
2

F(a−1,1−a;1;r2).

In the particular case a = 1/2, the generalized elliptic integrals reduce to the complete
elliptic integrals

K (r) =
π
2

F

(
1
2
,
1
2
;1;r2

)
, E (r) =

π
2

F

(
−1

2
,
1
2
;1;r2

)
.

Mathematics subject classification (2010): 33C05, 26D20.
Keywords and phrases: Gaussian hypergeometric function, monotonicity, inequality.

c© � � , Zagreb
Paper MIA-20-74

1145

http://dx.doi.org/10.7153/mia-2017-20-74


1146 T. R. HUANG, X. Y. MA AND X. H. ZHANG

J. M. Borwein and P. B. Borwein, in order to find out the connections between the
arithmetic-geometric mean value and other mean values, showed in their paper [7] that

F

(
1
2
,
1
2
;1;1− x2

)
< F

(
1
2
− δ ,

1
2

+ δ ;1;1− x3
)

,

for δ = 1/6 and x ∈ (0,1) .
Subsequently, it was proved by Anderson et al. in [2] that

F

(
1
2
,
1
2
;1;1− xc

)
< F

(
1
2
− δ ,

1
2

+ δ ;1;1− xd
)

< F

(
1
2
,
1
2
;1;1− xd

)
, (2)

for all x ∈ (0,1) , c,d ∈ (0,∞) with 0 < 4c < πd < ∞ and δ ∈ (0,δ0) where δ0 =
[(dπ −4c)/(4πd)]

1
2 . It was conjectured for c = 2, d = 3 that the best value of δ0 for

which (2) is valid is

δ0 =
1
π

arccos
2
3
≈ 0.268.

In [4], Anderson et al. considered the more general case of (2). They showed
several monotonicity theorems of certain combinations of F(a,b;a + b;1− xc) and
F(a−δ ,b+δ ;a+b;1−xd) on (0,1) for given a,b,c,d ∈ (0,∞),a � b and c � d , and
found sup{δ ∈ (0,a)|F(a,b;c;1− xc) < F(a− δ ,b+ δ ;a+ b;1− xd) for x ∈ (0,1)} .
Thus the above conjecture and the following open problem raised in [4] were answered.

OPEN PROBLEM. Is it true, for small values of δ , say 0 < δ < min{a,b} , that

F(a,b;a+b;1− xc) < F(a− δ ,b+ δ ;a+b;1− xd),

for x ∈ (0,1) , a,b,c,d ∈ (0,∞) with 0 < c < d < ∞?
Motivated by the results mentioned above, the following question was naturally

raised.

QUESTION. What is the best value of δ1 = δ (a,c,d) ∈ (a−1,0) such that

F(a−1,b;a+b;1− xc) < F(a−1− δ ,b+ δ ;a+b;1− xd),

for x ∈ (0,1) , a ∈ (0,1) , b � 1−a and 0 < c < d < ∞ .
In [15], Song et al. established a monotonicity theorem of certain combinations

of F(−1/2,1/2; 1;1− xc) and F(−1/2− δ ,1/2 + δ ;1;1− xd) on (0,1) for given
0 < c � 5d/6, and got the following inequality: For δ1 = (

√
c/d − 1)/2 and δ ∈

(−1/2,δ1) ,

F

(
−1

2
,
1
2
;1;1− xc

)
< F

(
−1

2
− δ ,

1
2

+ δ ;1;1− xd
)

. (3)

and δ1 = (
√

c/d−1)/2 is the largest value for the inequality (3) holds for all x∈ (0,1) ,
Besides, they also considered monotonicity property of certain combinations of

F(a− 1− δ ,1− a+ δ ;1;1− x3) and F(a− 1,1− a;1;1− x2) for given a ∈ [1/29,1)
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and δ ∈ (a− 1,0) , and found the largest value δ1 such that inequality F(a− 1,1−
a;1;1− x2) < F(a−1− δ ,1−a+δ ;1;1− x3) holds for all x ∈ (0,1)} .

