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A NEW CHARACTERIZATION OF DIFFERENCES OF
GENERALIZED WEIGHTED COMPOSITION OPERATORS
FROM THE BLOCH SPACE INTO WEIGHTED-TYPE SPACES

QINGHUA HU AND XIANGLING ZHU

(Communicated by S. Stevic)

Abstract. In this paper, we give a new characterization for the boundedness and compactness of
differences of generalized weighted composition operators from the Bloch space into weighted-
type spaces. Moreover, we give some estimates for the essential norm of these operators.

1. Introduction

Let D be the open unit disk in the complex plane C and H (D) be the class of
functions analytic in ). We denote by S(ID) the set of analytic self-map of D. For
a €D, let 0, be the automorphism of I exchanging O for a, i.e., 0,(z) = {=%. For z,

w € D, the pseudo-hyperbolic distance between z and w is given by

Z—w
= GW 4 g — .
plaw) =104(2)| = | T
It is well known that p(z,w) < 1.

Throughout this paper, every self-map ¢ induces a linear composition operator Cyp
which is defined on H(ID) by Cy(f)(z) = f(¢(2)), f € HD), z€ D. Let ¢ € S(D)
and u € H(D). The weighted composition operator, denoted by uCy, is defined as
follows.

UCpf)(2) = u(z)f(@(2), feH(D), zeD.

Let n be a nonnegative integer. Let ") denote the n-th derivative of f and
f© = f. Alinear operator D% , is defined by

(Dguf)(@) = u(2) " (9(2), feH(D), z€D.
The operator D,

. 1s called the generalized weighted composition operator. In fact,
if n=0 and u(z) = 1, then Dy, , is the operator Cy. If u(z) =1, then Dg , is the
Mathematics subject classification (2010): 30D45, 47B38.
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operator CpD", which was studied, for example, in [3, 17, 25]. If n =0, then D:L,u
is just the operator uCy. If n =1 and u(z) = ¢'(z), then D}, , = DC;, , which was
studied in [3, 6, 7, 8, 9, 17, 18, 22]. The operator D'q',# was introduced by Zhu in [29],
and studied in [5, 10, 19, 20, 21, 24, 29, 30, 31].

Let 0 < 8 <. An f € H(D) is said to belong to the 3 -Bloch space, denoted by
7

1f1l 8 = |£(0)] +Slel]§(l —ZPP1f @) < oo
Zz

%P is a Banach space under the norm || - |48 When B =1, we write ' by %,
which is called the Bloch space. We say that an f € H(ID) belongs to the little Bloch
space, denoted by %y, if lim;_ |f(z)|(1 - |z|*) = 0.

Let 0 < o < . The weighted-type space, denoted by H , is defined as follows.

Hy ={f e HD) : ||fllzz = Slelg(l —[2P)¥If(2)] < o}

Let X and Y be Banach spaces. The essential norm of a bounded linear operator
T :X —Y isits distance to the set of compact operators K : X — Y , thatis, ||T||cx—y =
inf{||T — K|| : K is compact }.

Itis well known that Cy : & — % is bounded for any ¢ by Schwarz-Pick Lemma.
The compactness and essential norm of the operator Cy, : % — % were studied by many
authors (see, e.g., [2, 13, 23, 26, 27]). In particular, Wulan, Zheng and Zhu [26] proved
that Cy : & — 2 is compact if and only if limj ... |¢’| % = 0. Zhao in [27] showed
that [|Cy ||, = §limsup;_.[|¢’ 2.

Many researchers have studied the differences of two composition operators on
various function spaces in recent 20 years. See [1, 15] for more information of this
study. It is easy to see that the operator Cp — Cy : & — % is bounded for any ¢ and
. See [4] and [14] for the study of compact differences of composition operators on
the Bloch space. Recently, Shi and Li obtained some estimates for the essential norm
of the operator Cy — Cy : & — % in [16]. Among others, they showed that

ICp = Cylle, 2 = limsup | @ — y/|| 5 = limsup||(Cp — Cy)p;| -

J—eo J—ree

Here p;(z) =2/.

