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CONTINUITY AND APPROXIMATE DIFFERENTIABILITY OF

MULTISUBLINEAR FRACTIONAL MAXIMAL FUNCTIONS

FENG LIU

(Communicated by J. Pečarić)

Abstract. In this note we investigate the continuity and approximate differentiability of the m -
sublinear fractional maximal operator

Mα(�f )(x) = sup
r>0

|B(x,r)|α/d−m
m

∏
i=1

∫
B(x,r)

| fi(y)|dy,

where m � 1 , 0 � α < md and �f = ( f1, . . . , fm) with each f j ∈ L1
loc(R

d) . More precisely, we
prove that Mα maps W 1,p1 (Rd)×···×W 1,pm (Rd) into W 1,q(Rd) continuously, provided that
1 < p1, . . . , pm < ∞ and 0 < ∑m

i=1 1/pi −α/d = 1/q � 1 . We also show that the multisublinear
fractional maximal functions Mα (�f ) are approximately differentiable a.e. if �f = ( f1, f2, . . . , fm)
with each f j ∈ L1(Rd) being approximately differentiable a.e. As applications, the correspond-
ing results for fractional maximal operators are established.

1. Introduction

Let d � 1 and M denote the centered Hardy-Littlewood maximal operator on Rd ,
i.e. for f ∈ L1

loc(R
d) ,

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy

for any x ∈ Rd , where B(x,r) is the ball in Rd centered at x with radius r and |B(x,r)|
denotes the volume of B(x,r) . One of the cornerstones of harmonic analysis is the
celebrated theorem of Hardy-Littlewood-Wiener that asserts that M : Lp(Rd)→ Lp(Rd)
is bounded for 1 < p � ∞ . For p = 1 we have M : L1(Rd) → L1,∞(Rd) bounded.
During the last several years, a considerable amount of attention has been given to
investigate the behavior of differentiability under a maximal operator. The first work
in this direction is due to Kinnunen [15] who proved that M is bounded on W 1,p(Rd)
for 1 < p � ∞ , where W 1,p(Rd) is the first order Sobolev space, which consists of
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functions f ∈ Lp(Rd) , whose first weak partial derivatives Di f , i = 1,2, . . . ,d , belong
to Lp(Rd) . We endow W 1,p(Rd) with the norm

‖ f‖1,p = ‖ f‖Lp(Rd) +‖∇ f‖Lp(Rd),

where ∇ f = (D1 f , . . . ,Dd f ) is the weak gradient of f . Later on, this paradigm has
been extended to a local version in [16], to a fractional version in [17], to a bilinear
version in [11], to a multisublinear fractional version in [25] and to a one-sided version
in [24]. Due to the lack of reflexivity of L1 , results for p = 1 are subtler. A crucial
question on whether the operator f �→ |∇M f | is bounded from W 1,1(Rd) to L1(Rd) ,
posed by Hajłasz and Onninen in [14], has been restricted to dimension d = 1. For
example, see [4, 23, 34] for the uncentered Hardy-Littlewood maximal operator, [18]
for the centered Hardy-Littlewood maximal operator, [10] for the fractional maximal
operators, [26] for the multisublinear fractional maximal operators. Other interesting
works related to this topic are [3, 5, 6, 12, 13, 22, 28].

In general, bounded non-sublinear operators need not be continuous (see [7] for a
famous example). Continuity of the maximal operator in Lp(Rd) follows easily from its
sublinearity and boundedness. Since we do not have sublinearity for the weak deriva-
tives of the Hardy-Littlewood maximal function, the result of Kinnunen now leads us
to another question: is M : W 1,p(Rd) → W 1,p(Rd) continuous for 1 < p < ∞? This
question was posed in [14, Question 3] where it was attributed to T. Iwaniec and has
been studied by many authors. In 2007, Luiro first proved that M is continuous on
W 1,p(Rd) for 1 < p < ∞ . Subsequently, Carneiro and Moreira [11] extended above
result to the bilinear case. Later on, Luiro [30] extended the result of [29] to the local
case. Recently, Luiro and Nuutinen [31] established the continuity of a class of discrete
maximal operators in Sobolev space W 1,p(Rd) under certain sufficient assumptions.

As well known, the multilinear maximal operator and its fractional version are
standard tools in the multilinear Calderón-Zygmund theory and the boundedness of
these maximal operators on various function spaces have been extensively studied, for
example, see [8, 9, 19, 20, 21, 25] and therein references. In this paper we focus on
the regularity of the multisublinear fractional maximal operator. More precisely, let
m � 1 and �f = ( f1, . . . , fm) with each f j ∈ L1

loc(R
d) . For 0 � α < md , we define the

multisublinear fractional maximal operator Mα by

Mα(�f )(x) = sup
r>0

|B(x,r)|α/d−m
m

∏
i=1

∫
B(x,r)

| fi(y)|dy,

for any x ∈ Rd . For α = 0, the operator Mα recovers the classical multisublinear
Hardy-Littlewood maximal operator. Specially, the centered Hardy-Littlewood maxi-
mal operator M corresponds to the special case of Mα for m = 1 and α = 0. For
m = 1 and 0 < α < d , the operator Mα reduces to the classical fractional maximal op-
erator denoted by Mα , which has extensive applications in potential theory and partial
differential equations (see [1, 2, 32, 33] for example).

