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SCALING INVARIANT HARDY TYPE INEQUALITIES

WITH NON–STANDARD REMAINDER TERMS

MEGUMI SANO

(Communicated by B. Opic)

Abstract. We consider the Hardy inequality on RN , the critical Hardy inequality on a ball, and
the Rellich inequality on RN . These three Hardy type inequalities can be refined by adding
remainder terms. Our remainder terms are expressed by a distance from the families of “vir-
tual” extremals. A key ingredient is the critical Hardy inequality on RN which was proved by
Machihara, Ozawa and Wadade [21].

1. Introduction

Let N � 2 and 1 < p < N . The Hardy inequality

∫
RN

∣∣∣∣∇u · x
|x|
∣∣∣∣
p

dx �
(

N− p
p

)p ∫
RN

|u|p
|x|p dx (1)

holds for all u ∈ D1,p(RN) , where D1,p(RN)) is the completion of C∞
0 (RN) with re-

spect to the norm ‖∇ · ‖Lp(RN) . The inequality (1) is also called the Uncertainty Prin-
ciple and (1) has many applications for the elliptic and the parabolic equations with
the singular potential (see [7], [5] etc.). In the higher-order generalization of (1), for
2 � k < kp < N , the inequality

|u|pk,p � Cp
k,p

∫
RN

|u|p
|x|kp dx (2)

holds for all u ∈ Dk,p(RN) (see [25], [10], [23]). Here we set

|u|pk,p =

{∫
RN |Δmu|p dx if k = 2m,∫
RN |∇(Δmu)|p dx if k = 2m+1,

Ck,p =

{
p−2m ∏m

j=1{N−2p j}{N(p−1)+2p( j−1)} if k = 2m,
(N−p)
p2(m+1) ∏m

j=1 (N− (2 j +1)p){N(p−1)+ (2 j−1)p} if k = 2m+1,

for k,m ∈ N , m � 1. For the sake of simplicity, we define C0,p = 1 and C1,p = N−p
p .
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For (1), it is known that the constant (N−p
p )p is optimal, and equality of (1) is not

achieved unless u ≡ 0. Furthermore, Cianchi-Ferone [9] provided a remainder term

of (1) as follows: Let p∗ = Np
N−p , va(x) = a|x|− N−p

p for x ∈ RN , a ∈ R and Lρ ,σ (RN)
(0 < ρ � ∞ , 1 � σ � ∞) is the Lorentz space. Then there exists a constant C =C(p,N)
such that the inequality

∫
RN

|∇u|pdx �
(

N− p
p

)p∫
RN

|u|p
|x|p dx

⎛
⎝1+C

(
inf
a∈R

‖u− va‖Lp∗,∞(RN )

‖u‖Lp∗,p(RN )

)2p∗
⎞
⎠ (3)

holds for every real-valued weakly differentiable function u in RN decaying to zero at
infinity with |∇u| ∈ Lp(RN) .

This type remainder term expresses not only the absence of extremal of (1), but
also the cause of that. Indeed, the improved Hardy inequality (3) says that if there exists
a extremal u∈ D1,p(RN) of (1), then u = va for some a ∈ R . However va �∈D1,p(RN)
(note that va ∈ Lp∗,∞(RN)) which yields a contradiction. Here we call va “virtual”
extremal of (1). In the paper [9], the proof of (3) is based on the rearrangement theory
which is well suited for the Hardy inequality (1). On the other hand, it is not suited
for the Rellich inequality (2). Therefore it seems difficult to obtain remainder term
of (2) by using same way as [9]. One of our aims is to provide a remainder term of
(2). Our method is quite different from theirs in [9]. In our proofs, there are two key
ingredients. One is the magical computation via the transformation (18) (resp. (23))
using a virtual extremal of the inequality (1) (resp. (2)). This idea was implicitly used
in [22] or [7]. The other is the critical Hardy inequality on the whole space which was
proved by Machihara, Ozawa and Wadade :

∫
RN

| f (x)− f (R x
|x| )|β

|x|N | log R
|x| |α

dx �
(

β
α −1

)β ∫
RN

∣∣∣∇ f (x) · x
|x|
∣∣∣β

|x|N−β
∣∣∣log R

|x|
∣∣∣α−β dx. (4)

