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ON THE ORLICZ SYMMETRY OPERATOR

LUJUN GUO AND RUIFANG CHEN

(Communicated by H. Martini)

Abstract. R. Schneider (1970) proved that if K ∈ R
n is a convex body, such that each shadow

boundary of K with respect to parallel illumination halves the Euclidean surface area of K ,
then K is centrally symmetric. A generalization of the results of R. Schneider was given by
G. Averkov, E. Makai and H. Martini (2009). In this paper, by introducing an Orlicz symmetry
operator Δφ : K n → K n , we show a new method to obtain the characterization of symmetry
for convex bodies. As an application, we will show that there is a unique member of Δφ 〈K〉
characterized by having larger volume than that of any other member of Δφ 〈K〉 , where Δφ 〈K〉
is the Orlicz symmetric equivalence class of K .

1. Introduction

Let R
n denote the n -dimensional Euclidean space. Let K ∈ R

n be a convex body
(compact, convex set with non-empty interiors) and x ∈ R

n\K . Then there is a unique
point of K closest to x , which we denote by p(K,x) , see [23]. We write d(K,x) :=
|x− p(K,x)| , and u(K,x) := (x− p(K,x))/d(K,x) , with | · | denoting the Euclidean
norm. For a Borel set B ∈ R

n and r > 0, we consider the Lebesgue measure of the set
{x ∈ R

n|0 < d(K,x) � r, p(K,x) ∈ B} . It is of the form

1
n

n−1

∑
k=0

(
n−1

k

)
Ck(K,B)rk

where Ck(K,B) , for 0 � k � n , is called the k -th curvature measure of K .
Let H+

u := {x ∈ R
n|〈x,u〉 � 0} and H−

u := {x ∈ R
n|〈x,u〉 � 0} . Using the curva-

ture measure, R. Schneider (see [21] and [22]) proved the following theorem.

THEOREM A. Let K ∈R
n be a convex body with 0∈ intK , and let k be an integer

with 0 � k � n. Suppose that for each u∈ Sn−1 we have Ck(K,H+
u )=Ck(K,H−

u ) . Then
K is 0 -symmetric.

For a Borel measure ω ∈ Sn−1 , G. Averkov, E. Makai and H. Martini considered
the signed Borel measure

∫
ω ϕ(u)dSK(u) that satisfies the following two conditions.

Mathematics subject classification (2010): 52A20, 52A40, 33C55.
Keywords and phrases: Central symmetry, Minkowski space, normed linear space, shadow boundary,

Steiner symmetrization, surface area measure.
This research is supported by the National Natural Science Foundation of China (Grant No. 11526079 and No.

U1504101) and National science research project fund of Henan Normal University (No. 5101019279102).
The authors are very grateful to the referee who read the manuscript carefully and provided a lot of valuable sugges-

tions and comments.

c© � � , Zagreb
Paper MIA-20-77

1189

http://dx.doi.org/10.7153/mia-2017-20-77


1190 L. GUO AND R. CHEN

a) ϕ : Sn−1 →R is an even Borel measurable function, with
∫

ω |ϕ(u)|dSK(u) , i.e.,
the total variation of the above signed Borel measure being finite, and

b) ϕ(u) �= 0 for dSK(u) almost every u ∈ Sn−1 .
A generalization of the result of R. Schneider was given by G. Averkov, E. Makai

and H. Martini [1] as follows.

THEOREM B. Let K be a convex body in R
n , let dSK(u) be the Euclidean surface

area measure of K, and ϕ : Sn−1 → R be a function satisfying a) and b) above. Then
the following statements are equivalent.