Recently, it was shown in [25] that

Mα : W 1,p1(Rd)×·· ·×W1,pm(Rd) →W 1,q(Rd)
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is bounded for 1/q = ∑m
i=1 1/pi −α/d with 1 < p1, . . . , pm < ∞ and 1 � q < ∞ . A

question that arises naturally is

QUESTION A. Is the operator Mα continuous from W 1,p1(Rd)×·· ·×W 1,pm(Rd)
to W 1,q(Rd) , when 1/q = ∑m

i=1 1/pi−α/d , 1 < p1, . . . , pm < ∞ and 1 � q < ∞?

Question A is the main motivation for this work. This problem is solved by our
next theorem.

THEOREM 1. Let 0 � α < md . Then Mα maps W 1,p1(Rd)× ·· · ×W 1,pm(Rd)
into W 1,q(Rd) continuously, where 1/q = ∑m

i=1 1/pi −α/d , 1 < p1, . . . , pm < ∞ and
1 � q < ∞ .

REMARK 1. Theorem 1 extends the continuity result in [29], which corresponds
to the case m = 1 and α = 0. In [17], Kinnunen and Saksman observed that Mα :
W 1,p(Rd) →W 1,q(Rd) is bounded if 1/q = 1/p−α/d with 1 < p < ∞ and 0 � α <
d/p . As an application of Theorem 1, it is known that Mα : W 1,p(Rd) →W 1,q(Rd) is
continuous if 1/q = 1/p−α/d with 1 < p < ∞ and 0 � α < d/p .

To the best of my knowledge Hajłasz and Onninen’s question remains open in
dimension d � 2. Motivated by this challenging problem, Hajłasz and Maly [13] es-
tablished the approximate differentiability of the Hardy-Littlewood maximal operator,
which can be listed as follows.

THEOREM B. ([13]) Let f ∈ L1(Rd) be approximately differentiable a.e., then
M f is also approximately differentiable a.e.

For the endpoint regularity of Mα , it was shown in [26, 27] that if d � 2, 1 � α <
m(d − 1)+ 1 and �f = ( f1, . . . , fm) with each fi ∈ W 1,1(Rd) , then Mα(�f ) is weakly
differentiable and

‖∇Mα(�f )‖
L

d
m(d−1)−α+1 (Rd)

� C
m

∏
j=1

‖∇ f j‖L1(Rd).

A natural and interesting question is that what about the smoothness properties of the
maximal function Mα(�f ) if 0 � α < 1 or m(d−1)+1� α < md and �f = ( f1, . . . , fm)
with each fi ∈ W 1,1(Rd) . Motivated by Theorem B, we shall establish the following
result.

THEOREM 2. Let 0 � α � md − 1 and �f = ( f1, . . . , fm) with each f j ∈ L1(Rd)
being approximately differentiable a.e., then Mα(�f ) is approximately differentiable
a.e.

REMARK 2. Clearly, Theorem 2 extends Theorem B, which corresponds to the
case m = 1 and α = 0. Since every function f ∈W 1,1(Rd) is approximately differen-
tiable a.e., Theorem 2 implies that if 0 � α � md− 1 and �f = ( f1, . . . , fm) with each
f j ∈W 1,1(Rd) , then Mα (�f ) is approximately differentiable a.e. Moreover, we know
from Theorem 2 that the fractional maximal function Mα f is approximately differen-
tiable a.e. if f ∈ L1(Rd) is approximately differentiable a.e. and 0 � α � d−1.
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The rest of this paper is organized as follows. In Section 2 we prove Theorem 1,
the proof of Theorem 2 will be given in Section 3. We remark that the main ideas in
our proofs are greatly motivated by [13, 29], but our methods and techniques are more
subtle and complex than that of [13, 29]. The main ingredient of our proof of Theorem
1 is to present an explicit formula for the derivative of the multisublinear fractional
maximal functions (see Lemma 2). In what follows, we use the following conventions

∏
i∈ /0

ai = 1 and ∑
i∈ /0

ai = 0.

2. Proof of Theorem 1

In this section we follow carefully the proof for the continuity in W 1,p(Rd) of
the Hardy-Littlewood maximal operator in [29] and simply adjust the notation to our
context.

For R > 0, we denote by BR the ball of radius R centered at the origin. For A⊂Rd

and x ∈ Rd , we define

d(x,A) := inf
a∈A

|x−a| and A(λ ) := {x ∈ Rd ;d(x,A) � λ} for λ � 0.