In this paper, we will show a monotonicity theorem of certain combinations of
F(a− 1,b;a+ b;1− xc) and F(a− 1− δ ,b+ δ ;a+ b;1− xd) on (0,1) , and find the
largest value δ1 = δ1(a,c,d) such that the inequality F(a−1,b;a+b;1− xc) < F(a−
1− δ ,b + δ ;a + b;1− xd) holds for all x ∈ (0,1) . Throughout this paper, we shall
always let a ∈ (0,1) , b � 1−a , and

α = a(b+1), β = b(1−a), p = α + β = a+b,

h = αβ (p+ β ) = a(1−a)b(b+1)(a+2b−ab),
k = β (p+1)+ p = b(1−a)(a+b+1)+a+b.

The main results are stated as follows.

THEOREM 1. Assume that a ∈ (0,1) , b � 1− a, and α,β , p,h satisfy either
α �

√
3β or α <

√
3β , and 4h(β + p) � p4 . Let 0 < c/d � (β + p)/k , and δ1

be the large root of (c/d − 1)β +(a− b− 1)δ − δ 2 = 0 , namely δ1 = [(a− b− 1)+√
(p−1)2 +4βc/d]/2 < 0 . We have that

(1) If δ ∈ (a−1,δ1] , the function

G(x) =
F(a−1− δ ,b+ δ ; p;1− xd)−F(a−1,b; p;1− xc)

1− xc

is strictly decreasing from (0,1) onto (C1(δ ),C2(δ )) , where

C1(δ ) =
d
pc

(( c
d
−1

)
β +(a−b−1)δ − δ 2

)
� 0

C2(δ ) =
1

pB(a− δ ,b+1+ δ )
− 1

pB(a,b+1)
.

In particular, for all x ∈ (0,1) and δ ∈ (a−1,δ1] ,

F(a−1,b; p;1− xc)+C1(δ )(1− xc) < F(a−1− δ ,b+ δ ; p;1− xd)
< F(a−1,b; p;1− xc)+C2(δ )(1− xc).

(2) If δ1 < δ < 0 , as the functions of x , F(a−1− δ ,b+ δ ; p;1− xd) and F(a−
1,b; p;1− xc) are not directly comparable on (0,1) , that is, neither

F(a−1,b; p;1− xc) < F(a−1− δ ,b+ δ ; p;1− xd),

nor its reversed inequality holds for all x ∈ (0,1) .

The following Theorem can be directly obtained by Theorem 1.

THEOREM 2. Assume that a ∈ (0,1) , b � 1−a. Let α,β , p,h be as in Theorem
1, if 0 < c/d � (β + p)/k , then

sup{δ ∈ (a−1,0)|F(a−1,b;a+b;1− xc) < F(a−1− δ ,b+ δ ;a+b;1− xd),

for all x ∈ (0,1)} =
a−b−1+

√
(p−1)2 +4αc/d
2

.
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2. Preliminaries

Before we prove our main results stated in Section 1, we need to establish several
technical lemmas. Firstly, let us recall some known results for F(a,b;c;x) and for the
gamma function.

For x > 0, y > 0, the Euler gamma function Γ(x) , its logarithmic derivative Ψ(x)
and the beta function B(x,y) are defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt, Ψ(x) =

Γ′(x)
Γ(x)

, B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

respectively (c.f. [16]). The gamma function satisfies the difference equation ([16], p.
237)

Γ(x+1) = xΓ(x),

if x is not a nonpositive integer and has the so-called reflection property ([16], p. 239)

Γ(x)Γ(1− x) =
π

sin(πx)
. (4)

We shall also need an asymptotic formula of gamma function ([14], p. 628)

Γ(n+a)
Γ(n+b)

∼ na−b, n → +∞,n ∈ N. (5)

The hypergeometric function (1) has the following difference formula ([14]),

dF(a,b;c;x)
dx

=
ab
c

F(a+1,b+1;c+1;x)

and the asymptotic limit ([14], p. 630),

lim
x→1−

F(a,b;c;x) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

, c > a+b.

The following Lemma can be find Lemma 2.1.5 in [13], and Lemma 2.11 in [4],
respectively.

