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Abstract. We consider the generalized weighted Morrey spaces M
p(·),ϕ

ω (Ω) with variable ex-
ponent p(x) and a general function ϕ(x,r) defining the Morrey-type norm. In case of un-
bounded sets Ω ⊂ R

n we prove the boundedness of the Hardy-Littlewood maximal operator and
Calderón-Zygmund singular operators with standard kernel, in such spaces. We also prove the
boundedness of the commutators of maximal operator and Calderón-Zygmund singular operators
in the generalized weighted Morrey spaces with variable exponent

1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [53] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[22, 23, 25, 53]. Mizuhara [54] and Nakai [57] introduced generalized Morrey spaces.
Later, Guliyev [25] defined the generalized Morrey spaces Mp,ϕ with normalized norm.
Recently, Komori and Shirai [48] considered the weighted Morrey spaces Lp,κ

w and
studied the boundedness of some classical operators such as the Hardy-Littlewoodmax-
imal operator, the Calderón-Zygmund operator on these spaces. Guliyev [26] gave a
concept of generalized weighted Morrey space Mp,ϕ

w which could be viewed as exten-
sion of both generalized Morrey space Mp,ϕ and weighted Morrey space Lp,κ

w . In [26]
the boundedness of the classical operators and its commutators in spaces Mp,ϕ

w also
was studied, see also [33, 42].

As it is known, last two decades there is an increasing interest to the study of vari-
able exponent spaces and operators with variable parameters in such spaces, we refer
for instance to the surveying papers [20, 44, 47, 60], on the progress in this field, includ-
ing topics of Harmonic Analysis and Operator Theory, see also references therein. For
mapping properties of maximal functions and singular integrals on Lebesgue spaces
with variable exponent we refer to [13, 14, 15, 17, 18, 19, 46, 50].

Variable exponent Morrey spaces L p(·),λ (·)(Ω) , were introduced and studied in
[3] and [55] in the Euclidean setting and in [45] in the setting of metric measure spaces,
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in case of bounded sets. The boundedness of the maximal operator in variable exponent
Morrey spaces L p(·),λ (·)(Ω) under the log-condition on p(·) , λ (·) was proved in [3].
In [56] the maximal operator was considered in a somewhat more general space, but
under more restrictive conditions on p(x) . P. Hästö in [35] used his new “local-to-
global” approach to extend the result of [3] on the maximal operator to the case of the
whole space R

n . The boundedness of the maximal operator and the singular integral
operator in variable exponent Morrey spaces L p(·),λ (·) in the general setting of metric
measure spaces was proved in [45].

Generalized Morrey spaces of such a kind in the case of constant p were studied
in [6], [51], [54], [57]. In the case of bounded sets the boundedness of the maximal op-
erator, singular integral operators and the potential operator in generalized variable ex-
ponent Morrey type spaces was proved in [29], [30], [31] and in the case of unbounded
sets in [32], see also [39, 40, 58, 62]. Also, in the case of bounded sets the bounded-
ness of these operators in generalized variable exponent weighted Morrey spaces for
the power weights was proved in [37] and [38].

In the case of constant p and λ , the results on the boundedness of potential op-
erators and classical Calderón-Zygmund singular operators go back to [1] and [59],
respectively, while the boundedness of the maximal operator in the Euclidean setting
was proved in [16]; for further results in the case of constant p and λ (see, for instance,
[5]–[7]).

We introduce the generalized variable exponentweighted Morrey spaces M
p(·),ϕ

ω (Ω)
over an open set Ω ⊆ R

n . Within the frameworks of the spaces M
p(·),ϕ

ω (Ω) , over un-
bounded sets Ω ⊆ R

n we consider the Hardy-Littlewood maximal operator

M f (x) = sup
r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)|dy

and Calderón-Zygmund type singular operator

T f (x) =
∫

Ω
K(x,y) f (y)dy,

where K(x,y) is a “standard singular kernel”, that is, a continuous function defined on
{(x,y) ∈ Ω×Ω : x �= y} and satisfying the estimates

|K(x,y)| � C|x− y|−n for all x �= y,

|K(x,y)−K(x,z)| � C
|y− z|σ

|x− y|n+σ , σ > 0, if |x− y|> 2|y− z|,

|K(x,y)−K(ξ ,y)|� C
|x− ξ |σ
|x− y|n+σ , σ > 0, if |x− y|> 2|x− ξ |.

Let
T ∗ f (x) = sup

ε>0
|Tε f (x)|

be the maximal singular operator, where Tε f (x) is the usual truncation

Tε f (x) =
∫
{y∈Ω:|x−y|�ε}

K(x,y) f (y)dy.
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We find the condition on the Morrey function ϕ(x,r) for the boundedness of the
maximal operator M and the singular integral operators T in generalized weighted

Morrey space M
p(·),ϕ

ω (Ω) with variable p(x) under the log-condition on p(·) .
The paper is organized as follows. In Section 2 we provide necessary preliminaries

on variable exponent weighted Lebesgue and generalized weighted Morrey spaces. In
Section 3 we deal with the maximal operator and its commutator. In Section 4 we treat
Calderón-Zygmund singular operators and its commutators.

The main results are given in Theorems 3.4, 3.5, 3.8, 3.9, 4.2, 4.3, 4.5, 4.6. We
emphasize that the results we obtain for generalized weighted Morrey spaces are new
even in the case when p(x) is constant, because we do not impose any monotonicity
type condition on ϕ(x,r).