A) The body K is centrally symmetric.
B) The equality ∫

S+
u

ϕ(u)dSK(u) =
∫

S−u
ϕ(u)dSK(u) (1)

holds for every direction u∈ Sn−1 , where S+
u := {v∈ Sn−1|〈u,v〉� 0} , S−u := {v∈

Sn−1|〈u,v〉 � 0} .
C) Equality (1) holds for du-almost every direction u ∈ Sn−1 , where du is the

Lebesgue measure on Sn−1 .
D) Equality (1) holds for du-almost every direction u ∈ Sn−1 among those direc-

tions u, for which the shadow boundary of K with respect to parallel illumination from
direction u is sharp.

In this paper, the Orlicz symmetry operator Δφ : K n → K n is introduced to ob-
tain analogous characterizations of symmetry for convex bodies. Motivated by recent
progress in the asymmetric Lp Brunn-Minkowski theory (see, e.g., [7, 8, 9, 12, 14, 19,
20, 24, 26]), Lutwak, Yang, and Zhang introduced the Orlicz Brunn-Minkowski theory
in two articles [17, 18]. More precisely, Lutwak, Yang, and Zhang [17, 18] introduced
Orlicz projection bodies and Orlicz centroid bodies, and they successively established
the fundamental affine inequalities for these bodies. Recently, Haberl, Lutwak, Yang,
and Zhang [6] dealt with the even Orlicz Minkowski problem. For the development of
the Orlicz Brunn-Minkowski theory, see [2, 4, 5, 10, 11, 28].

We consider the convex and strictly increasing function φ : [0,+∞) → [0,+∞)
satisfying φ(0) = 0. It is not hard to conclude from [23] that φ is continuous on
[0,+∞) .

DEFINITION 1. Let K ⊂ R
n be a convex body with origin in its interior, and φ ∈

C . For x ∈ R
n , we define the Orlicz symmetry operator Δφ : K n → K n by

hΔφ K(x) = inf
{

λ > 0 : φ
(hK(x)

2λ

)
+ φ

(hK(−x)
2λ

)
� 1

}
. (2)

Using the Orlicz symmetry operator Δφ : K n → K n , we obtain the following
characterizations of symmetry for convex bodies.

THEOREM 1. (Main) Let φ ∈ C and K ∈ R
n be a convex body containing the

origin in its interior. Then we have

V (Δφ K) � rn
1V (K), (3)
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where r1 = 1
2φ−1( 1

2 )
. Equality holds if K is origin-symmetric. Furthermore, when φ is

strictly convex, equality holds if and only if K is origin-symmetric.

As an application, we obtain the following conclusion.

COROLLARY 1. Suppose K ∈K n
0 (the class of convex bodies containing the ori-

gin in their interiors). Then Δφ 〈K〉 contains a unique member characterized by having
larger volume than that of any other member of Δφ 〈K〉 , where

Δφ 〈K〉 = {L ∈ K n
0 : Δφ L = Δφ K}.

For later reference, we list in Section 2 some basic facts regarding convex bodies.
The basic properties of the Orlicz symmetry operator are introduced in Section 3. In
Section 4 we prove, by using symmetrization, the Theorem.

2. Notations and preliminaries

Let Sn−1 denote the unit sphere, Bn the unit n-ball, ωn the volume of Bn , and 0
the origin in the Euclidean n -dimensional space R

n . We write x · y for the standard
inner product of x,y in R

n .
A convex body K ∈ R

n is a compact, convex set with nonempty interior. The
volume of K will be denoted by V (K) . A real normed linear space of dimension n is
called a Minkowski space and denoted by M

n (i.e., R
n , endowed with some Minkowski

metric), whose unit ball is a convex body centred at the origin.
Denote by K n the class of convex bodies in R

n , and let K n
0 be the class of

members of K n containing the origin in their interiors.
Let νK : ∂K → Sn−1 be the Gauss map of K , defined on ∂K (the boundary of K ),

the set of points of ∂K that have a unique outer unit normal.
Let C be the class of convex, strictly increasing function φ : [0,+∞) → [0,+∞)

satisfying φ(0) = 0. We say a sequence φi ∈C is such that φi → φ ∈C , provided

|φi −φ |I = max
x∈I

|φi(x)−φ(x)| → 0,

for every compact interval I ⊂ [0,+∞) .
The support function hK : R

n → R of a compact convex set K ∈ R
n is defined, for

x ∈ R
n , by

hK(x) = max{x · y : y ∈ K},
and it uniquely determines this compact convex set.

