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CONTINUITY AND APPROXIMATE DIFFERENTIABILITY OF

MULTISUBLINEAR FRACTIONAL MAXIMAL FUNCTIONS

FENG LIU

Abstract. In this note we investigate the continuity and approximate differentiability of the m -
sublinear fractional maximal operator

Mα(�f )(x) = sup
r>0

|B(x,r)|α/d−m
m

∏
i=1

∫
B(x,r)

| fi(y)|dy,

where m � 1 , 0 � α < md and �f = ( f1, . . . , fm) with each f j ∈ L1
loc(R

d) . More precisely, we
prove that Mα maps W 1,p1 (Rd)×···×W 1,pm (Rd) into W 1,q(Rd) continuously, provided that
1 < p1, . . . , pm < ∞ and 0 < ∑m

i=1 1/pi −α/d = 1/q � 1 . We also show that the multisublinear
fractional maximal functions Mα (�f ) are approximately differentiable a.e. if �f = ( f1, f2, . . . , fm)
with each f j ∈ L1(Rd) being approximately differentiable a.e. As applications, the correspond-
ing results for fractional maximal operators are established.
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