We use the following notation: R
n is the n -dimensional Euclidean space, Ω ⊂R

n

is an open set, χE(x) is the characteristic function of a set E ⊆ R
n , B(x,r) = {y ∈

R
n : |x− y| < r}), B̃(x,r) = B(x,r)∩Ω , by c ,C,c1,c2 etc, we denote various absolute

positive constants, which may have different values even in the same line. By A � B we
mean that A �CB with some positive constant C independent of appropriate quantities.
If A � B and B � A , we write A ≈ B and say that A and B are equivalent.

2. Preliminaries on variable exponent weighted Lebesgue and generalized
weighted Morrey spaces

We refer to the book [18] for variable exponent Lebesgue spaces but give some
basic definitions and facts. Let p(·) be a measurable function on Ω with values in
(1,∞) . An open set Ω which may be unbounded throughout the whole paper. We
mainly suppose that

1 < p− � p(x) � p+ < ∞, (2.1)

where p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x) . By Lp(·)(Ω) we denote the space of all

measurable functions f (x) on Ω such that

Ip(·)( f ) =
∫

Ω
| f (x)|p(x)dx < ∞.

Equipped with the norm

‖ f‖p(·) = inf

{
η > 0 : Ip(·)

(
f
η

)
� 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent.
The space Lp(·)(Ω) coincides with the space{

f (x) :

∣∣∣∣∫Ω
f (y)g(y)dy

∣∣∣∣ < ∞ for all g ∈ Lp′(·)(Ω)
}

(2.2)
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up to the equivalence of the norms

‖ f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp′(·)�1

∣∣∣∣∫Ω
f (y)g(y)dy

∣∣∣∣ (2.3)

see [41, Proposition 2.2], see also [49, Theorem 2.3], or [61, Theorem 3.5].
For the basics on variable exponent Lebesgue spaces we refer to [63], [49].

P(Ω) is the set of bounded measurable functions p : Ω → [1,∞) ;
P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)|� A
− ln |x− y| , |x− y|� 1

2
x,y ∈ Ω, (2.4)

where A = A(p) > 0 does not depend on x,y ;
A log(Ω) is the set of bounded exponents p : Ω → R

n satisfying the condition (2.4);
P

log(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− � p+ < ∞ ;
for Ω which may be unbounded, by P∞(Ω) , P log

∞ (Ω) , P
log
∞ (Ω) , A log

∞ (Ω) we denote
the subsets of the above sets of exponents satisfying the decay condition (when Ω is
unbounded)

|p(x)− p(∞)| � A∞

ln(2+ |x|) , x ∈ R
n. (2.5)

where p∞ = lim
x→∞

p(x) > 1.

We will also make use of the estimate provided by the following lemma ( see [18],
Corollary 4.5.9).

‖χB̃(x,r)(·)‖p(·) � Crθp(x,r), x ∈ Ω, p ∈ P
log
∞ (Ω), (2.6)

where θp(x,r) =

{
n

p(x) , r � 1,
n

p(∞) , r � 1
.

By ω we always denote a weight, i.e. a positive, locally integrable function with

domain Ω . The weighted Lebesgue space Lp(·)
ω (Ω) is defined as the set of all measur-

able functions for which
‖ f‖

Lp(·)
ω (Ω)

= ‖ fω‖Lp(·)(Ω).

Let us define the class Ap(·)(Ω) (see [20], [50]) to consist of those weights ω for
which

sup
B

|B|−1‖ω‖Lp(·)(B̃(x,r))‖ω−1‖Lp′(·)(B̃(x,r)) < ∞.

THEOREM 2.1. ([36, Theorem 1.1]) Let Ω ⊂ R
n be an open unbounded set and

p ∈ P
log
∞ (Ω) . Then M : Lp(·)

ω (Ω) → Lp(·)
ω (Ω) if and only if ω ∈ Ap(·)(Ω) .

Singular operators within the framework of the spaces with variable exponents
were studied in [19]. From Theorem 4.8 and Remark 4.6 of [19] and the known results
on the boundedness of the maximal operator, we have the following statement, which
is formulated below for our goals for a bounded Ω , but valid for an arbitrary open set
Ω under the corresponding condition in p(x) at infinity.
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THEOREM 2.2. ([19, Theorem 4.8]) Let Ω ⊂ R
n be a unbounded open set and

p ∈ P
log(Ω) . Then the singular integral operator T is bounded in Lp(·)(Ω) .

Let λ (x) be a measurable function on Ω with values in [0,n] . The variable Morrey

space L p(·),λ (·)(Ω) and variable weighted Morrey space L
p(·),λ (·)

ω (Ω) are defined as
the set of integrable functions f on Ω with the finite norms

‖ f‖L p(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
− λ(x)

p(x) ‖ f χB̃(x,t)‖Lp(·)(Ω),

‖ f‖
L

p(·),λ(·)
ω (Ω)

= sup
x∈Ω, t>0

t
− λ(x)

p(x) ‖ f χB̃(x,t)‖L
p(·)
ω (Ω)

,

respectively.
Let M� be the sharp maximal function defined by

M� f (x) = sup
r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)− fB̃(x,r)|dy,

where fB̃(x,t)(x) = |B̃(x,t)|−1 ∫
B̃(x,t) f (y)dy .