A function is a support function of a compact convex set if and only if it is pos-
itively homogeneous of degree one and subadditive. Obviously, for a pair of compact
convex sets K,L ∈ R

n , we have hK � hL if and only if K ⊂ L .
The Hausdorff distance between convex bodies K,L is defined by

δ (K,L) := min{λ � 0|K ⊂ L+ λBd,L ⊂ K + λBd}.
In terms of the support function, the Hausdorff distance between two convex bodies
K,L can also be expressed as follows (cf. [23]):

δ (K,L) = max
u∈Sd−1

|hK(u)−hL(u)|. (4)
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A class of convex bodies {Ki} is said to converge to a convex body K if δ (Ki,K)→
0, as i → +∞ .

For a convex body K and a direction u ∈ Sn−1 , let Ku denote the image of the
orthogonal projection of K onto u⊥ , the subspace of R

n orthogonal to u . We write
�u(K, ·) : Ku → R and �u(K, ·) : Ku → R for the undergraph and overgraph functions
of K in the direction u ; i.e., K = {y′ + tu : −�u(K,y′) � t � �u(K,y′) f or y′ ∈ Ku} .
Thus the Steiner symmetral SuK of K ∈ K n

0 in direction u can be defined as the body
whose orthogonal projection onto u⊥ is identical to that of K and whose undergraph
and overgraph functions are given by

�u(SuK,y′) =
1
2
[�u(K,y′)+ �u(K,y′)] (5)

and

�u(SuK,y′) =
1
2
[�u(K,y′)+ �u(K,y′)]. (6)

The following two well known propositions will be used to prove our results.

PROPOSITION 2.1. (see [17], Lemma 1.2) Suppose K ∈ K n
0 and u ∈ Sn−1 . For

y′ ∈ relintKu , the overgraph and undergraph functions of K in direction u are given by

�u(K,y′) = min
x′∈u⊥

{hK(x′,1)− x′ · y′}, (7)

and

�u(K,y′) = min
x′∈u⊥

{hK(x′,−1)− x′ · y′}. (8)

PROPOSITION 2.2. (see [27], Lemma 4.2) Suppose K ∈ K n
0 and u ∈ Sn−1 . For

any x′1,x
′
2 ∈ u⊥ we have

hK(x′1,1)+hK(x′2,−1) � 2max
{

hSuK

(x′1 + x′2
2

,1
)
,hSuK

(x′1 + x′2
2

,−1
)}

. (9)

3. Properties of the Orlicz symmetric operator

Since the convex function φ is strictly increasing on [0,∞) , it follows that the
function

λ → φ
(hK(x)

2λ

)
+ φ

(hK(−x)
2λ

)

is strictly decreasing on [0,∞) and continuous. From this observation and (2), we obtain
the following proposition.

PROPOSITION 3.1. Suppose K ∈ K n and φ ∈ C . Then

1) hΔφ K(x) � λ0 if and only if φ
(

hK(x)
2λ0

)
+ φ

(
hK(−x)

2λ0

)
� 1 ;

2) hΔφ K(x) = λ0 if and only if φ
(

hK(x)
2λ0

)
+ φ

(
hK(−x)

2λ0

)
= 1 ;

3) hΔφ K(x) � λ0 if and only if φ
(

hK(x)
2λ0

)
+ φ

(
hK(−x)

2λ0

)
� 1 .
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PROPOSITION 3.2. Suppose K ∈ K n
0 and φ ∈ C . Then Δφ K is a convex body

symmetric with respect to origin.