LEMMA 1. (1) For a,b,c,d ∈ (0,∞) , the function x → (1− x)dF(a,b;c;x) is
(strictly) decreasing on (0,1) if and only if d � max{a+ b− c,ab/c} (d > max{a+
b− c,ab/c}) . (2) For a,b ∈ (0,∞) with a � b, the function x → B(a− x,b + x) is
strictly increasing and convex on (0,a) .

LEMMA 2. Let a ∈ (0,1) , b � 1−a, and α,β , p,h,k be as in Section 1, a func-
tion g1(y) is defined as

g1(y) = y2 +
p2

k
y+

h(p+ β )
k2 .



INEQUALITIES FOR ZERO-BALANCED GAUSSIAN HYPERGEOMETRIC FUNCTIONS 1149

Then, (1) if α and β satisfy α �
√

3β , g1(y) is an increasing function from (−h/(αk),0)
onto ((1−a)2(p2 + pβ )/k2,h/k2) .

(2) If α,β , p and h satisfy α <
√

3β , and 4h(β + p) � p4 , we have g1(y) � 0 for
all (−h/(αk),0) .

Proof. (1) Clearly,

g1(−h/(αk)) = (1−a)2(p2 + pβ )/k2 > 0, g1(0) = h/k2.

Since α �
√

3β ,

p2

2k
− h

αk
=

α2 −3β 2

2k
� 0,

hence, for y ∈ (−h/(αk),0) ,

g′1(y) = 2y+ p2/k =
p2

k
− 2h

αk
� 0,

and g1(y) is an increasing function.
(2) For α <

√
3β , and 4h(β + p) � p4 , we have

g1(y) =
(

y+
p2

2k

)2

+
h(β + p)

k2 − p4

4k2 � 0.

hence, g1(y) � 0 for all (−h/(αk),0) . �

REMARK 1. Let a ∈ (0,1) , b � 1− a , and α,β , p and h be as in Section 1, we
have that

(1) α �
√

3β ⇔
√

3/a−1/b � 1+
√

3.

(2) α <
√

3β , 4h(β + p) � p4 ⇔
√

3/a−1/b > 1+
√

3,

4a(1−a)b(b+1)(a+2b−ab)� (a+b)4.

LEMMA 3. Let a ∈ (0,1) , b � 1−a, α,β , p and h be as in Section 1, and D =
{(x,y)|0 < x < (β + p)/k,−βx < y < 0} . Define the function g(x,y) on the domain D
as

g(x,y) = y2 +((p+1)x−1)y+ αβx2.

If α,β , p and h satisfy either α �
√

3β , or α <
√

3β and 4h(β + p) � p4 , then
inf(x,y)∈h g(x,y) = 0 .

Proof. By differentiation,

∂g(x,y)
∂x

= (p+1)y+2αβx,
∂g(x,y)

∂y
= 2y+(p+1)x+1.
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Let ∂g(x,y)/∂x = ∂g(x,y)/∂y = 0, we have

x0 =
p+1

(p+1)2−4αβ
, y0 = − 2αβ

(p+1)2−4αβ
, g(x0,y0) =

αβ
(p+1)2−4αβ

> 0.

On the other hand,

g(x,0) = αβx2 � 0 for 0 < x < (β + p)/k,

g(x,−βx) = βx(1− x) > 0 for 0 < x < (β + p)/k < 1.

Since

g((β + p)/k,y) = y2 +
p2

k
y+

h(p+ β )
k2 = g1(y), y ∈ (−h/(αk),0),

we get g((β + p)/k,y)� 0 for all y∈ (−h/(αk),0) by Lemma 2, hence inf(x,y)∈h g(x,y)
= 0. �

Since b � 1−a , we have the following Lemma.

LEMMA 4. Let a ∈ (0,1) , b � 1− a, u = a− δ , v = a+ δ and δ ∈ (a− 1,0) ,
we have

(1) the function f1(δ ) = uv + u− 1 + β = p− 1 + (a− b− 1)δ − δ 2 is strictly
decreasing from (a−1,0) onto (p−1, p−1+ α) .

(2) the function f2(δ ) = u(v+ 1) = α +(a− b− 1)δ − δ 2 is strictly decreasing
from (a−1,0) onto (α, p) .