DEFINITION 2.1. We define the BMO(Ω) space as the set of all locally integrable
functions f with finite norm

‖ f‖BMO = sup
x∈Ω

M� f (x) = sup
x∈Ω, r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)− fB̃(x,r)|dy.

DEFINITION 2.2. We define the BMOp(·),ω(Ω) space as the set of all locally in-
tegrable functions f with finite norm

‖ f‖BMOp(·),ω = sup
x∈Ω, r>0

‖( f (·)− fB̃(x,r))χB̃(x,r)‖Lp(·)
ω (Ω)

‖χB̃(x,r)‖Lp(·)
ω (Ω)

.

THEOREM 2.3. ([41, Theorem 4.4]) Let Ω ⊂ R
n be an open unbounded set,

p ∈ P
log
∞ (Ω) and ω be a Lebesgue measurable function. If ω ∈ Ap(·)(Ω) , then the

norms ‖ · ‖BMOp(·),ω and ‖ · ‖BMO are mutually equivalent.

Everywhere in the sequel the functions ϕ(x,r), ϕ1(x,r) and ϕ2(x,r) used in the
body of the paper, are non-negative measurable functions on Ω× (0,∞) . We find it
convenient to define the generalized weighted Morrey spaces in the form as follows.

DEFINITION 2.3. Let 1 � p(x) < ∞ , x ∈ Ω . The variable exponent generalized
Morrey space M p(·),ϕ(Ω) and variable exponent generalized weighted Morrey space

M
p(·),ϕ(·)

ω (Ω) are defined as the set of integrable functions f on Ω with the finite
norms

‖ f‖M p(·),ϕ = sup
x∈Ω,r>0

1

ϕ(x,r)rθp(x,r) ‖ f‖Lp(·)(B̃(x,r)),
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‖ f‖
M

p(·),ϕ
ω

= sup
x∈Ω,r>0

1
ϕ(x,r)‖ω‖Lp(·)(B̃(x,r))

‖ f‖
L

p(·)
ω (B̃(x,r))

,

respectively.

According to this definition, we recover the space L
p(·),λ (·)

ω (Ω) under the choice

ϕ(x,r) = r
θp(x,r)− λ(x)

p(x) :

L
p(·),λ (·)

ω (Ω) = M
p(·),ϕ(·)

ω (Ω)

∣∣∣∣∣
ϕ(x,r)=r

θp(x,r)− λ(x)
p(x)

.

3. The maximal operator and its commutators in M
p(·),ϕ

ω (Ω)

Let L∞
v (R+) be the weighted L∞ -space with the norm

‖g‖L∞
v (R+) = ess sup

t>0
v(t)g(t).

In the sequel M(R+), M+(R+) and M+(R+;↑) stand for the set of Lebesgue-
measurable functions on R+ , and its subspaces of nonnegative and nonnegative non-
decreasing functions, respectively. We also denote

A =
{

ϕ ∈ M+(R+;↑) : lim
t→0+

ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on R+ . We define the supremal
operator Su by

(Sug)(t) := ‖ug‖Lı(0,t), t ∈ (0,∞).

The following theorem was proved in [5].

THEOREM 3.1. Suppose that v1 and v2 are nonnegative measurable functions
such that 0 < ‖v1‖L∞(0,t) < ∞ for every t > 0 . Let u be a continuous nonnegative
function on R . Then the operator Su is bounded from L∞

v1
(R+) to L∞

v2
(R+) on the

cone A if and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(0,·)
)∥∥∥

L∞(R+)
< ∞.

We will use the following results on the boundedness of the weighted Hardy oper-
ator

Hwg(t) :=
∫ t

0
g(s)w(s)ds, H∗

wg(t) :=
∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [27, 28].
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THEOREM 3.2. Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗
wg(t) � C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ∞

t

w(s)ds
ess sup
s<τ<∞

v1(τ)
< ∞.

THEOREM 3.3. Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) � C sup
t>0

v1(t)g(t) (3.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ t

0

w(s)ds
sup0<τ<s v1(τ)

< ∞.

Moreover, the value C = B is the best constant for (3.1).

The following weighted local estimates are valid.

THEOREM 3.4. Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) and ω ∈

Ap(·)(Ω) . Then

‖M f‖
L

p(·)
ω (B̃(x,t))

� C‖ω‖Lp(·)(B̃(x,t)) sup
r�t

‖ f‖
L

p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

, (3.2)

for every f ∈ Lp(·)
ω (Ω) , where C does not depend on f ,x ∈ Ω and t .

Proof. We represent f as

f = f1 + f2, f1(y) = f (y)χB̃(x,2t)(y), f2(y) = f (y)χΩ\B̃(x,2t)(y), t > 0, (3.3)

and have
‖M f‖

L
p(·)
ω (B̃(x,t))

� ‖M f1‖L
p(·)
ω (B̃(x,t))

+‖M f2‖L
p(·)
ω (B̃(x,t))

.

By Theorem 2.1 we obtain

‖M f1‖Lp(·)
ω (B̃(x,t))

� ‖M f1‖Lp(·)
ω (Ω)

� C‖ f1‖Lp(·)
ω (Ω)

= C‖ f‖
Lp(·)

ω (B̃(x,2t))
, (3.4)

where C does not depend on f . From (3.4) we obtain

‖M f1‖L
p(·)
ω (B̃(x,t))

� C‖ω‖Lp(·)(B̃(x,t)) sup
r�t

‖ f‖
L

p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

. (3.5)
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Let z be an arbitrary point in B(x,r) . If B(z,r)∩ �
B(x,2t) �= /0 , then r > t . Indeed,

if y ∈ B(z,r)∩ �
B(x,2t) , then r > |y− z|� |x− z|− |x− y|> 2t− t = t .