In [31], Zhu studied the boundedness and compactness of Dy, , : 4 — H . See
[10] for more characterizations of the operator D’JM :# — Hy. In[11], Liu and Li
studied the operator Dj, , — DY, ,, :  — Hy . Among others, they showed that D , —
Dy, % — Hg is compact if and only if Dj , — D\, : % — H{ is bounded and the
following equalities hold.

lim [M.p(2)|p(9(2), w(2)) = 0; (1)
lp(z)[—1
lim My (2)|p(9(2), w(2)) = 0: @)
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llm ]‘41,47 < _MV. Z :O (3)
|‘P(Z)\—>l,\u/(z)\—>1| 9(2) =My (2)]

Here

(1~ [zP)%u(z) (1~ [zP)*v(2)
(I=le)P)"” (I=ly@P)"

The present paper, motivated by [11, 16], gives a new characterization of the
boundedness and compactness of the operator Dy, , — DY, , : % — Hg . Moreover, we
give some estimates for the essential norm of the operator Dy, —Dy,:#—Hy.

For two quantities A and B which may depend on ¢ and v, We'use the abbrevia-
tion A < B whenever there is a positive constant ¢ such that A < ¢B. We write A ~ B,
if ASB<A.

Myo(2) = My y(z) = 4)

2. Boundedness of Dj, , — Dy, : % — Hy

In this section, we give a new characterization of the boundedness of the operator
Dy, =Dy, & - H; . Let N denote the set of all positive integers. Let j € N. We
define pj(z) =2/, z€ D. Let n € N. For any a € D, we define the following two
families test functions:

1—|af? 1—|a? a—z

EG(Z):W7 a(Z): (I—Ez)"“ 1_517

zeD.

From [28], we see that f € & if and only if

sup(1— [z[2)" f"H) (2)] < eo.
z€eD

It is easy to check that E,, H, € 2"*!. Thus, there exist f,,g, € % such that fé") =
Eu gt = H,.
In order to prove the result in this section, we need the following lemmas.

LEMMA 2.1. [11] Let n € N. Forall z,w € D,

bu(zw) i= sup (1= [zP)" £ () = (1= W) F" (w)| S pzw).

1/1l.<1

Let ¢« >0, neN, u,v € HD). Let ¢ and y be analytic self-maps of D. We
e (1- [t u(e) (1= [tP) (2
z|7)%u(z I —|z]7)%v(z
Zu9(2) = o Diy(z) = =
(1=lo()?)" ' (1=[w(@)])"
LEMMA 2.2. Let >0, n€N, u,v € H(D). Let ¢ and y be analytic self-maps
of D. Then the following inequalities hold.
(i)
sup|Z;0(2)|p(9(2), w(2) < sup (Dl — Dy ) fallrg + sup (D — Dly)8all g -
ac ac

zeD
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(ii)

sup ZEw(2)Ip(9(2), w(2) < sup (D — D) Jallug +22§ (D — Dyv)8all g -
(iii)

sup| 74 9(z) — Z3w(2)| < sup (Dl — Dy ) fulltg +sup [|(Dly, — Dy ) gall g -
zeD ach ach

Proof. (i) For any z € D, we have

1Dy~ D)oo iz > (@) 18 (0(2)) — V@S0 (w2 (1~ )
)

ot Uolot ;g;;( W gy
> |ooe) - IO WAL gy
and
(Dl =Dy )20 Iz > ()8l (9(2) — v(@)gll, (w(z)| (1 = [22)°
= U ODU VR 50 ) o (o), o)

11— o(2)y(z)|"*!

Hence
ZEo(2)p(0(2), ¥(2))
< |[(Dgu =Dy ) foe) Iz p(9(2), w(2)) + [[(Dgy — Dy )80 (o)l g
< (D= Dy ) fo g + (DG — Dy )8 o) - (5)
Similarly,

1ZEw(2)lp(0(2), w(2))
< N(Dgu— Dy ) fyo) |z + 1 (Dgu — Dy ) gy |1z - (6)

Therefore, from (5) we obtain
sup| 7y ¢ (2)|p ((2), w(2))
zeD
< sup (D — Dy ) fo() g + sup (D — Dyn)8o(x) 1z
z€

< sup||(D u — Dy ) fallg + sup (D u = Dy ) 8al 1z -
ac

acD

(ii) From (6) and similarly to the proof of (i) we get the desired result.
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(iii) By Lemma 2.1,

H(Dr(;),u_ Z/v)f(p HHS?