We denote by ‖ f‖p,A the Lp -norm of f χA for all measurable sets A ⊂ Rd . Let �f =
( f1, . . . , fm)∈ Lp1(Rd)×·· ·×Lpm(Rd) with 1 < p1, . . . , pm < ∞ , 1 � q < ∞ and 1/q =
∑m

i=1 1/pi−α/d . For a fixed point x ∈ Rd , we define the set R(�f )(x) by

R(�f )(x)

:=
{

r � 0 : Mα (�f )(x) = limsup
rk→r

|B(x,rk)|α/d−m
m

∏
i=1

∫
B(x,rk)

| fi(y)|dy for some rk > 0
}
.

We also define the function ux,�f : [0,∞) → R by

ux,�f (0) =

⎧⎨
⎩

m
∏
i=1

| fi(x)|, if α = 0;

0, if 0 < α < md,

ux,�f (r) = |B(x,r)|α/d−m
m

∏
i=1

∫
B(x,r)

| fi(y)|dy when r ∈ (0,∞).

We notice that the following facts are valid: (i) ux,�f is continuous on (0,∞) for

all x ∈ Rd and at r = 0 for a.e. x ∈ Rd ; (ii) limr→∞ ux,�f (r) = 0 since ux,�f (r) �
∏m

i=1 ‖ fi‖Lpi (Rd)|B(x,r)|−1/q for any r > 0 and x ∈ Rd ; (iii) R(�f )(x) is nonempty

and closed for all x ∈ Rd and

Mα(�f )(x) = ux,�f (r) if 0 < r ∈ R(�f )(x), ∀x ∈ Rd ,

Mα(�f )(x) = ux,�f (0) for a.e. x ∈ Rd such that 0 ∈ R(�f )(x).

Motivated by the idea in [29], we can get the following
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LEMMA 1. Let �f j = ( f1, j, f2, j, . . . , fm, j) . Suppose that fi, j → fi in Lpi(Rd) when
j → ∞ for all i = 1,2, . . . ,m, where 1 < p1, . . . , pm < ∞ , 1 � q < ∞ and 1/q =
∑m

i=1 1/pi−α/d . Then for all R > 0 and λ > 0 , we have

lim
j→∞

|{x ∈ BR;R(�f j)(x) � R(�f )(x)(λ )}| = 0. (1)

Proof. Without loss of generality we may assume that all fi, j � 0 and fi � 0. By
the similar argument as in the proof of [29, Lemma 2.2], we can conclude that the set
{x∈ Rd ; R(�f j)(x) � R(�f )(x)(λ )} is measurable for any j ∈ Z . Let λ > 0, R > 0 and
ε ∈ (0,1) . We can claim that for a.e. x ∈ BR , there exists γ(x) ∈ N\{0} such that

ux,�f (r) < Mα(�f )(x)− 1
γ(x)

, when d(r,R(�f )(x)) > λ . (2)

Otherwise, for a.e. x ∈ BR , there exists a bounded sequence of radii {rk}∞
k=1 such that

lim
k→∞

ux,�f (rk) = Mα (�f )(x) and d(rk,R(�f )(x)) > λ .

We can choose a subsequence {sk}∞
k=1 of {rk}∞

k=1 such that sk → r as k→∞ . It follows
that r ∈ R(�f )(x) and d(r,R(�f )(x)) � λ , which is a contradiction. Thus, (2) holds.
From (2) we can conclude that there exists γ = γ(R,λ ,ε) ∈ N\{0} and a measurable
set E with |E| < ε such that

BR ⊂ {x ∈ Rd : ux,�f (r) < Mα (�f )(x)− γ−1 if d(r,R(�f )(x)) > λ}∪E
⊂ A1, j ∪A2, j ∪A3, j ∪E,

(3)

where
A1, j := {x ∈ Rd : |Mα (�f j)(x)−Mα(�f )(x)| � (4γ)−1},

A2, j := {x∈Rd : |ux,�f j
(r)−ux,�f (r)|� (2γ)−1 for some r such that d(r,R(�f )(x)) > λ},

A3, j := {x ∈ Rd : ux,�f j
(r) < Mα (�f j)(x)− (4γ)−1 if d(r,R(�f )(x)) > λ}.

Let A be the set of all points x such that x is a Lebesgue point of all f j . Note that
|Rd\A|= 0. One can easily check that A3, j∩A⊂∪{x∈Rd : R(�f j)(x)⊂R(�f )(x)(λ )} .
This together with (3) yields that

{x ∈ BR;R(�f j)(x) � R(�f )(x)(λ )} ⊂ A1, j ∪A2, j ∪E ∪ (Rd\A).