On the other hand, B(z,r)∩ �
B(x,2t)⊂B(x,2r) . Indeed, for y∈B(z,r)∩ �

B(x,2t) ,
then we get |x− y|� |y− z|+ |x− z|< t + r < 2r .

M f2(z) = sup
r>0

|B(z,r)|−1
∫

B̃(z,r)
| f2(y)|dy

� C sup
r�2t

|B(x,2r)|−1
∫

�B̃(x,2t)∩B̃(z,r)
| f (y)|dy

� C sup
r�t

|B(x,r)|−1
∫

B̃(x,r)
| f (y)|dy

� C sup
r�t

|B(x,r)|−1‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω−1‖Lp′(·)(B̃(x,r))

� C sup
r�t

‖ f‖
L

p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

.

Thus, the function M f2(z) , with fixed x and t , is dominated by the expression not
depending on z. Then

‖M f2‖Lp(·)
ω (B̃(x,t))

� C‖ω‖Lp(·)(B̃(x,t)) sup
r�t

‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω‖−1

Lp(·)(B̃(x,r))
. (3.6)

We then obtain (3.2) from (3.5) and (3.6). �

THEOREM 3.5. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , ω ∈Ap(·)(Ω)

and the function ϕ1(x,r) and ϕ2(x,r) satisfy the condition

sup
t>r

ess inf
t<s<∞

ϕ1(x,s)‖ω‖Lp(·)(B̃(x,s))

‖ω‖Lp(·)(B̃(x,t))
� Cϕ2(x,r), (3.7)

where C does not depend on x ∈ Ω and r . Then the operator M is bounded from the

space M
p(·),ϕ1

ω (Ω) to the space M
p(·),ϕ2

ω (Ω) .

Proof. Let f ∈ M
p(·),ϕ1

ω (Ω) . By Theorems 3.1 and 3.4 we obtain

‖M f‖
M

p(·),ϕ2
ω (Ω)

� C sup
x∈Ω, t>0

1
ϕ2(x,t)

sup
r�t

‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω‖−1

Lp(·)(B̃(x,r))

� C sup
x∈Ω, t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
L

p(·)
ω (B̃(x,t))

t−n‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
sn−1 ds

= C‖ f‖
M

p(·),ϕ1
ω (Ω)

by (3.7), which completes the proof. �
In the case ω = 1 we get
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COROLLARY 3.1. ([32, Theorem 3.5]) Let Ω ⊂ R
n be an open unbounded set,

p ∈ P
log
∞ (Ω) and the functions ϕ1(x,r) and ϕ2(x,r) satisfy the condition

sup
t>r

ess inf
t<s<∞

ϕ1(x,s)sθp(x,s)

tθp(x,t)
� Cϕ2(x,r), (3.8)

where C does not depend on x ∈ Ω and r . Then the operator M is bounded from the
space M p(·),ϕ1(Ω) to the space M p(·),ϕ2(Ω) .

The commutator generated by M and a suitable function b is formally defined by

[M,b] f = M(b f )−bM( f ).

Given a measurable function b the maximal commutator is defined by

Mb( f )(x) := sup
r>0

|B(x,r)|−1
∫

B(x,r)
|b(x)−b(y)|| f (y)|dy

for all x ∈ R
n .

This operator plays an important role in the study of commutators of singular inte-
gral operators with BMO symbols (see, for instance [24], [52]). The maximal operator
Mb has been studied intensively and there exist plenty of results about it. Pu Zhang and
Jianglong Wu [64] proved the following statement.

THEOREM 3.6. [64, Theorem 3.1] Let b ∈ Lloc
1 (Rn) and p ∈ P

log
∞ (Rn) , then the

operator Mb is bounded from Lp(·)(Rn) to itself if and only if b ∈ BMO(Rn) .

Operators Mb and [M,b] essentially differ from each other. For example, Mb is a
positive and sublinear operator, but [M,b] is neither positive nor sublinear. However, if
b satisfies some additional conditions, then operator Mb controls [M,b] .

LEMMA 3.1. ([2, Lemma 3.1]) Let b be any non-negative locally integrable func-
tion. Then

|[M,b] f (x)| � Mb( f )(x), x ∈ R
n

holds for all f ∈ Lloc
1 (Rn) .

THEOREM 3.7. ([2, Theorem 1.13]) Let b ∈ BMO(Rn) . Suppose that X is a
Banach space of measurable functions defined on R

n . Assume that M is bounded on
X . Then the operator Mb is bounded on X , and the inequality

‖Mb f‖X � C‖b‖∗‖ f‖X

holds with constant C independent of f .

COROLLARY 3.2. Let b ∈ BMO(Ω) , p ∈ P
log
∞ (Ω) and ω ∈ Ap(·)(Ω) , then the

operator Mb is bounded on Lp(·)
ω (Rn) .
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Before proving the main theorems, we need the following lemma.