(3) the function f3(δ ) = v(u−1) = −α +(a−b−1)δ −δ 2 is strictly decreasing
from (a−1,δ1) onto (−cβ/d,0) , where δ1 is as in Theorem 1.

LEMMA 5. The function f4(a) = 4a(2− a)(1− a)2(a2 − 2a + 2)2 − 1 has only
two null points a0 ∈ (1/32,1/31) , a1 ∈ (41/50,42/50) in (0,1) .

Proof. Since f4(0) = −1, f4(1/2) = 299/64, f4(1) = −1 and f4(x) has at least
two null points in (0,1) . Assume that f4(x) has more than two null points in (0,1) ,
then f ′4(x) has more than two null points in (0,1) by Rolle mean value theorem. But,

f ′4(a) = −8(a−1)(a2−2a−2)(4a4−16a3 +15a2 +2a−2),

a−1 < 0, a2−2a−2< 0, it is easy to know that f5(a) = 4a4−16a3+15a2+2a−2 is
an increasing function in (0,1) , f5(0) = −2 and f5(1) = 3, hence f5(a) has only one
root in (0,1) , Contradiction. By elementary computations, f4(1/32) < 0, f4(1/31) >
0, f4(41/50) > 0 and f4(42/50) < 0, so there exist two null points a0 ∈ (1/32,1/31)
and a1 ∈ (41/50,42/50) in (0,1) . �

LEMMA 6. If a ∈ (0,1) , b � 1− a, 0 < c/d � (β + p)/k , δ ∈ (a− 1,0) and
n ∈ N , let u = a− δ , v = b+ δ , then

Q(n) =
Γ(u+n−1)Γ(v+n)
Γ(a+n−1)Γ(b+n)

{( c
d
−1

)
(u+ v+n)+u(v+1)

}

is strictly decreasing and limn→∞ Q(n) = −∞ .
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Proof. By computation, we have

Q(n+1)−Q(n)=
Γ(n+u−1)Γ(n+ v)
Γ(n+a)Γ(b+n+1)

Q1(n),

where

Q1(n) = (c/d−1)n2− (c/d−1)(uv+u−1+ β )n+A

= (c/d−1)n2− (c/d−1) f1(δ )n+A,

A = (c/d−1)(u+ v+1)+u(v+1)v(u−1)−β((c/d−1)(u+ v)+u(v+1)).

Since δ ∈ (a−1,0) and f1(δ ) � f1(0)= p−1 � 0. Hence, Q1(n) is strictly decreasing
and

Q1(n) � Q1(1) = (u(v+1))2 +[(c/d−1)(2+ p)−α]u(v+1)− (c/d−1)α(p+1)

= f2(δ )2 +[(c/d−1)(2+ p)−α] f2(δ )− (c/d−1)α(p+1)
=: F( f2(δ )).

Since f2(δ ) is strictly decreasing from (a− 1,0) onto (α, p) by Lemma 4 and 0 <
c/d � (β + p)/k < 1, we have

F(α)) = (c/d−1)α < 0, F(p) = c/(dk)− (β + p) < 0.

Hence, it is easy to know that Q1(n) < 0 for n ∈ N , and the monotonicity of Q(n)
follows. Moreover, by (5), we have

lim
n→∞

Q(n) = lim
n→∞

[(
d
c
−1

)
(n+u+ v)+u(v+1)

]
= −∞. �

LEMMA 7. For −∞ < a < b < ∞ , let f ,g : [a,b] → R be continuous on [a,b] ,
and be differentiable on (a,b) . Let g′(x) �= 0 on (a,b) . If f ′(x)/g′(x) is increasing
(decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

3. Proof of the main theorem

Proof of Theorem 1. Let u = a− δ , v = b+ δ and t = 1− (1− x)d/c , we obtain
that

G1(x) = G((1− x)
1
c ) =

1
x
[F(a−1− δ ,b+ δ ; p; t)−F(a−1,b; p;x)]

=
1
x
[F(u−1,v; p;t)−F(a−1,b; p;x)], (6)
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we let f (x) = F(u−1,v; p;t)−F(a−1,b; p;x) and g(x) = x , then G1(x) = f (x)/g(x)
and f (0) = g(0) = 0.