It follows that

|{x ∈ BR;R(�f j)(x) � R(�f )(x)(λ )}| � |A1, j|+ |A2, j|+ ε. (4)

Since fi, j → fi in Lpi(Rd) when j → ∞ for all i = 1,2, . . . ,m , then for any fixed
ε ∈ (0,1) , there exists N0 = N0(ε) ∈ N such that

‖ fi, j − fi‖Lpi(Rd) <
ε
γ

and ‖ fi, j‖Lpi (Rd) � ‖ fi‖Lpi (Rd) +1 (5)
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for any j � N0 and i = 1,2, . . . ,m . We can write

|Mα(�f j)(x)−Mα(�f )(x)|
� sup

r>0
|B(x,r)|α/d−m

∣∣∣ m

∏
i=1

∫
B(x,r)

fi, j(y)dy−
m

∏
i=1

∫
B(x,r)

fi(y)dy
∣∣∣

�
m

∑
i=1

sup
r>0

|B(x,r)|α/d−m
i−1

∏
μ=1

∫
B(x,r)

fμ(y)dy
m

∏
ν=i+1

∫
B(x,r)

fν, j(y)dy

×
∫

B(x,r)
| fi, j(y)− fi(y)|dy

=
m

∑
i=1

Mα(�Fi
j )(x)

(6)

for any x ∈ Rd , where �Fi
j = ( f1, . . . , fi−1, fi, j − fi, fi+1, j, . . . , fm, j) . It follows form (5)

and (6) that

|A1, j| �
∣∣∣
{

x ∈ Rd :
m

∑
i=1

Mα(�Fi
j )(x) � (4γ)−1

}∣∣∣
�

m

∑
i=1

|{x ∈ Rd : Mα(�Fi
j )(x) � (4mγ)−1}|

� (4mγ)q
m

∑
i=1

‖Mα(�Fi
j )‖q

Lq(Rd)

� C(m,γ,q,α,d, p1, . . . , pm)ε

(7)

for any j � N0 . Similarly, we can get

|A2, j| � C(m,γ,q,α,d, p1, . . . , pm)ε (8)

for any j � N0 . (1) follows form (4), (7) and (8). �
Let el = (0, . . . ,0,1,0, . . . ,0) be the canonical l -th base vector in Rd for l =

1,2, . . . ,d . For any fixed i = 1,2, . . . ,m , h > 0 and fi ∈ Lp(Rd) with p � 1, define

f l
i,h(x) =

f i,l
τ(h)(x)− fi(x)

h
and f i,l

τ(h)(x) = fi(x+hel).

It is well known that for p � 1, f i,l
τ(h) → fi in Lp(Rd) when h→ 0, and if fi ∈W 1,p(Rd)

we have f l
i,h →Dl fi in Lp(Rd) when h→ 0. Let A, B be two subsets of Rd , we define

the Hausdorff distance of A and B by

π(A,B) := inf{δ > 0 : A ⊂ B(δ ) and B ⊂ A(δ )}.
Applying Lemma 1 and the argument similar to that in the proof of [29, Corollary

2.3], we can get the following result. The details are omitted.

COROLLARY 1. Let �f = ( f1, . . . , fm) ∈ Lp1(Rd)×·· ·×Lpm(Rd) with 1 � q < ∞ ,
1 < p1, . . . , pm < ∞ and 1/q = ∑m

i=1 1/pi −α/d . Then for all R > 0 , λ > 0 and
l = 1,2, . . . ,d , we have

|{x ∈ BR;π(R(�f )(x),R(�f )(x+hel)) > λ}| → 0 when h → 0.



MULTISUBLINEAR FRACTIONAL MAXIMAL FUNCTIONS 31

We now state several formulas for the derivative of the multisublinear maximal
fractional functions, which play a key role in the proof of Theorem 1.

LEMMA 2. Let �f = ( f1, f2, . . . , fm) ∈W 1,p1(Rd)×·· ·×W 1,pm(Rd) with 1 � q <
∞ , 1 < p1, . . . , pm < ∞ and 1/q = ∑m

i=1 1/pi −α/d . Then for any l = 1,2, . . . ,d and
a.e. x ∈ Rd , we have

DlMα(�f )(x) =
m

∑
i=1

|B(x,r)|α/d−m
(

∏
1� j 
=i�m

∫
B(x,r)

| f j(y)|dy
)

×
∫

B(x,r)
Dl(| fi|)(y)dy for all 0 < r ∈ R(�f )(x),

DlMα(�f )(x) =

⎧⎪⎨
⎪⎩

m

∑
i=1

Dl| fi|(x) ∏
1� j 
=i�m

| f j(x)|, if α = 0 and 0 ∈ R(�f )(x),

0, if 0 < α < md and 0 ∈ R(�f )(x).

Proof. We may assume without loss of generality that all fi � 0, since | fi| ∈
W 1,pi(Rd) if fi ∈ W 1,pi(Rd) . Let R > 0. Invoking Corollary 1, we can choose a
sequence {sk}∞

k=1 , sk > 0 and sk → 0 such that limk→∞ π(R(�f )(x),R(�f )(x+ skel)) =
0 for a.e. x ∈ BR . Then for any i = 1,2, . . . ,m and l = 1,2, . . . ,d we have

‖ f i,l
τ(sk)

− fi‖Lpi (Rd) → 0 as k → ∞,

‖ f l
i,sk −Dl fi‖Lpi(Rd) → 0 as k → ∞,

‖M( f i,l
τ(sk)

− fi)‖Lpi (Rd) → 0 as k → ∞,

‖M( f l
i,sk

−Dl fi)‖Lpi (Rd) → 0 as k → ∞,

‖(Mα(�f ))l
sk −DlMα (�f )‖Lq(Rd) → 0 as k → ∞.