Proof. For r > 0, we have

hΔφ K(rx) = inf
{

λ > 0 : φ
(hK(rx)

2λ

)
+ φ

(hK(−rx)
2λ

)
� 1

}

= r inf
{λ

r
> 0 : φ

(hK(x)
2 λ

r

)
+ φ

(hK(−rx)
2 λ

r

)
� 1

}

= rhΔφ K(x). (10)

We claim that for x1,x2 ∈ R
n ,

hΔφ K(x1 + x2) � hΔφ K(x1)+hΔφK(x2).

Set hΔφ K(x1) = r1 and hΔφ K(x2) = r2 , from (2) and Proposition (3.1), then we
have

1 =
r1

r1 + r2
φ
(hK(x1)

2r1

)
+

r2

r1 + r2
φ
(hK(x2)

2r2

)

+
r1

r1 + r2
φ
(hK(−x1)

2r1

)
+

r2

r1 + r2
φ
(hK(−x2)

2r2

)

� φ
(hK(x1)+hK(x2)

2(r1 + r2)

)
+ φ

(hK(−x1)+hK(−x2)
2(r1 + r2)

)

� φ
(hK(x1 + x2)

2(r1 + r2)

)
+ φ

(hK(−(x1 + x2))
2(r1 + r2)

)
,

which implies that

hΔφ K(x1 + x2) � r1 + r2 = hΔφ K(x1)+hΔφK(x2). (11)

The positively homogeneous of degree one property of (10) and subadditivity (11)
of hΔφ K show that Δφ K is convex.

From the definition (2), for any x ∈ R
n , it is obvious that

hΔφ K(x) = inf
{

λ > 0 : φ
(hK(x)

2λ

)
+ φ

(hK(−x)
2λ

)
� 1

}
= hΔφK(−x),

which shows that Δφ K is symmetric with respect to origin.
Thus, Δφ K is a convex body symmetric with respect to origin. �

PROPOSITION 3.3. Suppose φ ∈C and K ∈ K n
0 .

(i) If r > 0 , then Δφ rK = rΔφ K .
(ii) For A ∈ GL(n) , Δφ AK = AΔφ K .
(iii) Suppose Ki ∈ K n

0 are such that Ki → K . Then Δφ Ki → Δφ K .
(iv) Suppose φi ∈C are such that φi → φ . Then ΔφiK → Δφ K .
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Proof. (i) Let r > 0. For any x ∈ R
n ,

hΔφ rK(x) = inf
{

λ > 0 : φ
(hrK(x)

2λ

)
+ φ

(hrK(−x)
2λ

)
� 1

}

= r inf
{λ

r
> 0 : φ

(hK(x)
2 λ

r

)
+ φ

(hK(−rx)
2 λ

r

)
� 1

}

= rhΔφ K(x)

= hrΔφ K(x).

Thus we have Δφ rK = rΔφ K .
(ii) Let A ∈ GL(n) . For any x ∈ R

n ,

hΔφ AK(x) = inf
{

λ > 0 : φ
(hAK(x)

2λ

)
+ φ

(hAK(−x)
2λ

)
� 1

}

= inf
{

λ > 0 : φ
(hK(AT x)

2λ

)
+ φ

(hK(−AT x)
2λ

)
� 1

}

= hΔφ K(AT x)

= hAΔφK(x).

Thus we have Δφ AK = AΔφ K .
(iii) Suppose u0 ∈ Sn−1 . We will show that for the support functions of the convex

bodies ΔφKi , we have
hΔφ Ki(u0) → hΔφ K(u0).