> ooty - LNV g
2 2\n
> 7000~ v - 1 - TP O oty )
> 780() — Ziw(@)| — (1= o))" £, (9(2))
<1—|w<>|>f;(1 )12 (2)|
> |910(2) = (@) ~5a(9(0). w()|9 v )
2 |Zh0(2) — ZHw(@) ~ | 28w ()P (0(2), w(2)-

Thus, by (6) we obtain

| Zho(2) = DEw(2)| S 1Dy — DY) foro) g + 125w (@)lp(0(2), w(2)
S (Do — Dy fo) g + 1 (D — D) o) g
(D — Dy ) 8y(o) g - (7)

Therefore,

sup| 75 ¢(2) — Z5w(2)| < sup (D, — Dy ) full s + sup | (D, — DYy ) 8al -
zeD ach acb

The proof is complete. [

LEMMA 2.3. Let ¢« >0, n€N, u,v € H(D). Let ¢ and y be analytic self-maps
of D. Then the following inequalities hold.

(i)
sup (D — Dy ) fallug S sup (D — Dyl
a J

(ii)
sng( —Dy, )guIIH;;ngpll( w— Dyl -
a J

Proof. (i) When a = 0, it is clear that fé") (z) = 1. Thus,

(D = Dy ) fallrg = llu—vllag NSHPH(D&,M—Dﬁf,v)ijIHy
eN
For any a € D with a # 0, we have

mo_ _t=la® o o Tlktntl) 4y
fa (Z)_ (l_az)n+l _(l |a| )kgo k'r(n+1) az, zeD.
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By Stirling’s formula, we have
Y . Tk+n+1)
1(Dlgu = Dy ) fallmg < (1—\al2)2 AT [l — vyl
= KT(n+1)

= Tk+n+1),
1142 Lkrn—1), 0 & k_ ok

oo

S (L—lal?) X lal*sup(j —n)"||lug’ ™" — v/ ™"z

k=0 jzn
< sup|[(Dlg, — Dy ) pjllag- (8)
JEN
Since a is arbitrary, we see that (i) holds.
(ii) When a = 0, it is clear that gé")(z) = —z. Thus,
1(Dlgu — Dy v)8allg = llug —vwlug < Sugll(D’;,u — Dy \)pjllag -
JE
For any a € D with a # 0, we have
2
), N 1 —|a| a-—z
ga () = (1-az)"t 1-az
o Ik+n+1)
— (1 —1g2 akk _ —k _k+1
= (1=l )(2 KT(n+1) )( (1= 1af) Z“ )
s k—|—n+1
—afa (') (2 kk)(Eakk+l>
— af () S i "21m+n+1) A1k
a & =l I'T(n+1) .
By Stirling’s formula, we have
k—1 k—1
I'l+n+1)
"~ k! k — oo.
§ IT(n+1) 2 ’ -
Therefore,
(D =Dy gallz < |(Dlg =Dy, fullg + (1= |al?)?
o sk—1
X o )l T et — vyl
3 (2 ey
S 1D — Dy ) fallmg
2 R i j
+(1— E - lal” ™ sup(j—n)"Jug ™ — vy g

jzn

S (D —D’f,,,v)faHHg +$ug\\( ou = Dy)pjllag
je

S sup|[(Dgu — Dy )Pl -
jeN
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By the arbitrariness of a we see that (ii) holds. The proof is complete. [

The following result is the main result in this section.