Furthermore, there exists a subsequence {hk}∞
k=1 of {sk}∞

k=1 and a measurable set A1 ⊂
BR such that |BR\A1| = 0 and

(i) f i,l
τ(hk)

(x)→ fi(x) , f l
i,hk

(x)→Dl fi(x) , M( f i,l
τ(hk)

− fi)(x)→ 0, M( f l
i,hk

−Dl fi)(x)

→ 0 and (Mα(�f ))l
hk

(x) → DlMα(�f )(x) when k → ∞ for any x ∈ A1 , i = 1,2, . . . ,m
and l = 1, . . . ,d ;

(ii) limk→∞ π(R(�f )(x),R(�f )(x+hkel)) = 0 for any x ∈ A1 .
Let

A2 :=
∞⋂

k=1

{x ∈ Rd : Mα(�f )(x+hkel) � ux+hkel ,�f
(0)},

A3 := {x ∈ Rd : Mα(�f )(x) = ux,�f (0) if 0 ∈ R(�f )(x)},

A4 :=
∞⋂

k=1

{x ∈ Rd : Mα(�f )(x+hkel) = ux+hkel ,�f
(0) if 0 ∈ R(�f )(x+hkel)}.
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One can easily check that |BR\Ai| = 0 for any i = 2,3,4. Let x ∈ A1∩A2∩A3∩A4 be
a Lebesgue point of all fi and Dl fi and r ∈ R(�f )(x) , there exists radii rk ∈ R(�f )(x+
hkel) such that limk→∞ rk = r . We now complete the rest of proof by considering the
following two cases:

Case A (r > 0). Without loss of generality we may assume that all rk > 0. We
can write

DlMα(�f )(x) = lim
k→∞

1
hk

(Mα(�f )(x+hkel)−Mα(�f )(x))

� lim
k→∞

1
hk

(ux+hkel ,�f
(rk)−ux,�f (rk))

= lim
k→∞

1
hk

m

∑
j=1

|B(x,rk)|α/d−m
∫

B(x,rk)
( f j(y+hkel)− f j(y))dy

×
j−1

∏
μ=1

∫
B(x,rk)

fμ(y+hkel)dy
m

∏
ν= j+1

∫
B(x,rk)

fν (y)dy

=
m

∑
j=1

lim
k→∞

|B(x,rk)|α/d−m
∫

B(x,rk)
f l
j,hk

(y)dy

×
j−1

∏
μ=1

∫
B(x,rk)

f μ,l
τ(hk)

(y)dy
m

∏
ν= j+1

∫
B(x,rk)

fν (y)dy.

(9)

Since limk→∞ |B(x,rk)| = |Br| , f i,l
τ(hk)

χB(x,rk) → fiχB(x,r) and f l
j,hk

χB(x,rk) → Dl fiχB(x,r)

in L1(Rd) as k → ∞ . It follows that

DlMα (�f )(x) �
m

∑
i=1

|B(x,r)|α/d−m
(

∏
1� j 
=i�m

∫
B(x,r)

f j(y)dy
)∫

B(x,r)
Dl fi(y)dy.

On the other hand, we have

DlMα(�f )(x) = lim
k→∞

1
hk

(Mα (�f )(x+hkel)−Mα(�f )(x))

� lim
k→∞

1
hk

(ux+hkel ,�f
(r)−ux,�f (r))

= lim
k→∞

1
hk

m

∑
j=1

|B(x,r)|α/d−m
∫

B(x,r)
( f j(y+hkel)− f j(y))dy

×
j−1

∏
μ=1

∫
B(x,r)

fμ(y+hkel)dy
m

∏
ν= j+1

∫
B(x,r)

fν (y)dy

=
m

∑
j=1

|B(x,r)|α/d−m lim
k→∞

∫
B(x,r)

f l
j,hk

(y)dy

×
j−1

∏
μ=1

∫
B(x,r)

f μ,l
τ(hk)

(y)dy
m

∏
ν= j+1

∫
B(x,r)

fν (y)dy

=
m

∑
i=1

|B(x,r)|α/d−m
∫

B(x,r)
Dl fi(y)dy

(
∏

1� j 
=i�m

∫
B(x,r)

f j(y)dy
)
.
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Case B (r = 0). When 0 < α < md . Since Mα(�f )(x) = 0 and then ∏m
i=1 fi(y) = 0

for a.e. y ∈ Rd . Thus Mα(�f ) ≡ 0 and DlMα(�f )(x) = 0. We now consider the case
α = 0. Let us begin with estimating the lower bound of DlMα(�f )(x) . We can write

DlMα(�f )(x) = lim
k→∞

1
hk

(Mα (�f )(x+hkel)−Mα(�f )(x))

� lim
k→∞

1
hk

( m

∏
i=1

fi(x+hkel)−
m

∏
i=1

fi(x)
)

= lim
k→∞

1
hk

m

∑
j=1

( f j(x+hkel)− f j(x))
j−1

∏
i=1

fi(x+hkel)
m

∏
i= j+1

fi(x)

=
m

∑
i=1

Dl fi(x) ∏
1� j 
=i�m

f j(x).