Let hΔφKi(u0) = ri . From Proposition 3.1, we have

1 = φ
(hKi(u0)

2ri

)
+ φ

(hKi(−u0)
2ri

)
< 2φ

(hKi(u0)+hKi(−u0)
2ri

)
,

which implies ri <
hKi (u0)+hKi (−u0)

2φ−1( 1
2 )

. On the other hand,

1 = φ
(hKi(u0)

2ri

)
+ φ

(hKi(−u0)
2ri

)
� 2φ

(hKi(u0)+hKi(−u0)
4ri

)
,

which implies ri � hKi (u0)+hKi (−u0)

4φ−1( 1
2 )

. Thus,

hKi(u0)+hKi(−u0)
4φ−1( 1

2 )
� ri <

hKi(u0)+hKi(−u0)
2φ−1( 1

2 )
.

Since Ki → K , we have hKi(u0) + hKi(−u0) → hK(u0) + hK(−u0) . Thus there
are constants r,R > 0 such that 0 < r � ri < R , i = 1,2,3, . . . , which means that the
sequence ri is bounded.

To show that the bounded sequence ri converges to r0 , we show that every conver-
gent subsequence of ri converges to r0 . Denote an arbitrary convergent subsequence
of ri by ri as well, and suppose that for this subsequence we have ri → r0 . Thus
0 < r � r0 < R , and from the continuity of φ , we have

1 = lim
i→+∞

[
φ
(hKi(u0)

2ri

)
+ φ

(hKi(−u0)
2ri

)]
= φ

(hK(u0)
2r0

)
+ φ

(hK(−u0)
2r0

)
.
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This and Proposition 3.1 give

hΔφ Ki(u0) = ri → r0 = hΔφK(u0).

But for support functions on Sn−1 pointwise and uniform convergence are equiva-
lent (see, e.g., Schneider [23]). Thus, the pointwise convergence hΔφ Ki(u0) = hΔφ K(u0)
shows that δ (Δφ Ki,Δφ K) → 0, as i → +∞ . Hence Δφ Ki → Δφ K .

(iv) Suppose u0 ∈ Sn−1 . We will show that for the support functions of the convex
bodies ΔφiK , we have

hΔφi
K(u0) → hΔφK(u0).

Let hΔφKi(u0) = ri .
As in the proof of (ii), we have

hK(u0)+hK(−u0)
2φ−1

i ( 1
2 )

� ri � hK(u0)+hK(−u0)
4φ−1

i ( 1
2 )

.

From the fact that φi → φ , it is easy to show that φ−1
i → φ−1 . Thus, there are con-

stants r,R > 0 such that 0 < r � ri < R , i = 1,2,3, . . . , which means that the sequence
ri is bounded.

Denote an arbitrary convergent subsequence of ri by ri as well, and suppose that
for this subsequence we have ri → r0 . Thus 0 < r � r0 < R and from the continuity of
φ , we have

1 = lim
i→+∞

[
φi

(hK(u0)
2ri

)
+ φi

(hK(−u0)
2ri

)]
= φ

(hK(u0)
2r0

)
+ φ

(hK(−u0)
2r0

)
.

This and Proposition 3.1 give

hΔφi
K(u0) = ri → r0 = hΔφ K(u0).

As in the proof of (ii), we have shown ΔφiK → ΔφK . �

4. The characterization of symmetry for convex bodies

LEMMA 4.1. Suppose φ ∈C and K ∈ K n
0 . For any u ∈ Sn−1 , we have

ΔφSuK ⊆ SuΔφ K. (12)

If φ is strictly convex and the inclusion is an identity, then K is origin symmetric.

Proof. From Proposition 2.1,for any y′ ∈ (Δφ K)u ,there exist points x′1,x
′
2 ∈ u⊥

such that

�u(Δφ K,y′) = hΔφ K(x′1,1)− x′1 · y′, (13)

and

�u(Δφ K,y′) = hΔφ K(x′2,−1)− x′2 · y′. (14)
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Let λ1 = hΔφ K(x′1,1) and λ2 = hΔφ K(x′2,−1) . From Proposition 3.1, the convexity
of φ and Proposition 2.2, we have

1 =
λ1

λ1 + λ2

[
φ
(hK(x′1,1)