THEOREM 2.1. Let o0 >0, n€N, u,v € H(D). Let ¢ and ¥ be analytic self-
maps of D. Then Dy, , — Dy, , : & — Hg is bounded if and only if

Sup”(Dr(fo,u_D};/,v)pj”Haq < oo )
JeN

Proof. First we assume that Dy, — Dy, , : # — Hg is bounded. For any j € N,
|pjll# ~ 1. Thus

o> |[Dg = Dy yllz—ng Z [(Dgu—Dy)Pjllg

as desired.
Conversely, we assume that (9) holds. Let f € # and || f||%# < 1. By Lemmas
2.1-2.3 and the proof of Theorem 1 in [11] we have

(D= Dy ) fllg < sup Zho(2) — Ziw(z)| + sup 1750 ()|p(0(2), ¥(2))
z€ zZ€
5 sup H (qul),u - Drl;hv)fa”HZ; =+ sup H (qul),u - Drl;/7v)gllHH§
ach ach

S sup|[(DG = Dy )pillag < ee.
jeN

Therefore, Df, , — Dy, : % — Hg is bounded. [J

3. Essential norm estimates
In this section we give an estimate for the essential norm of Dy, , — DY, , from %
to H,; . For this purpose, we need some auxiliary results as follows.

LEMMA 3.1. Let >0, n€N, u,v € H(D). Let ¢ and y be analytic self-maps
of D. Then the following statements hold.

(i)
lim sup |Z79(2)lp(¢(2). y(2))
=1jp(2) >s
S 1i‘H‘ISUP | (Dgu — Dlyy) fallug + 1i‘H‘ISUP (D — Dlyv)8all g -
al—1 al—1
(ii)

lim sup |Z}w(z)lp(0(z),w(z))

=y (z))>s
< limsup||(Dg , — DYy ) fallug +limsup [|(DG , — Dy, ) gall1z -

la|—1 la|—1
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(iii)
lim sup |Z270(z) — 2" y(z)|
5= g(2)[>s
W()[>s
S timsup (D = Dy Mol +limsup| (D5 = Dy )gal
al—1 al—1

Proof. For any z € D, from the proof of Lemma 2.2 we have
|Z39(@)lp(0(2),w(2) < (D — Dy ) fo(o) g + (D= Dy )8 o Iz,

125w (@) lp(0(2), (2) < (D= Dy ) fyo) I + (D= Dy )8 (o)l

and

1 Zi0(2) = ZAw(2)| S 1(Dlg =Dy ) foo lmz + (Dl = Dly) ol
D =Dy )&y () g -

From the above inequalities the assertion follows easily. The proof is complete. [l

LEMMA 3.2. Let « >0, n€N, u,v € H(D). Let ¢ and y be analytic self-maps
of D. Suppose that D, ,, — D\, ,, : %8 — Hy, is bounded, then the following inequalities
hold.

(i)

li‘rj‘l sup (D = Dly ) fallrg < lir;ljotlp 1(Dp.u =Dy )Pl -

(ii)

limsup [(Dg ,, — Dy, ,)8allug < limsup||(D , — Dy, )pjillg -

la|—1 Joee

Proof. For each N and any a € D with |a| > 1/2, from the proof of Lemma 2.3,
we have

H (Dr(:),u - D::/,v)fa”Hf;

N T(k+n+1)
S (1_“”2);’) KID(n+1)

oo

+(1=la) X lal* sup (j—n)"llug’" — vyl (10)
k=N+1 JENtntl

k" |al K g — vy

Taking the limit |a| — 1 in (10),

limsup || (D, — Dy ) fallug < sup  [[(Dg,, —Dy,)pjllag
la|—1 JEN+nt1
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for any positive integer N. Therefore

limsup [ (D, = Dy, ) fallug < limsup[|(D , — Dy, ,)pjllag -

la|—1 J=
Also for each N and any a € D with |a| > 1/2, from the proof of Lemma 2.3,

H (qul),u - Dz/,v)gaHHﬁ
< (D = Dly) fallmg + (1= [af?)?

oo k—1 n
<3 (3 D gt —

SIS T+ 1)
< (D, =Dy ) fallag +  sup (—n)"lug’ ™" — v/ ||z
Jj=N+n+1
22 k k
+(1—al*)? Y klal* K [ug* — vyt |- (11)
k=1