f ′(x)
g′(x)

= f ′(x) =
d
c
(1− x)(d/c)−1 v(u−1)

p
F(u,v+1; p+1;t)

+
β
p

F(a,b+1; p+1;x), (7)

and

f ′′(x) = −v(u−1)d
cp

(
d
c
−1

)
(1− x)(d/c)−2F(u,v+1; p+1;t)

+
u(u−1)v(v+1)d2

p(p+1)c2 (1− x)2[(d/c)−1]F(u+1,v+2; p+1,t)

+
αβ

p(p+1)
F(a+1,b+2; p+2;x). (8)

The desired monotonicity of G1(x) will follow from Lemma 7 if we can prove
that f ′(x) is increasing on (0,1) or f ′′(x) > 0 on (0,1) . It is easy to know that x →
(1− x)1/c(c > 0) is strictly decreasing on (0,1) . Let

h(t) = −v(u−1)d
cp

(
d
c
−1

)
(1− t)F(u,v+1; p+1;t)

+
u(u−1)v(v+1)d2

p(p+1)c2 (1− t)2F(u+1,v+2; p+2,t).

Since (1− t) = (1− x)(d/c) , then it follows from (8) that

(1− x)2 f ′′(x) = h(t)+
αβ

p(p+1)
(1− x)2F(a+1,b+2; p+2;x). (9)

Using the series expansion for F(a,b;c;x) , we have

h(t) =
d2

c2 (1− t)
[( c

d
−1

)v(u−1)
p

∞

∑
n=0

(u,n)(v+1,n)
(p+1,n)

tn

n!

+(1− t)
u(u−1)v(v+1)

p(p+1)

∞

∑
n=0

(u+1,n)(v+2,n)
(p+2,n)

tn

n!

]
,

=
d2

c2 (1− t)
[( c

d
−1

) ∞

∑
n=0

(u−1,n+1)(v,n+1)
(p,n+1)

tn

n!

+(1− t)
∞

∑
n=0

(u−1,n+2)(v,n+2)
(p,n+2)

tn

n!

]
,

=
d2

c2 (1− t)
∞

∑
n=0

(u−1,n+1)(v,n+1)
(p,n+2)

×
[( c

d
−1

)
(p+n+1)+ (u+n)(v+n+1)−n(p+n+1)

]tn

n!
. (10)
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Since a ∈ (0,1) and b � 1− a , 2 > max{a + 1 + b + 2− (a + b + 2), [(a + 1)(b +
2)]/(a+b+2)} , we have that (1−x)2F(a+1,b+2;a+b+2;x) is strictly decreasing
on (0,1) by Lemma 1(1). While t/x = [1− (1− x)d/c]/x is strictly decreasing from
(0,1) onto (1,d/c) . Thus, t > x and the following inequality holds

(1− x)2F(a+1,b+2;a+b+2;x)> (1− t)2F(a+1,b+2;a+b+1;t). (11)

By the series expansion of F(a,b;c;x) , we obtain that

αβ
p(p+1)

(1− t)F(a+1,b+2; p+2;t)= (1− t)
∞

∑
n=0

(a−1,n+2)(b,n+2)
(p,n+2)

tn

n!

=
∞

∑
n=0

(a−1,n+2)(b,n+2)
(p,n+2)

tn

n!
−

∞

∑
n=0

(a−1,n+2)(b,n+2)
(p,n+2)

tn+1

n!

=
∞

∑
n=0

(a−1,n+2)(b,n+2)
(p,n+2)

tn

n!
−

∞

∑
n=0

n(a−1,n+1)(b,n+1)
(p,n+1)

tn

n!

= −α
∞

∑
n=0

(a−1,n+1)(b,n+1)
(p,n+2)

tn

n!
. (12)

Hence, it follows from (9), (10), (11), and (12) that

(1− x)2 f ′′(x)
1− t

>
d2

c2 (1− t)
∞

∑
n=0

(u−1,n+1)(v,n+1)
(p,n+2)

×
[( c

d
−1

)
(p+n+1)+ (u+n)(v+n+1)−n(p+n+1)

]tn

n!