(10)

Below we estimate the upper bound of DlMα(�f )(x) . If we have rk = 0 for infinitely
many k , then

DlMα(�f )(x) = lim
k→∞

1
hk

(Mα (�f )(x+hkel)−Mα(�f )(x))

= lim
k→∞

1
hk

( m

∏
i=1

fi(x+hkel)−
m

∏
i=1

fi(x)
)

= lim
k→∞

1
hk

m

∑
j=1

( f j(x+hkel)− f j(x))
j−1

∏
μ=1

fμ(x+hkel)
m

∏
ν= j+1

fν(x)

=
m

∑
i=1

Dl fi(x) ∏
1� j 
=i�m

f j(x).

If there exists k0 ∈ N such that rk > 0 when k � k0 . We get from (9) that

DlMα(�f )(x) �
m

∑
j=1

lim
k→∞

|B(x,rk)|−m
∫

B(x,rk)
f l
j,hk

(y)dy

×
j−1

∏
μ=1

∫
B(x,rk)

f μ,l
τ(hk)

(y)dy
m

∏
ν= j+1

∫
B(x,rk)

fν (y)dy.
(11)

Since

lim
k→∞

∣∣∣ 1
|B(x,rk)|

∫
B(x,rk)

f l
j,hk

(y)dy−Dl f j(x)
∣∣∣

= lim
k→∞

∣∣∣ 1
|B(x,rk)|

∫
B(x,rk)

( f l
j,hk

(y)−Dl f j(y))dy
∣∣∣

� lim
k→∞

M( f l
j,hk

−Dl f j)(x) = 0.

It follows that

lim
k→∞

1
|B(x,rk)|

∫
B(x,rk)

f l
j,hk

(y)dy = Dl f j(x). (12)
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By argument similar to those used to derive (11),

lim
k→∞

1
|B(x,rk)|

∫
B(x,rk)

f μ,l
τ(hk)

(y)dy = fμ(x). (13)

It follows from (11)–(13) that

DlMα(�f )(x) �
m

∑
i=1

Dl fi(x) ∏
1� j 
=i�m

f j(x),

which together with (10) yields

DlMα(�f )(x) =
m

∑
i=1

Dl fi(x) ∏
1� j 
=i�m

f j(x).

Since R was arbitrary and |BR\(A1∩A2∩A3∩A4)| = 0. This proves Lemma 2. �
We are now in the position of proving Theorem 1.

Proof of Theorem 1. Let p1, . . . , pm,q,α be given as in Theorem 1 and �f =
( f1, . . . , fm)∈W 1,p1(Rd)×·· ·×W 1,pm(Rd) . For i = 1,2, . . . ,m , let �f j = ( f1, j, . . . , fm, j)
and fi, j → fi in W 1,pi(Rd) when j → ∞ . We get from (6) that

‖Mα(�f j)−Mα(�f )‖Lq(Rd) �
m

∑
i=1

‖Mα(�Fi
j )‖Lq(Rd)

�
m

∑
i=1

‖ fi, j − fi‖Lpi (Rd)

i−1

∏
μ=1

‖ fμ‖Lpμ (Rd)

m

∏
ν=i+1

‖ fν, j‖Lpν (Rd),

where �Fi
j is given as in (6). It follows that

‖Mα(�f j)−Mα(�f )‖Lq(Rd) → 0 when j → ∞.

It suffices to show that

‖DlMα(�f j)−DlMα(�f )‖Lq(Rd) → 0 when j → ∞ (14)

for any l = 1,2, . . . ,d . We only prove (14) for l = d (since other cases are analogous).
We may assume without loss of generality that all fi � 0 and fi, j � 0.

For any i = 1,2, . . . ,m , let �f i = ( f1, . . . , fi−1,Dd fi, fi+1, . . . , fm) . Given ε > 0,
there exists R > 0 such that ∑m

i=1 ‖Mα(�f i)‖q,G1 < ε with G1 = Rd\BR . By absolute

continuity, there exists η > 0 such that ∑m
i=1 ‖Mα(�f i)‖q,A < ε whenever |A| < η and

A is a measurable subset of BR . As we already observed, for a.e. x ∈ Rd and any
1 � i � m , the function u

x,�f i is uniformly continuous on [0,∞) . Thus, for a.e. x ∈ Rd ,

the function ∑m
i=1 u

x,�f i is uniformly continuous on [0,∞) and we can find δx > 0 such

that ∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣ < |BR|−1/qε whenever |r1− r2| < δx.
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It follows that there exists δ > 0 such that

∣∣∣
{

x ∈ BR :
∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣
� |BR|−1/qε for some r1,r2 with |r1 − r2| < δ

}∣∣∣
=: |G2| < η

2 .

Applying Lemma 1, there exists j1 ∈ N such that

|{x ∈ BR;R(�f j)(x) � R(�f )(x)(δ )}| =: |Bj| < η
2

when j � j1.