Letting |a| — 1 in (11). We get

limsup||(Dg , — DYy ,)8all g

la|—1

< limsup||(Dg,, — Dy ) fallwz +  sup (G —n)"lug’™" —vy/ ™|z
la|—1 J=N+n+1

S limsup|[(Dy , — Dy ) fallug +  sup [|(Dg = Dy,)pjllg
la|—1 jEN+n+1

for any positive integer N. Thus, by (i) we obtain

limsup [(Dg , — Dy, ,)8allmg < limsup||(D , — Dy, )pjill g -

‘u‘%l =

The proof is complete. [

THEOREM 3.1. Let o0 >0, n€N, u,v € H(D). Let ¢ and ¥ be analytic self-
maps of D. Suppose that Dy, ,: # — Hg and Dy, :  — Hg are bounded, then

”D}Zo,u - D?[/,VHE:%_’H; ~ hmsup ” (D}Zo,u - D?{/,v)ijHﬁ'

j—

Proof. For r€[0,1), set K, : H(D) — H(D) by

(Krf)(2) = fr(z) = f(rz), feHD).

It is clear that f, — f — O uniformly on compact subsets of D as r — 1. Moreover, K,
is compacton # and ||K,||z—% < 1. Let {r;} C (0,1) be a sequence such that r; — 1
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as j — oo. Then for each positive integer j, the operator (Dg , — DY, Ky, : B — Hg
is compact. By the definition of the essential norm we have

10,4 = Dy ylle.z—mz <limsup[[Dy, — Dy, — (D, = Dy ) K| iz

J—oo

= limsup||(Dly , = Dy, )(I = Kr;) || 5—ng

J—oo

< limsup sup |[(Dg , — Dy, )(I = Ky) f|

J=e Iflle<t

= limsup sup supQ‘; (2),
j=e |Iflg<1zeD

where

QL (2) = |u(2)(f — )" (9(2)) = v() (f = fr)" (W(@)I(1 = [2)*.
For any r € (0,1), define
Dy:={zeD:|o(2)| <nly(@)|<r}, Dri={zeD:[o()| <nly)| >r},
Ds3:={zeD:|o(z)| > rly(@)|<r}, Di={zeD:[o()|>rly@)|>r}.
Then

limsup sup supr = max limsup sup sup Qf
j=eo |Ifla<lizeD T ISISA e | £ <1 2€D;

= max{limsupJ,limsupJ,,limsupJs, limsupJy },

j—>o<) j—wo j_’°° j—>o<)
where J; = sup s <1 SUP.e, Qf. Using the fact that u,v € Hy, we get

limsupJ; = limsup sup sup Q{
Joee J=e |Ifllg<12€Dy

<limsup sup sup [u(2)(f — £r)" (@(2)|(1 — |]*)

J=e | flla<tleG)l<r

+limsup sup sup [v(2)(f — f,) " (w(2))|(1—[2*)*
J= I l#<1 v R)I<r

=0.
In addition, we have

Q(2) < I(f = )W)~ w1 ZE0 () - Ziw()|+|Zie(2)]
| = )" (@A = [0 = (f = fr) P (w@) (1 = [w()P)"|
<= f)" (W(Z))I(l W@ )" Zh0() — Ziw()]
+04(0(2), ¥(2))| Zi 0 (2)|
S = f ) (@)= v@P) | ZieE) ~ Zv ()
+HZi9(2)p((2), w(2).
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Similarly,

Q‘f(Z) S = )" (@)1= o))" ZEe(z) — DZiw(z)|
+ ZEw(2)p(0(2), w(2)).

Then, we obtain

limsupJ, < limsup sup sup (|2 w(2)lp(¢(2), w(2))

je j=e ||l a<12€D;
H(F = 1) " (@)1 = 0@ )| ZE 0 (2) - Ziw(2)])
<limsup sup sup [(f = f,)" (9(2))|(1—|o(2)[")"

J=e Ifllz<tlo(z)l<r

><|95<P(Z)—9fw(1)l+l P 1ZEw(@)lp(9(2), ¥(2)
y(z)|>r

= sup |2}y (2)|p(9(z), ¥(2)),
W@l>r

where we used sup_cp |7} ¢(z) — 2 w(z)| < e, since Dj,, — Dy, is bounded (see
Theorem 1 of [11]), and (f — f,j)(”) — 0 uniformly on compact subset of D as j — oo

again in the last inequality. Since r is arbitrary, we have

limsupJ, Slim sup |27 w(2)|p(9(2), y(2)).
e =y ()>r

Similarly,
limsupJs S lim sup |70 (2)|p(9(2), y(2)).