We call (4) Machihara-Ozawa-Wadade’s inequality (briefly, MOW inequality) in this
paper. The crucial point of MOW inequality is taking away its boundary value f (R x

|x| )
from f (x) to weaken the singularity of the logarithmic term | log R

|x| |−α . Actually, its
boundary value of MOW inequality plays the role of virtual extremal for improvements
of Hardy type inequalities. Unlike the remainder term in [9], our remainder term is
expressed by supremum. Our main results are as follows:

THEOREM 1. (Improved Hardy inequality on RN ) Let 2 � p < N . Then there
exists a constant C > 0 such that the inequality∫

RN

∣∣∣∣∇u · x
|x|
∣∣∣∣
p

dx−
(

N− p
p

)p ∫
RN

|u|p
|x|p dx � C sup

R>0
dH(u;R)p. (5)

holds for all u ∈ D1,p(RN) , where

dH(u;R)p =
∫

RN

|u(x)−R
N−p

p u
(
R x
|x|
)
|x|− N−p

p |p
|x|p| log R

|x| |p
dx.
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In [15], they obtained some nonexistence result of standard remainder terms on
RN . On the other hand, in [27], they obtained another type remainder term which
is expressed by quotient of standard remainder terms. Concerning improvement on a
bounded domain, see [1], [7], [8], [12], to name a few. And also, Theorem 1 can be
generalized to weighted type inequality, see [28].

REMARK 1. We can check that the distance dH(u;R) in Theorem1 is well-defined.
Indeed, set

dH(u;R)p =
∫

BR/2(0)∪Bc
2R(0)

+
∫

B2R(0)\BR/2(0)
=: I1 + I2.

We see that u(x) |x|N−p
p � C near |x| = 0, ∞ , since u ∈ D1,p(RN) and the Sobolev

embedding D1,p(RN) ↪→ L
Np

N−p (RN) holds. Thus we obtain

I1 =
∫

BR/2(0)∪Bc
2R(0)

∣∣∣u(x)|x|N−p
p −R

N−p
p u
(
R x
|x|
)∣∣∣p

|x|N | log R
|x| |p

dx

�
∫

BR/2(0)∪Bc
2R(0)

C

|x|N | log R
|x| |p

dx < ∞.

On the other hand, by the elementary inequality logx � x−1
x for x ∈ [1,+∞) and the

mean value property we have

I2 �
(

2
R

)N ∫
B2R(0)\BR/2(0)

Rp
∣∣∣u(x)|x|N−p

p −u(R x
|x|)R

N−p
p

∣∣∣p
| |x|−R |p dx

� C
∫

RN
|∇u|p dx < ∞.

Therefore the distance dH(u;R) is well-defined for u ∈ D1,p(RN) .

For derivative term
∫
RN

∣∣∣∇u · x
|x|
∣∣∣p dx , we do not know whether to apply rearrange-

ment theory (actually, the Pólya-Szegö inequality) or not. Therefore one of good points
of (5) is that we can obtain a remainder term of the Hardy inequality with its derivative
term.

For (2), it is known that the constant Cp
k,p is optimal. We also have the following.

THEOREM 2. (Improved Rellich inequality on RN ) Let N,k ∈ N satisfy N,k � 2
and k < kp < N . Then there exists a constant C > 0 such that the inequality

|u|k,p−Cp
k,p

∫
RN

|u|p
|x|kp dx � C sup

R>0
dRE(u;R)2 (6)
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holds for all radial functions u ∈ Dk,p(RN) , where

dRE(u;R)2 =
∫

RN

∣∣∣|u(x)| p−2
2 u(x)−R

N−kp
2 |u(R)| p−2

2 u(R)|x|− N−kp
2

∣∣∣2
|x|kp| log R

|x| |2
dx.

We can obtain the non-radially symmetric case for k = 2.

COROLLARY 1. Let k = 2 . If u∈D2,p(RN) is a non-radial function, then it holds∫
RN

|Δu|p dx−Cp
2,p

∫
RN

|u|p
|x|2p dx � C sup

R>0
dRE( ũ;R)2 (7)

where ũ(x) =
∫
RN

(−Δu)#(y)
|x−y|N−2 dy ∈ D2,p(RN) .

Especially, if there exists a extremal u ∈ D2,p(RN) , then ũ(x) = a|x|− N−2p
p �∈

D2,p(RN) . Therefore the equality of (2) is not achieved unless u ≡ 0 .