LEMMA 3.2. ([34, Lemma 2]) Let b ∈ BMO(Ω) . Then there is a constant C > 0
such that ∣∣∣bB̃(x,r) −bB̃(x,t)

∣∣∣ � C‖b‖∗ ln
t
r

for 0 < 2r < t,

where C is independent of b , x , r, and t .

The following weighted local estimates are valid.

THEOREM 3.8. Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) and ω ∈

Ap(·)(Ω) , b ∈ BMO(Ω) . Then

‖Mb f‖
Lp(·)

ω (B̃(x,t))
� C‖b‖∗‖ω‖Lp(·)(B̃(x,t)) sup

r�t

(
1+ ln

r
t

)
‖ f‖

Lp(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

(3.9)
for every f ∈ Lp(·)

ω (Ω) , where C does not depend on f ,x ∈ Ω and t .

Proof. We represent function f as in (3.3) and have

‖Mb f‖
L

p(·)
ω (B̃(x,t))

� ‖Mb f1‖L
p(·)
ω (B̃(x,t))

+‖Mb f2‖L
p(·)
ω (B̃(x,t))

.

By Corollary 3.2 we obtain

‖Mb f1‖Lp(·)
ω (B̃(x,t))

� ‖Mb f1‖Lp(·)
ω (Ω)

� C‖b‖∗‖ f1‖Lp(·)
ω (Ω)

= C‖b‖∗‖ f‖
Lp(·)

ω (B̃(x,2t))
,

(3.10)
where C does not depend on f . From (3.10) we obtain (see also (3.4))

‖Mb f1‖Lp(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lp(·)(B̃(x,t)) sup
r�t

‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω‖−1

Lp(·)(B̃(x,r))
, (3.11)

easily obtained from the fact that ‖ f‖
Lp(·)

ω (B̃(x,2t))
is non-decreasing in t , so that

‖ f‖
Lp(·)

ω (B̃(x,2t))
on the right-hand side of (3.10) is dominated by the right-hand side

of (3.11).
For z ∈ B̃(x, t) we get

Mb f2(z) = sup
r>0

|B(z,r)|−1
∫

B̃(z,r)
|b(z)−b(y)|| f2(y)|dy

� C sup
r�2t

|B(x,2r)|−1
∫

�B̃(x,2t)∩B̃(z,r)
|b(z)−b(y)|| f (y)|dy

� C sup
r�t

|B(x,r)|−1
∫

B̃(x,r)
|b(z)−b(y)|| f (y)|dy

� sup
r�t

|B(x,r)|−1
∫

B̃(x,r)
|b(y)−bB̃(x,r)|| f (y)|dy

+ sup
r�t

|B(x,r)|−1
∫

B̃(x,r)
|b(z)−bB̃(x,r)|| f (y)|dy = I1 + I2.
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By Hölder inequality and Theorem 2.3 we obtain

I1 = sup
r�t

|B(x,r)|−1
∫

B̃(x,r)
|b(y)−bB̃(x,r)|| f (y)|dy

� C sup
r�t

|B(x,r)|−1‖ f‖
L

p(·)
ω (B̃(x,r))

∥∥b(·)−bB̃(x,r)

∥∥
Lp′(·)

ω−1 (B̃(x,r))

� C‖b‖∗ sup
r�t

|B(x,r)|−1‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω−1‖Lp′(·)(B̃(x,r))

� C‖b‖∗ sup
r�t

‖ f‖
Lp(·)

ω (B̃(x,r))
‖ω‖−1

Lp(·)(B̃(x,r))
.

To estimate I2 , by Lemma 3.2 we get

I2 = sup
r�t

|B(x,r)|−1|b(z)−bB̃(x,r)|
∫

B̃(x,r)
| f (y)|dy

� sup
r�t

|B(x,r)|−1|b(z)−bB̃(x,t)|
∫

B̃(x,r)
| f (y)|dy

+ sup
r�t

|B(x,r)|−1|bB̃(x,t) −bB̃(x,r)|
∫

B̃(x,r)
| f (y)|dy

� CMbχB(x,t)(z)sup
r�t

‖ f‖
L

p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

+C‖b‖∗ sup
r�t

ln
r
t
‖ f‖

Lp(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

.

Then Corollary 3.2 we have

‖Mb f2‖L
p(·)
ω (B̃(x,t))

� ‖I1‖L
p(·)
ω (B̃(x,t))

+‖I2‖L
p(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lp(·)(B̃(x,t)) sup
r�t

(
1+ ln

r
t

)
‖ f‖

Lp(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

+C‖MbχB(x,t)‖L
p(·)
ω (B̃(x,t))

sup
r�t

(
1+ ln

r
t

)
‖ f‖

L
p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

� C‖b‖∗‖ω‖Lp(·)(B̃(x,t)) sup
r�t

(
1+ ln

r
t

)
‖ f‖

L
p(·)
ω (B̃(x,r))

‖ω‖−1
Lp(·)(B̃(x,r))

.