−α
∞

∑
n=0

(a−1,n+1)(b,n+1)
(p,n+2)

tn

n!

=
d2

c2

∞

∑
n=1

(a−1,n)(b,n)
(p,n+1)

tn−1

(n−1)!

{
− αc2

d2 +
(u−1,n)(v,n)
(a−1,n)(b,n)

×
[( c

d
−1

)
(p+n)+ (u+n−1)(v+n)− (n−1)(p+n)

]}

=
d2

c2

∞

∑
n=1

(a,n−1)(b+1,n−1)
(p,n+1)(n−1)!

{αβc2

d2 +
Γ(a)Γ(b+1)
Γ(u−1)Γ(v)

Q(n)
}
tn−1,

where Q(n) is defined as in Lemma 6. Since u−1 = a−1−δ ∈ (−1,0) , Γ(u−1) < 0,
it follows from Lemma 6 that

(1− x)2 f ′′(x)
1− t

>
d2

c2

∞

∑
n=1

(a,n−1)(b+1,n−1)
(p,n+1)(n−1)!

{αβc2

d2 +
Γ(a)Γ(b+1)
Γ(u−1)Γ(v)

Q(1)
}
tn−1

=
d2

c2

∞

∑
n=1

(a,n−1)(b+1,n−1)
(p,n+1)(n−1)!

×
[αβc2

d2 + v(u−1)((c/d−1)(p+1)+u(v+1))
]
tn−1

= g(x,y)
d2

c2

∞

∑
n=1

(a,n−1)(b+1,n−1)
(p,n+1)(n−1)!

tn−1, (13)
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where x = c/d ∈ (0,(β + p)/k] , y = f3(δ ) = (b+ δ )(a− δ −1) , and

g(x,y) = y2 +((p+1)x−1)y+ αβx2,

since δ ∈ (a−1,δ1] , y∈ (−βx,0] by Lemma 4, it follows from Lemma 3 that g(x,y) �
0 for (x,y) ∈ D , where D is as Lemma 3.

Hence, it follows from (13) that f ′′(x) > 0 for all x ∈ (0,1) , which shows that
f ′(x) is strictly increasing on (0,1) , and so is G1(x) by (6), (7) and Lemma 7. More-
over, by L’Hâpital’s rule, we get

G(1−) = G1(0+) = f ′(0) =
d
pc

(
(c/d−1)α +(a−b−1)δ − δ 2) = C1(δ ) (14)

for δ ∈ (a−1,δ1] , C1(δ ) � C1(δ1) = 0 and

G(0+) = G1(1−) = f (1−) = F(a−1− δ ,b+ δ ; p;1)−F(a−1,b; p;1)

=
1

pB(a− δ ,b+1+ δ )
− 1

pB(a,b+1)
= C2(δ ). (15)

For part (2), we observe that, for δ1 < δ < 0, the equations (14) and (15) hold again,
both C1(δ ) and C2(δ ) are strictly decreasing from Lemma 1(3), and G(1−) =C1(δ ) <
C1(δ0) = 0, G(0+) = C2(δ ) > C2(0−) = 0. �

COROLLARY 1. Let a0 be the minimum root of 4a(2−a)(1−a)2(a2−2a+2)2 =
1 in (0,1) . For a∈ [a0,1) , 0< c/d � [(a−1)2+1]/[2(a−1)2+1] , and δ2 = (

√
c/d−

1)(1−a) < 0 , we have
(1) a0 ∈ (1/32,1/31) ,
(2) If δ ∈ (a−1,δ2] , then the function

G1(x) =
F(a−1− δ ,1−a+δ ;1;1− xd)−F(a−1,1−a;1;1− xc)

1− xc

is strictly decreasing from (0,1) onto (C3(δ ),C4(δ )) , where

C3(δ ) = −d
c

(
δ 2 +2(1−a)δ +(1−a)2(1− c

d
)
)

� 0

C4(δ ) =
1

B(a− δ ,2−a+ δ )
− 1

B(a,2−a)
=

1
π

{
sin(π(a− δ ))

1−a+ δ
− sin(πa)

1−a

}
.