Concerning improvement on a bounded domain, see [2], [4], [6], [11], [13], [16],
[32] and the references therein. And also for the another type remainder term on RN

which is expressed by quotient of standard remainder terms, see [26].
On the critical case p = N , the Hardy inequality (1) fails for every constant and

instead of (1) the critical Hardy inequality

∫
BR(0)

∣∣∣∣∇u(x) · x
|x|
∣∣∣∣
N

dx �
(

N−1
N

)N ∫
BR(0)

|u(x)|N
|x|N(log R

|x| )
N

dx (8)

holds for all u ∈ W 1,N
0 (BR(0)) (see [18], [30] etc.). Note that the inequality (8) is

not invariant under the standard scaling uλ (x) = u(λx) due to the logarithmic term.
However the following scaling is introduced

uλ (x) = λ− N−1
N u

(( |x|
R

)λ−1

x

)
(9)

for λ > 0. Under this scaling (9), the critical Hardy inequality (8) has the scale in-
variance (see [18]). Furthermore it is known that the optimal constant (N−1

N )N is not

attained unless u≡ 0 and the function
(
log R

|x|
)N−1

N
is virtual extremal of (8) (see [18]).

Finally, we also refine the critical Hardy inequality (8) on BR(0) by adding the non-
standard remainder term.

THEOREM 3. (Improved critical Hardy inequality on BR(0)) Let N � 2 . Then
there exists a constant C such that the inequality

∫
BR(0)

∣∣∣∣∇u(x) · x
|x|
∣∣∣∣
N

dx−
(

N−1
N

)N ∫
BR(0)

|u(x)|N
|x|N(log R

|x| )N
dx � C sup

T>0
dCH(u;T )N

(10)
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holds for all u ∈W 1,N
0 (BR(0)) , where

dCH(u;T )N :=
∫

BR(0)

|u(x)−T
N−1
N u(Re−

1
T x
|x| )(log R

|x| )
N−1
N |N

|x|N | log R
|x| |N | log(T log R

|x| )|N
dx.

In [19], they constructed an optimal remainder term. However it is not expressed
by some distance from the virtual extremal. We also refer to [9], [3] and [29] for
improvement of the critical Hardy inequality without boundary singularity.

This paper is organized as follows: In §2, we state preliminaries to show our re-
sults. In §3, we give the proof of Theorem 1. In §4, we prove Theorem 2 and Corollary
1. In §5, we discuss the critical Hardy inequality (8) with a remainder term (Theorem
3).

We fix several notations: BR(0) is a ball centered 0 with radius R in RN . ωN is
the area of a unit sphere in RN . |A| denotes the measure of a set A⊂RN . The Schwarz
symmetrization u# : RN → [0,∞] is given by

u#(|x|) = inf
{

τ > 0 : |{x ∈ RN : |u(x)| > τ}| � |B|x|(0)|} .

Dk,p(RN) is the completion of C∞
0 (RN) with respect to the norm | · |k,p . Throughout

the paper, if u is a radial function in RN , then we can write as u(x) = ũ(|x|) by some
function ũ = ũ(r) in R+ . Then we write u(x) = u(|x|) with admitting some ambiguity.
We hope no confusion occurs by this abbreviation. And also, we use C as a general
constant.

2. Preliminaries

First, we introduce the Lorentz-Zygmund spaces Lp,q,λ (RN) and the Sobolev-
Lorentz-Zygmund spaces W 1Lp,q,λ (RN) in the same manner as [21]. For 1 � p,q � ∞
and λ ∈ R ,

Lp,q,λ (RN) := { f ∈ L1,loc(RN) : ‖ f‖Lp,q,λ (RN) < +∞},

where

‖ f‖Lp,q,λ (RN ) := sup
R>0

(∫
RN

(
|x|N

p

∣∣∣∣log
R
|x|
∣∣∣∣
λ
| f (x)|

)q
dx
|x|N

) 1
q

with the usual modification when q = ∞ . And also,

W 1Lp,q,λ (RN) := { f ∈ Lp,q,λ (RN) : ∇ f ∈ Lp,q,λ (RN)}

with the norm ‖ · ‖W1Lp,q,λ (RN ) := ‖ · ‖Lp,q,λ (RN ) +‖∇ · ‖Lp,q,λ(RN) .