(3.12)

Then from (3.11) and (3.12) we obtain (3.9). �

THEOREM 3.9. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , ω ∈Ap(·)(Ω) ,

b ∈ BMO(Ω) and the function ϕ1(x,r) and ϕ2(x,r) satisfy the condition

sup
t>r

(
1+ ln

t
r

) ess inf
t<s<∞

ϕ1(x,s)‖ω‖Lp(·)(B̃(x,s))

‖ω‖Lp(·)(B̃(x,t))
� Cϕ2(x,r), (3.13)

where C does not depend on x ∈ Ω and t . Then the operator Mb is bounded from the

space M
p(·),ϕ1

ω (Ω) to the space M
p(·),ϕ2

ω (Ω) .
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Proof. Let f ∈ M
p(·),ϕ1

ω (Ω) . By (3.13), Theorems 3.2 and 3.8 we obtain

‖Mb f‖
M

p(·),ϕ2
ω (Ω)

� C‖b‖∗ sup
x∈Ω, t>0

‖ω‖Lp(·)(B̃(x,t))

ϕ2(x,t)‖ω‖Lp(·)(B̃(x,t))
sup
t>r

(
1+ ln

t
r

)
‖ f‖

Lp(·)
ω (B̃(x,t))

‖ω‖−1
Lp(·)(B̃(x,t))

� C‖b‖∗ sup
x∈Ω, t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
L

p(·)
ω (B̃(x,t))

=C‖b‖∗‖ f‖
M

p(·),ϕ1
ω (Ω)

which completes the proof. �

4. Singular integral operators and its commutators in M
p(·),ϕ

ω (Ω)

It is well-known that the commutator is an important integral operator and it
plays a key role in harmonic analysis. In 1965, Calderón [8, 9] studied a kind of
commutators, appearing in Cauchy integral problems of Lipschitz curve. Let K be a
Calderón-Zygmund singular integral operator and b ∈ BMO(Rn) . A well known result
of Coifman, Rochberg and Weiss [10] states that the commutator operator [b,K] f =
K(b f )− bK f is bounded on Lp(Rn) for 1 < p < ∞ . The commutator of Calderón-
Zygmund operators plays an important role in studying the regularity of solutions of
elliptic partial differential equations of second order (see, for example, [11], [12], [21],
[22], [23]).

The following statement holds (see [19, Lemma 3.5]):

PROPOSITION A. Let Ω ⊂ R
n be unbounded and p ∈ P

log
∞ (Ω) . Then for all

f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω) there holds∣∣∣∣∫Ω
f (y)g(y)dy

∣∣∣∣ � C
∫

Ω
M� f (y)Mg(y)dy

with a constant C > 0 not depending on f .

LEMMA 4.3. Let Ω ⊂ R
n be unbounded and p ∈ P

log
∞ (Ω) , ω ∈ Ap(·)(Ω) . Then

‖ fω‖Lp(·)(Ω) � C‖ωM� f‖Lp(·)(Ω)

with a constant C > 0 not depending on f .

Proof. By (2.3) we have

‖ fω‖Lp(·)(Ω) � C sup
‖g‖

Lp′(·)(Ω)
�1

∣∣∣∣∫Ω
f (y)g(y)ω(y)dy

∣∣∣∣ .
According to Proposition A,

‖ fω‖Lp(·)(Ω) � C sup
‖g‖

Lp′(·)(Ω)
�1

∫
Ω

M� f (y)M(gω)(y)dy.
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By the Hölder inequality and Theorem 2.1, we derive

‖ fω‖Lp(·)(Ω) � C sup
‖g‖

Lp′(·)(Ω)
�1

‖ωM� f‖Lp(·)(Ω)‖ω−1M(gω)‖Lp′(·)(Ω)

� C sup
‖g‖

Lp′(·)(Ω)
�1

‖ωM� f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω) � C‖ωM� f‖Lp(·)(Ω). �

PROPOSITION B. ([4, Theorem 2.1]) Let T be a Calderón-Zygmund operator.
Then for arbitrary s, 0 < s < 1 , there exists a constant Cs > 0 such that

[(|T f |s)�] 1
s (x) � CsM f (x)

for all f ∈C∞
0 (Rn) and x ∈ R

n .

THEOREM 4.1. Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) and ω ∈

Ap(·)(Ω) . Then the operators T and T ∗ are bounded in the space Lp(·)
ω (Ω) .

Proof. In [46, Theorem 4.2.] was proved that infinitely differentiable functions

is dense in Lp(·)
ω (Ω) with any positive, locally integrable function ω . Then by the

Proposition B, Lemma 4.3 and Theorem 2.1, we derive the operator T is bounded in

the space Lp(·)
ω (Ω) .

The boundedness of the operator T ∗ on Lp(·)
ω (Ω) follows from the known estimate

T ∗ f (x) � M(T f )(x)+M f (x),

from Theorem 2.1 and the boundedness of the operator T on Lp(·)
ω (Ω) . �

The following weighted local estimates are valid.

THEOREM 4.2. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , ω ∈Ap(·)(Ω)

and f ∈ Lp(·)
ω (Ω) . Then

‖T f‖
L

p(·)
ω (B̃(x,t))

� C‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

, (4.1)

where C does not depend on f , x ∈ Ω and t .

Proof. We represent function f as in (3.3) and have

‖T f‖
Lp(·)

ω (B̃(x,t))
� ‖T f1‖Lp(·)

ω (B̃(x,t))
+‖T f2‖Lp(·)

ω (B̃(x,t))
.

By the Theorem 4.1 we obtain

‖T f1‖L
p(·)
ω (B̃(x,t))

� ‖T f1‖L
p(·)
ω (Ω)

� C‖ f1‖L
p(·)
ω (Ω)

,
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so that
‖T f1‖Lp(·)

ω (B̃(x,t))
� C‖ f‖

Lp(·)
ω (B̃(x,2t))

.