2λ1

)
+ φ

(hK(−x′1,−1)
2λ1

)]

+
λ2

λ1 + λ2

[
φ
(hK(x′2,−1)

2λ2

)
+ φ

(hK(−x′2,1)
2λ2

)]

=
[ λ1

λ1 + λ2
φ
(hK(x′1,1)

2λ1

)
+

λ2

λ1 + λ2
φ
(hK(x′2,−1)

2λ2

)]

+
[ λ1

λ1 + λ2
φ
(hK(−x′1,−1)

2λ1

)
+

λ2

λ1 + λ2
φ
(hK(−x′2,1)

2λ2

)]

� φ
(hK(x′1,1)+hK(x′2−1)

2(λ1 + λ2)

)
+ φ

(hK(−x′1,−1)+hK(−x′21)
2(λ1 + λ2)

)
(15)

� φ
(hSuK( x′1+x′2

2 ,1)
λ1 + λ2

)
+ φ

(hSuK(− x′1+x′2
2 ,−1)

λ1 + λ2

)
.

From Proposition 3.1, we have

hΔφ SuK

(x′1 + x′2
2

,1
)

� λ1 + λ2

2
=

hΔφ K(x′1,1)+hΔφK(x′2,−1)

2
. (16)

From (6), (14), (13), Proposition 2.2 and (7), we have

�u(SuΔφK,y′) =
1
2

[
�u(Δφ K,y′)+ �u(Δφ K,y′)

]

=
1
2

[
hΔφK(x′1,1)+hΔφK(x′2,−1)− (x′1 + x′2) · y′

]

� hΔφ SuK

(x′1 + x′2
2

,1
)
− x′1 + x′2

2
· y′

� min
x′∈u⊥

{hΔφSuK(x′,1)− x′ · y′}

= �u(Δφ SuK,y′). (17)

In the same way, we can also have �u(SuΔφ K,y′) � �u(Δφ SuK,y′) .
Since y′ ∈ relint(Δφ K)u is arbitrary, we get Δφ SuK ⊆ SuΔφ K .
If the inclusion (12) is an identity, then (4.4) is also an equality. Since φ is strictly

convex, (4.4) is an equality if and only if

hK(x′1,1)
2λ1

=
hK(x′2,−1)

2λ2
and

hK(−x′1,−1)
2λ1

=
hK(−x′2,1)

2λ2
.

Due to the facts K ∈ K n
0 and hK(−u) = h−K(u) , there is a positive constant r0

such that

r0 =
hK(x′1,1)
h−K(x′1,1)

=
hK(x′2,−1)
h−K(x′2,−1)

. (18)

For any y′ ∈ (Δφ K)u , there are x′1,x
′
2 ∈ u⊥ such that (x′1,1),(x′2,−1) are the outer

normal vectors of ΔφK at the boundary points (y′, �u(Δφ K,y′)) and (y′, �u(Δφ K,y′)) ,
respectively.
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For any v∈ Sn−1 , since ∂ (Δφ K)∩{(Δφ K)u+tu|t ∈R}∩{(Δφ K)v +tv|t ∈R} �= /0 ,
there always exists y′ ∈ (Δφ K)u such that v is the outer normal vector of Δφ K at the
boundary point (y′, �u(Δφ K,y′)) or (y′, �u(Δφ K,y′)) . Hence, by the same argument as
with (4.7), we always have

hK(v)
h−K(v)

= r0,

which shows that K and −K are dilates. From this and the fact V (K) = V (−K) , we
have K = −K , i.e., K is origin-symmetric. �

THEOREM 4.1. Suppose φ ∈C and K ∈ K n
0 . Then

V (Δφ K) � rn
1V (K), (19)

where r1 = 1
2φ−1( 1

2 )
. Equality holds if K is origin-symmetric. Furthermore, when φ is

strictly convex, equality holds if and only if K is origin-symmetric.