The critical Hardy inequalities on RN were proved by Machihara, Ozawa and
Wadade [21] by using only integration by parts and Hölder’s inequality.
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THEOREM 4. ([21] Theorem 1.1.) Let N ∈ N , 1 < α < ∞ and max{1,α −1} <
β < ∞ . Then for any R > 0 , the inequalities

∫
RN

| f (x)− f (R x
|x| )|β

|x|N | log R
|x| |α

dx �
(

β
α −1

)β ∫
RN

∣∣∣∇ f (x) · x
|x|
∣∣∣β

|x|N−β
∣∣∣log R

|x|
∣∣∣α−β dx (11)

hold for all f ∈W 1L
N,β , β−α

β
(RN) , where the embedding constant

(
β

α−1

)β
in (11) is

best-possible.

In [21], they proved (11) for f ∈ W 1L
N,β ,

β−α
β

(RN) . However, we need (11) for

f ∈C0(RN)∪C1(RN \ {0}) with only ∇ f ∈ L
N,β ,

β−α
β

(RN) to prove our theorems. In

fact, we can obtain Lemma 1 by the minor change in their proof.

LEMMA 1. (Machiha-Ozawa-Wadade’s inequality) Let N ∈ N , 1 < α < ∞ and
max{1,α − 1} < β < ∞ . Then for any R > 0 , the inequalities (11) hold for all f ∈
C0(RN)∩C1(RN \ {0}) with ∇ f ∈ L

N,β , β−α
β

(RN) .

To show our Theorems, We provide two point-wise estimates of |a− b|p from
below. First, we prepare the following point-wise estimate for p � 1. We omit the
proof.

LEMMA 2. Let p � 1 and a,b ∈ R . Then the inequality

|a−b|p−|a|p � −p|a|p−2ab (12)

holds true.

In p � 2 case, it is known a better estimate (13) than former one (12). Here, we
provide the simple proof of (13).

LEMMA 3. Let p � 2 . Then there exists a constant C = C(p) > 0 such that

|a−b|p−|a|p � −p|a|p−2ab+C|b|p (13)

holds true for a,b ∈ R .

Proof of Lemma 3. Set

f (t) = |1− t|p−|t|p + p|t|p−2t (t ∈ R).

It is enough to show

f (t) � C > 0, (14)
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since (13) follows from (14), on taking t = a
b . When t � 1, the mean value theorem for

the function xp−2 which is defined for x � 0 yields that

f ′(t) = p [(t−1)p−1− t p−1]+ p(p−1)t p−2 = p(p−1)[t p−2− sp−2] � 0,

for p � 2, where s � 0 satisfies t −1 � s � t . Hence we obtain

f (t) � f (1) = p−1 for all t � 1. (15)

In the same manner as above, we also obtain

f (t) � f (0) = 1 for all t � 0. (16)

When 0 � t � 1, we define Cp = min0�t�1 f (t)
(
= min0�t�1((1− t)p− t p + pt p−1)

)
.

Let 0 � a � 1 satisfy Cp = f (a) . From Lemma 2, we observe that Cp � 0. If Cp = 0,
then the following equalities hold

0 = f (a) = (1−a)p−ap + pap−1 and

0 =
a−1

p
f ′(a) = (1−a)p−ap−1(a−1)+ (p−1)ap−2(1−a)

which implies a = 0. However this contradicts to f (0) = 1. We can also derive a
contradiction when p = 2. Thus we obtain

f (t) � Cp > 0 for all 0 � t � 1. (17)

Consequently, from (15), (16), and (17), we obtain Lemma 3. �

3. The Hardy inequality

In this section, We prove Theorem 1.

Proof of Theorem 1.
Step 1. Let x = rω(r > 0,ω ∈ SN−1) . First, we show that the inequality (5) holds

for a smooth function u = u(rω)∈C∞
0 (RN) . We consider the following transformation:

v(rω) = r
N−p

p u(rω), where r ∈ [0,∞),ω ∈ SN−1. (18)

Note that v(0) = v(+∞) = 0 since the support of u is compact. Now, direct calculation
shows that

I :=
∫

RN

∣∣∣∣∇u · x
|x|
∣∣∣∣
p

dx−
(

N− p
p

)p∫
RN

|u|p
|x|p dx

=
∫

SN−1

∫ ∞

0

∣∣∣∣− ∂
∂ r

u(rω)
∣∣∣∣
p

rN−1 −
(

N− p
p

)p

|u(rω)|prN−p−1 drdSω

=
∫

SN−1

∫ ∞

0

∣∣∣∣N−p
p

r−
N
p v(rω)−r−

N−p
p

∂
∂ r

v(rω)
∣∣∣∣
p

rN−1−
(

N−p
p

)p

|v(rω)|pr−1 drdSω .
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Applying Lemma 3 with the choice a =
N− p