In particular, for all x ∈ (0,1) , if δ ∈ (a−1,δ2] ,

F(a−1,1−a;1;1− xc)+C3(δ )(1− xc) < F(a−1− δ ,1−a+δ ;1;1− xd)
< F(a−1,1−a;1;1− xc)+C4(δ )(1− xc).

(16)

(3) If δ2 < δ < 0 , then, as the functions of x , F(a− 1− δ ,1− a + δ ;1;1− xd)
and F(a−1,1−a;1,1− xc) are not directly comparable on (0,1) , that is, neither

F(a−1,1−a;1,1− xc) < F(a−1− δ ,1−a+δ ;1;1− xd)

nor its reversed inequality holds for all x ∈ (0,1) .
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Proof. (1) Part (1) follows from Lemma 5.
(2) Let b = 1−a , for α �

√
3β ⇔

√
3

a
− 1

1−a
� 1+

√
3 ⇔ a ∈

(
1− 1√

1+
√

3
,1

]
,

for α <
√

3β , 4h(β + p) � p4 ⇔
√

3
a

− 1
1−a

> 1+
√

3,4a(2−a)(1−a)2(a2−2a+2)2 � 1

⇔ a ∈
(
0,1− 1√

1+
√

3

)
∩ (a0,a1) ⇔

(
a0,1− 1√

1+
√

3

)
,

where a0,a1 are as Lemma 5. By Theorem 1, if a ∈ (a0,1) , 0 < c/d � [(a− 1)2 +
1]/[2(a−1)2 +1] , and δ1 = (

√
c/d−1)(1−a) < 0, the inequality (16) holds.

Part (3) follows from Theorem 1(2). �

REMARK 2. The following results, which have been proved in [15], can be di-
rectly obtained by Corollary 1.

(I) Let a = b = 1/2, α = a(b+1) = 3/4, β = b(1−a) = 1/4, hence α >
√

3β .
We have

(1) Let 0 < c/d � 5/6, and δ3 = (
√

c/d−1)/2 < 0. Then, if δ ∈ (−1/2,δ3] , the
following inequality holds for all x ∈ (0,1) ,

F(1/2,1/2;1;1− xc)+C3(δ )(1− xc) < F(−1/2− δ ,1/2+ δ ;1;1− xd)
< F(−1/2,1/2;1;1− xc)+C4(δ )(1− xc).

where

C5(δ ) = −d
c

(
δ 2 + δ +

1
4

(
1− c

d

))
� 0

C6(δ ) =
1

B(1/2− δ ,3/2+ δ )
− 2

π
=

2
π

[
cos(πδ )
1+2δ

−1

]
.

(2) If 0 < c/d � 5/6, then

sup{δ ∈ (−1/2,0)|= F(1/2,1/2;1;1− xc) < F(−1/2− δ ,1/2+ δ ;1;1− xd),

for all x ∈ (0,1)} = (
√

c/d−1)/2.

(II) Let c = 2, d = 3 and a0 be the minimum root of 4a(2−a)(1−a)2(a2−2a+
2)2 = 1. For a ∈ (a0,1] , and δ4 = (

√
6/3−1)(1−a)< 0, we have that:

(1) If δ ∈ (a−1,δ4] , the following inequality hold for all x ∈ (0,1) ,

F(a−1,1−a;1;1− x2)+C7(δ )(1− xc) < F(a−1− δ ,1−a+δ ;1;1− x3)

< F(a−1,1−a;1;1− x2)+C8(δ )(1− xc).



1156 T. R. HUANG, X. Y. MA AND X. H. ZHANG

where

C7(δ ) = −3
2

(
δ 2 +2(1−a)δ +

(1−a)2

3

)
� 0

C8(δ ) =
1

B(a− δ ,2−a+ δ )
− 1

B(a,2−a)
=

1
π

[
sin(π(a− δ ))

1−a+ δ
− sin(πa)

1−a

]
.

(2) If a ∈ [a0,1) , then

sup{δ ∈ (−1/2,0)|= F(a−1,1−a;1;1− x2) < F(a−1− δ ,1−a+δ ;1;1− x3),

for all x ∈ (0,1)} = (
√

6/3−1)(1−a).
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