Proof. Let V (K) = anωn . From the Steiner Symmetrization argument and Lemma
4.1, for any u ∈ Sn−1 we have

V (Δφ K) = V (SuΔφK) � V (Δφ SuK) = V (Δφ aBn
2) = rn

1a
nωn = rn

1V (K). (20)

If K is origin symmetric, i.e., hK(u) = hK(−u) for all u ∈ Sn−1 , then

hΔφK(x) = inf
{

λ > 0 : φ
(hK(x)

2λ

)
+ φ

(hK(−x)
2λ

)
� 1

}
=

hK(x)
2φ−1( 1

2 )
, (21)

for all x ∈ R
n . Therefore,

V (Δφ K) = rn
1V (K).

Suppose φ is strictly convex. Due to (20), equality holds in (19) if and only if
Δφ SuK = SuΔφ K . By Lemma 4.1, this holds if and only if K is origin-symmetric. �

If φ(t) = t p , for p � 1, we obtain the p -difference body ΔpK (see e.g., [16]),
whose support function is given by

hΔpK(x)p =
hK(x)p +hK(−x)p

2
. (22)

Then the corresponding result of the Theorem in the Lp Brunn-Minkowski theory
is as follows.

COROLLARY 4.1. Suppose K ∈ K n
0 , for p � 1 . Then

V (ΔpK) � 2
1
p−1V (K), (23)

and equality holds if and only if K is origin-symmetric.

Using the Theorem, we obtain the following conclusion about the Orlicz symmet-
ric equivalence class.
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COROLLARY 4.2. Suppose K ∈ K n
0 . Then Δφ 〈K〉 contains a unique member

characterized by having larger volume than any other member of Δφ 〈K〉 , where

Δφ 〈K〉 = {L ∈ K n
0 : Δφ L = Δφ K}.

Proof. We first suppose that K is origin-symmetric.
From Theorem 4.1, for any L ∈ Δφ 〈K〉 we get

V (K) =
1
rn
1
V (Δφ K) =

1
rn
1
V (Δφ L) � V (L), (24)

which shows that the volume of K is larger than that of any other member of Δφ 〈K〉 .
Next, we prove that K is unique. Suppose that there is another L ∈ Δφ 〈K〉 having

larger volume than any other member.
From (21), for any x ∈ R

n , we have

hK(x) = 2φ−1
(1

2

)
hΔφ K(x) = 2φ−1

(1
2

)
hΔφ L(x) = hL(x), (25)

which yields the result. �
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352 (2012), 517–542.

[10] Q. HUANG AND B. HE, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48
(2012), 281–297.

[11] A. J. LI AND G. S. LENG, A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer.
Math. Soc. 139 (2011), 1473–1481.

[12] M. LUDWIG, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191–4213.
[13] M. LUDWIG, Minkowski areas and valuations, J. Differential Geom. 86 (2010), 133–161.
[14] M. LUDWIG, General affine surface areas, Adv. Math. 224 (2010), 2346–2360.
[15] M. LUDWIG AND M. REITZNER, A classification of SL(n) invariant valuations, Ann. of Math. 172

(2010), 1223–1271.
[16] E. LUTWAK, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J.

Differential Geom. 38 (1993), 131–150.
[17] E. LUTWAK, D. YANG, AND G. ZHANG, Orlicz centroid bodies, J. Differential Geom. 84 (2010),

365–387.
[18] E. LUTWAK, D. YANG, AND G. ZHANG, Orlicz projection bodies, Adv. Math. 223 (2010), 220–242.



ON THE ORLICZ SYMMETRY OPERATOR 1199

[19] L. PARAPATITS, SL(n) -covariant Lp -Minkowski valuations, J. Lond. Math. Soc., in press.
[20] L. PARAPATITS, SL(n) -contravariant Lp -Minkowski valuations, Trans. Amer. Math. Soc., in press.
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