Let �fi, j = ( f1, j, . . . , fi−1, j,Dd fi, j, fi+1, j, . . . , fm, j) and r ∈ R(�f j)(x) . We consider the
following two cases: (i) r > 0. We can write

|ux, �fi, j
(r)−u

x,�f i(r)|
=

∣∣∣|B(x,r)|α/d−m
(

∏
1�μ 
=i�m

∫
B(x,r)

fμ, j(y)dy
)∫

B(x,r)
Dd fi, j(y)dy

−|B(x,r)|α/d−m
(

∏
1�μ 
=i�m

∫
B(x,r)

fμ(y)dy
)∫

B(x,r)
Dd fi(y)dy

∣∣∣

�
i−1

∑
μ=1

Mα( �Fμ, j)(x)+
m

∑
ν=i+1

Mα( �Gν, j)(x)+Mα( �Hi, j)(x) =: Gi, j(x),

where

�Fμ, j = ( f1, . . . , fμ−1, fμ, j − fμ , fμ+1, j, . . . , fi−1, j,Dd fi, j, fi+1, j . . . , fm, j),

�Gν, j = ( f1, . . . , fi−1,Dd fi, fi+1, . . . , fν−1, fν, j − fν , fν+1, j, . . . , fm, j),

�Hi, j = ( f1, . . . , fi−1,Dd fi, j −Dd fi, fi+1, j, . . . , fm, j).

(ii) r = 0. If 0 < α < md , then |ux, �fi, j
(r)−u

x,�f i(r)| = 0. If α = 0, we have

|ux, �fi, j
(r)−u

x,�f i(r)|

�
i−1

∑
μ=1

( μ−1

∏
l1=1

fl1(x)
)
( fμ, j(x)− fμ(x))

( i−1

∏
l2=μ+1

fl2, j(x)
)
|Dd fi, j(x)|

( m

∏
l3=i+1

fl3, j(x)
)

+
m

∑
ν=i+1

( i−1

∏
l1=1

fl1(x)
)
|Dd fi(x)|

( ν−1

∏
l2=i+1

fl2(x)
)
| fν, j(x)− fν(x)|

( m

∏
l3=ν+1

fl3, j(x)
)

+
( i−1

∏
l1=1

fl1(x)
)|Dd fi, j(x)−Dd fi(x)|

( m

∏
l2=i+1

fl2, j(x)
)
.

From the above, the Lebesgue differential theorem and Lemma 2, we have that for a.e.
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x ∈ Rd ,

|DdMα(�f j)(x)−DdMα(�f )(x)|
=

∣∣∣ m

∑
i=1

ux, �fi, j
(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣
�

∣∣∣ m

∑
i=1

ux, �fi, j
(r1)−

m

∑
i=1

u
x,�f i(r1)

∣∣∣+
∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣
�

m

∑
i=1

Gi, j(x)+
∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣

(15)

for any r1 ∈ R(�f j)(x) and r2 ∈ R(�f )(x) . On can easily check that

lim
j→∞

‖Gi, j‖Lq(Rd) = 0

for any i = 1,2, . . . ,m . It follows that there exists j2 ∈ N such that ‖Gi, j‖Lq(Rd) < ε for
any i = 1,2, . . . ,m and j � j2 .

If x /∈ G1 ∪G2 ∪Bj we can choose r1 ∈ R(�f j)(x) and r2 ∈ R(�f )(x) such that
|r1− r2| < δ and ∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣ < |BR|−1/qε.

On the other hand, we have that for any i = 1,2, . . . ,m , r1 ∈ R(�f j)(x) and r2 ∈
R(�f )(x) ,

∣∣∣ m

∑
i=1

u
x,�f i(r1)−

m

∑
i=1

u
x,�f i(r2)

∣∣∣ �
m

∑
i=1

|u
x,�f i(r1)−u

x,�f i(r2)| � 2
m

∑
i=1

Mα(�f i)(x).

Note that |G2∪Bj| < η for j � j1 . Thus we get from (15) that

‖DdMα(�f j)−DdMα(�f )‖Lq(Rd)

�
∥∥∥ m

∑
i=1

Gi, j

∥∥∥
Lq(Rd)

+‖|BR|−1/qε‖q,BR +2
∥∥∥ m

∑
i=1

Mα(�f i)
∥∥∥

q,G1∪G2∪Bj
� Cε,

for any j � max{ j1, j2} , which gives

lim
j→∞

‖DdMα (�f j)−DdMα(�f )‖Lq(Rd) = 0.

This completes the proof of Theorem 1. �

3. Proof of Theorem 2

This section is devoted to proving Theorem 2. We now recall the definition of
approximate differentiability. Let f be a real-valued function defined on a set E ⊂
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Rd . We say that f is approximately differentiable at x0 ∈ E if there is a vector L =
(L1,L2, . . . ,Ld) ∈ Rd such that for any ε > 0 the set

Aε =
{

x ∈ Rd :
| f (x)− f (x0)−L(x− x0)|

|x− x0| < ε
}

has x0 as a density point. If this is the case, then x0 is a density point of E and L is
uniquely determined. The vector L is called the approximate differential of f at x0

and is denoted by ∇ f (x0) . Note that every function f ∈ W 1,1(Rd) is approximately
differentiable a.e. It follows from Theorem A that M f is approximately differentiable
a.e. under the assumption that f ∈ W 1,1(Rd) . However, it is unknown that whether
f ∈ W 1,1(Rd) implies the weak differentiability of M f when d � 2. For now, the
relationship of approximate differentiability and weak differentiability is also not clear.