Joee o) >r

In addition,

limsupJy < limsup sup sup (I(f—frj)(")(<P(Z))l(1 — o))"

I J=eo |1 fllp<12€Ds

<|Z80() — ZPw(3)| + | 2w ()P (0(2) w(z)))

Slimsup sup  sup || f — £l 2| Zh o (z) — ZFw(z)]
J=o fllz<l|o(z)|>r
[w(z)|>r

+ sup |2y (2)lp(9(2), y(2))
Y@I>r

< sup | Zo2)— ZEv(@)|+ sup | 2w (2)lp(0(2), v(z)),
o0l>r W()l>r
v(z)|>r

where we used the fact limsup;_, ||f — f; || < 2 in the last inequality. Thus,

limsupJy S lim sup |25 0(z) — 2w (z)|+1im sup |2}y (2)|p(0(2), y(2)).
e Hliw(m)\'w "y ()>r
y(z)|>r
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Then we have

limsup sup sup Qf (z) = max{limsupJy,limsupJs,limsupJ3, limsupJy }

j== flg<1 €D o e e e
Slim sup [ Z70(2)|p(9(2), w(@) +1lim sup |Z]y(2)|p(e(), w(2)
() >r =)
+lim sup |Zfp(x) — 7y ()],
o)
wol>r

which together with Lemmas 3.1 and 3.2 imply

Hqul),u - D’l’l’/,vafy%HH;

Slim sup [Z7p(@)|p(9(2) w(2) +lim sup |77y (2)lp(e(2) w(2)
"=Lo@)|>r "L y(g)>r
+1im sup |Z}o(z)— Ziw(z)|
r=Lo()>r
W(2)[>r
S hmsupH(Dr(;)u _D:;/,v)faHHao +11|H|lSllpH(Dz,u _D:;/,v)ga”H;
al—1

la]—1

,S hmsupH(DZ,u—Dﬁw)p,HH; (12)

=
Next, we prove that

“Dr(;),u - l)rl;/,v||€’=@—’H&o 2 hmsup H (Dr(:),u - D:;/,v)pj”Hf;'

J—roo

Let j be any positive integer. Then ||pjl|z ~ 1 and p; — 0 weakly in . This
follows since a bounded sequence contained in %, which converges uniformly to 0
on compact subsets of D converges weakly to 0 in Z (see [12]). Thus, if K is any
compact operator from % to Hg, , then lim; ... | Kp;||zz = 0. Hence,

1D 4 = DYy, = K| Z limsup [|(Dfy, = Dy, , = K)pjl g

J=
> limsup||(Dg , — Dy, )Pl ug -
J‘}oc
Thus
D94 — Dy ylle,z—ng 2 limsup |[(Dy, — Dy ,)pjllag - (13)
J e

Combining (12) with (13), we immediately get the desired result. The proof is com-
plete. 0

From Theorem 3.1, we immediately get the following result.
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THEOREM 3.2. Let oo >0, n€N, u,v € H(D). Let ¢ and y be analytic self-
maps of D. Suppose that Dy, ,, : % — Hg and Dy, % — H;, are bounded, then

HDr(;),u_D::/7vHE,%’—>H§
~lim sup [Z50)|p(9(z), v(2)+lim sup |ZFy(2)lp(e(z), w(2))

"~Lp()|>r "y(g)|>r
+lim sup |Z7(z) - 7y (2)]
"= Lo@)|>r
lw(z)|>r
~ lilrrll sup||(Di — Dly ) fallug + lilrrll sup||(Dg — DYy ) 8allHg -
al—1 al—1

From Theorem 3.1, we also immediately get the following corollary.

COROLLARY 3.1. Let aa >0, n €N, u,v € HD). Let ¢ and y be analytic
self-maps of D. Suppose that D, : % — Hg and DY, ,,: % — Hg are bounded, then
D, — Dy, : # — Hy is compact if and only if

limsup || (D, — Dy, pjllug = 0.

J—ree
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