Taking into account the inequality

‖ f‖
Lp(·)

ω (B̃(x,t))
� C‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

,

we get

‖T f1‖L
p(·)
ω (B̃(x,t))

� C‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

. (4.2)

To estimate ‖T f2‖L
p(·)
ω (B̃(x,t))

, we observe that

|T f2(z)| � C
∫

Ω\B(x,2t)

| f (y)|dy
|y− z|n ,

where z ∈ B(x, t) and the inequalities |x−z|� t , |z−y|� 2t imply 1
2 |z−y|� |x−y|�

3
2 |z− y| , and therefore

|T f2(z)| � C
∫

Ω\B̃(x,2t)
|x− y|−n| f (y)|dy,

To estimate T f2 , we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n| f (y)|dy

� Ct−n‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
sn−1‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

. (4.3)

To this end, we choose δ > 0 and proceed as follows∫
Ω\B̃(x,t)

|x− y|−n| f (y)|dy � δ
∫

Ω\B̃(x,t)
|x− y|−n+δ | f (y)|dy

∫ ∞

|x−y|
s−δ−1ds

� Ct−n
∫ ∞

t

ds
s

∫
{y∈Ω:2t�|x−y|�s}

| f (y)|dy

� Ct−n
∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω−1‖Lp′(·)(B̃(x,s))
ds
s

� Ct−n
∫ ∞

t
sn−1‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds. (4.4)

Hence by inequality (4.4), we get

‖T f2‖L
p(·)
ω (B̃(x,t))

� C‖χB̃(x,t)‖L
p(·)
ω (Ω)

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

= C‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

. (4.5)

From (4.2) and (4.5) we arrive at (4.1). �
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THEOREM 4.3. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , ω ∈Ap(·)(Ω)

and ϕ1(x, t) and ϕ2(x,r) fulfill condition

∫ ∞

t

ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lp(·)(B̃(x,r))

‖ω‖Lp(·)(B̃(x,s))

ds
s

� Cϕ2(x,t), (4.6)

where C does not depend on x ∈ Ω and t . Then the singular integral operators T and

T ∗ are bounded from the space M
p(·),ϕ1

ω (Ω) to the space M
p(·),ϕ2

ω (Ω) .

Proof. Let f ∈ M
p(·),ϕ1

ω (Ω) . As usual, when estimating the norm

‖T f‖
M

p(·),ϕ2
ω (Ω)

= sup
x∈Ω, t>0

1
ϕ2(x,t)‖ω‖Lp(·)(B̃(x,t))

‖T f χB̃(x,t)‖L
p(·)
ω (Ω)

. (4.7)

We estimate ‖T f χB̃(x,t)‖Lp(·)
ω (Ω)

in (4.7) by means of Theorem 4.2 and obtain

‖T f‖
M

p(·),ϕ2
ω (Ω)

� C sup
x∈Ω, t>0

‖ω‖Lp(·)(B̃(x,t))

ϕ2(x,t)‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t
s−1‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds

� C sup
x∈Ω, t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
Lp(·)

ω (B̃(x,t))
= C‖ f‖

M
p(·),ϕ1

ω (Ω)
.

It remains to make use of condition (4.6). �

LEMMA 4.4. ([21, Lemma 1]) Let 1 < s < ∞ , b ∈ BMO(Rn) , then there exists
C > 0 such that for all x ∈ R

n , the following inequality holds

M�([b,T ] f )(x) � C‖b‖∗
(
(M|T f |s) 1

s (x)+ (M| f |s) 1
s (x)

)
.

THEOREM 4.4. Let Ω⊂R
n be an open unbounded set, b∈BMO(Ω) , p∈P

log
∞ (Ω)

and ω ∈ Ap(·)(Ω) . Then the commutator operator [b,T ] is bounded on the space

Lp(·)
ω (Ω) .

Proof. By Lemma 4.4, Lemma 4.3, Theorem 2.1 and Theorem 4.1, we derive the

operator [b,T ] is bounded in the space Lp(·)
ω (Ω) . �

In the case ω ≡ 1, we have the following corollary, which proved in [43].

COROLLARY 4.3. ([43, Theorem 1.1]) Let Ω ⊂ R
n be an open unbounded set,

b ∈ BMO(Ω) and p ∈ P
log
∞ (Ω) . Then the operator [b,T ] is bounded on the space

Lp(·)(Ω) .

The following weighted local estimates are valid.



56 V. S. GULIYEV, J. J. HASANOV AND X. A. BADALOV

THEOREM 4.5. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , b∈BMO(Ω)

and ω ∈ Ap(·)(Ω) . Then

‖[b,T ] f‖
L

p(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

(4.8)

for every f ∈ Lp(·)
ω (Ω) , where C does not depend on f ,x ∈ Ω and t .

Proof. We represent function f as in (3.3) and have

‖[b,T ] f‖
Lp(·)

ω (B̃(x,t))
� ‖[b,T ] f1‖Lp(·)

ω (B̃(x,t))
+‖[b,T ] f2‖Lp(·)

ω (B̃(x,t))
.