To prove Theorem 2, we need the following lemma followed from [35], which
provides several characterizations of a.e. approximate differentiability of a function.

LEMMA 3. ([35]) Let f : E → R be measurable, E ⊂ Rd . Then the following
conditions are equivalent:

(i) f is approximately differentiable a.e.
(ii) For any ε > 0 , there is a closed set F ⊂ E and a locally Lipschitz function

g : Rd → R such that f = g on x ∈ F and |E\F| < ε .
(iii) For any ε > 0 , there is a closed set F ⊂ E and a function g ∈ C 1(Rd) such

that f = g on x ∈ F and |E\F| < ε .

LEMMA 4. Let 0 � α � md−1 and �f = ( f1, . . . , fm) with each f j ∈ L1(Rd) . For
ε > 0 , we define the truncated maximal operator Mε

α by

Mε
α(�f )(x) = sup

r�ε
|B(x,r)|α/d−m

m

∏
i=1

∫
B(x,r)

| fi(y)|dy.

Then Mε
α(�f ) is Lipschitz continuous for every ε > 0 .

Proof. For any r � ε and δ � 1, we have

( r
r+ |x− y|

)δ
�

( ε
ε + |x− y|

)δ
� 1− δ

|x− y|/ε
1+ |x− y|/ε

� 1− δ
ε
|x− y|. (16)

Fix x, y ∈ Rd and r � ε we have B(y,r) ⊂ B(x,r + |x− y|) . This together with (16)
yields that

Mε
α(�f )(x) � |B(x,r+ |x− y|)|α/d−m

m

∏
i=1

∫
B(x,r+|x−y|)

| fi(y)|dy

�
( r

r+ |x− y|
)md−α |B(y,r)|α/d−m

m

∏
i=1

∫
B(y,r)

| fi(y)|dy

�
(
1− md−α

ε
|x− y|

)
|B(y,r)|α/d−m

m

∏
i=1

∫
B(y,r)

| fi(y)|dy.
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whenever α � md−1. It follows that

Mε
α(�f )(y)−Mε

α(�f )(x) � md−α
ε

|x− y|Mε
α(�f )(y).

Similarly,

Mε
α(�f )(x)−Mε

α(�f )(y) � md−α
ε

|x− y|Mε
α(�f )(x).

Thus we have

|Mε
α(�f )(x)−Mε

α(�f )(y)| � md−α
ε

|x− y|(Mε
α(�f )(x)+Mε

α(�f )(y))

� 2
md−α

ε
|x− y|

( 1
2πd/2

dΓ(d/2)εd

)m−α/d m

∏
j=1

‖ f j‖L1(Rd)

� 2
md−α

εmd−α+1

(dΓ(d/2)
2πd/2

)m−α/d m

∏
j=1

‖ f j‖L1(Rd)|x− y|.

Then Lemma 4 is proved. �

We now turn to prove Theorem 2.

Proof of Theorem 2. Let Zj be the set of all Lebesgue points of f j and ux,�f (r)

as in Section 2. We set F = Rd\(⋂m
j=1 Zj) . Let x ∈ ⋂m

j=1 Zj such that Mα(�f )(x) >

ux,�f (0) . Since f j ∈ L1(Rd) and Mα(�f )(x) > 0, there exists a sequence of positive
bounded numbers {rk}k�1 such that

ux,�f (rk) → Mα(�f )(x) when k → ∞.

Hence there exists a subsequence {sk}k�1 ⊂ {rk}k�1 such that limk→∞ sk = r > 0. It
follows that

Mα(�f )(x) = ux,�f (r).

This yields that

Rd = F ∪{x ∈ Rd : Mα(�f )(x) = ux,�f (0)}∪E,

where E =
⋃∞

k=1 Ek and Ek = {x ∈ Rd : Mα(�f )(x) = M
1/k
α (�f )(x)} . Obviously, Ek ⊂

Ek+1 . By Lemma 3, we know that ∏m
j=1 | f j| is approximately differentiable a.e. Then

Mα(�f ) is approximately differentiable a.e. in the set {x ∈ Rd : Mα(�f )(x) = ux,�f (0)} .

By Lemma 4 we have that M
1/k
α (�f ) is Lipschitz continuous for any k � 1. It follows

that Mα(�f )χEk+1\Ek
is approximately differentiable a.e. for all k � 1. Using Lemma

3 again we have that Mα(�f )χE = Mα(�f )χEk +∑∞
k=1 Mα(�f )χEk+1\Ek

is approximately

differentiable a.e. Note that |F|= 0. Therefore, Mα(�f ) is approximately differentiable
a.e. �
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