By Theorem 4.4 we obtain

‖[b,T ] f1‖L
p(·)
ω (B̃(x,t))

� ‖[b,T ] f1‖L
p(·)
ω (Ω)

� C‖b‖∗‖ f1‖L
p(·)
ω (Ω)

= C‖b‖∗‖ f‖
Lp(·)

ω (B̃(x,2t))
, (4.9)

where C does not depend on f . From (4.9) we obtain

‖[b,T ] f1‖Lp(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

(4.10)

easily obtained from the fact that ‖ f‖
L

p(·)
ω (B̃(x,2t))

is non-decreasing in t , so that

‖ f‖
L

p(·)
ω (B̃(x,2t))

on the right-hand side of (4.9) is dominated by the right-hand side of

(4.10). To estimate ‖[b,T ] f2‖L
p(·)
ω (B̃(x,t))

, we observe that

|[b,T ] f2(z)| � C
∫

Ω\B(x,2t)

|b(z)−b(y)| | f (y)|dy
|y− z|n ,

where z ∈ B(x, t) and the inequalities |x−z|� t , |z−y|� 2t imply 1
2 |z−y|� |x−y|�

3
2 |z− y| , and therefore

|[b,T ] f2(z)| � C
∫

Ω\B̃(x,2t)
|x− y|−n|b(z)−b(y)| | f (y)|dy.

To estimate [b,T ] f2 , we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|b(z)−b(y)|| f (y)|dy

� C‖b‖∗
∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

. (4.11)
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To estimate [b,T ] f2(z) , we observe that for z ∈ B̃(x, t) we have∫
Ω\B̃(x,t)

|x− y|−n|b(z)−b(y)|| f (y)|dy

�
∫

Ω\B̃(x,t)
|x− y|−n|b(y)−bB̃(x,t)|| f (y)|dy

+
∫

Ω\B̃(x,t)
|x− y|−n|b(z)−bB̃(x,t)|| f (y)|dy = J1 + J2.

To this end, we choose δ > 0, by Theorem 2.3 and Lemma 3.2 we obtain

J1 =
∫

Ω\B̃(x,t)
|x− y|−n|b(y)−bB̃(x,t)|| f (y)|dy

� δ
∫

Ω\B̃(x,t)
|x− y|−n+δ |b(y)−bB̃(x,t)|| f (y)|dy

∫ ∞

|x−y|
s−δ−1ds

� C
∫ ∞

t
s−n−1

∫
{y∈Ω:2t�|x−y|�s}

|b(y)−bB̃(x,t)|| f (y)|dyds

� C
∫ ∞

t
s−n−1‖b(·)−bB̃(x,s)‖L

p′(·)
ω−1 (B̃(x,s))

‖ f‖
Lp(·)

ω (B̃(x,s))
ds

+C
∫ ∞

t
s−n−1|bB̃(x,t) −bB̃(x,s)|

∫
B̃(x,s)

| f (y)|dyds

� C‖b‖∗
∫ ∞

t
s−n−1‖ω−1‖Lp′(·)(B̃(x,s))‖ f‖

L
p(·)
ω (B̃(x,s))

ds

+C‖b‖∗
∫ ∞

t
s−n−1 ln

s
t
‖ω−1‖Lp′(·)(B̃(x,s))‖ f‖

L
p(·)
ω (B̃(x,s))

ds

� C‖b‖∗
∫ ∞

t

(
1+ ln

s
t

)
‖ω‖−1

Lp(·)(B̃(x,s))
‖ f‖

Lp(·)
ω (B̃(x,s))

ds
s

.

To estimate J2 , by (4.3), we have

J2 = |b(z)−bB̃(x,t)|
∫

Ω\B̃(x,t)
|x− y|−n| f (y)|dy

� C|B(x, t)|−1
∫

B̃(x,t)
|b(z)−b(y)|dy

∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

� CMbχB(x,t)(z)
∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

,

where C does not depend on x,t .
Hence by inequality (4.11), we get

‖[b,T ] f2‖Lp(·)
ω (B̃(x,t))

� ‖χB̃(x,t)‖L
p(·)
ω (Ω)

‖b‖∗
∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

= ‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

. (4.12)

From (4.10) and (4.12) we arrive at (4.8). �
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THEOREM 4.6. Let Ω⊂R
n be an open unbounded set, p∈P

log
∞ (Ω) , ω ∈Ap(·)(Ω) ,

b∈ BMO(Ω) and the functions ϕ1(x,r) and ϕ2(x,r) satisfy the condition (3.13). Then

the operator [b,T ] is bounded from the space M
p(·),ϕ1

ω (Ω) to the space M
p(·),ϕ2

ω (Ω) .

Proof. Let f ∈ M
p(·),ϕ1

ω (Ω) . We have

‖[b,T ] f‖
M

p(·),ϕ2
ω (Ω)

= sup
x∈Ω, t>0

1
ϕ2(x,t)‖ω‖Lp(·)(B̃(x,t))

‖[b,T ] f‖
L

p(·)
ω (B̃(x,t))

.

By (3.13), Theorems 3.2 and 4.5 we obtain

‖[b,T ] f‖
M

p(·),ϕ2
ω (Ω)

� C‖b‖∗ sup
x∈Ω, t>0

‖ω‖Lp(·)(B̃(x,t))

ϕ2(x,t)‖ω‖Lp(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lp(·)(B̃(x,s))

ds
s

� C‖b‖∗ sup
x∈Ω, t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
Lp(·)

ω (B̃(x,t))
= C‖b‖∗‖ f‖

M
p(·),ϕ1

ω (Ω)

which completes the proof. �
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