p
r−

N
p v(rω) and b = r−

N−p
p

∂
∂ r

v(rω), and

using the fact
∫ ∞
0 |v|p−2v

(
∂
∂ r v
)

dr = 0, we have

I �
∫

SN−1

∫ ∞

0
− p

(
N− p

p

)p−1

|v(rω)|p−2v(rω)
∂
∂ r

v(rω)+C

∣∣∣∣ ∂
∂ r

v(rω)
∣∣∣∣
p

rp−1 drdSω

= C
∫

RN
|x|p−N

∣∣∣∣∇v · x
|x|
∣∣∣∣
p

dx. (19)

Now, we apply Lemma 1 for f = v ∈C1(RN \ {0})∩C0(RN) in α = β = p case, and
combine this with (19), we obtain

I � C
∫

RN

|v(x)− v(R x
|x|)|p

|x|N | log R
|x| |p

dx = C
∫

SN−1

∫ ∞

0

|v(rω)− v(Rω)|p
r| log R

r |p
drdSω

= C
∫

SN−1

∫ ∞

0

|u(rω)−R
N−p

p u(Rω)r−
N−p

p |p
r1+p−N| log R

r |p
drdSω (20)

for any R > 0. Therefore we have (5) for u ∈C∞
0 (RN) .

Step 2. In this step, we prove (5) for u ∈ D1,p(RN) by using same argument as
it in [21]. Let {um}∞

m=1 ⊂ C∞
0 (RN) be a sequence such that um → u in D1,p(RN) as

m → ∞ . Then there exists a subsequence {umj}∞
j=1 such that

um → u in L
Np

N−p (RN),

um → u in Lp(RN ; |x|−pdx),

umj → u a.e. in RN

by Sobolev embedding and Hardy inequality (1). Here, we define

ũR(x) :=
u(x)−a|x|− N−p

p

|x|| log R
|x| |

for u ∈ L1
loc(R

N) and R > 0, where a = R
N−p

p u(R x
|x| ) . Since the inequality (20) holds

for um − u j ∈ C∞
0 (RN) , we can observe that {(̃umj)R

}∞
m=1 is a Cauchy sequence in

Lp(RN) . Hence there exists a function f ∈ Lp(RN) such that (̃umj )R
→ f in Lp(RN)

as m→∞ . Since umj → u a.e. in RN , we can see that ũR = f . Therefore the inequality

∫
RN

|∇u|p dx−
(

N− p
p

)p ∫
RN

|u|p
|x|p dx � C

∫
RN

|u(x)−a|x|− N−p
p |p

|x|p| log R
|x| |p

dx

holds for all u ∈ D1,p(RN) and R > 0. �



SCALING INVARIANT HARDY TYPE INEQUALITIES 85

REMARK 2. In the case 1 < p < 2, instead of the point-wise estimate (13), the
following inequality is known

|a−b|p−|a|p � −p|a|p−2ab+C
|b|2

(|a−b|+ |a|)2−p (21)

for a,b ∈ R (see e.g., [20]). If we use the point-wise estimate (21), we also have the
case 1 < p < 2 of Theorem 1, but we omit here.

4. The Rellich inequality

In this section, we discuss the improvement of the Rellich inequality (2). And also,
by using this improvement, we show the non-existence of extremals of (2). In the proof
of Theorem 2, it is enough to use the weaken estimate (12) than (13).

Proof of Theorem 2. From (i) Step 2 in the proof of Theorem 1 and higher or-

der Sobolev embedding Dk,p(RN) ↪→ L
Np

N−kp (RN) (see [14]), it is enough to prove the
inequality (5) for radial functions u = u(r) ∈C∞

0 (RN) where r = |x| .
First, note that the inequality

|u|pk,p = |Δu|pk−2,p � Cp
k−2,p

∫
RN

|Δu|p
|x|(k−2)p dx (22)

holds from Rellich’s inequality (2). Actually when k = 2, this is the equality. Here, we
consider the following transformation:

v(r) = r
N−kp

p u(r), where r ∈ [0,∞). (23)

Note that v(0) = 0 and also v(+∞) = 0 since the support of u is compact. For k � 2,
k ∈ N and k < kp < N , put

θk = θ (k,N, p) = 2k+
N(p−2)

p
and Δθk f = f

′′
(r)+

θk −1
r

f
′
(r)

for smooth radial functions f = f (r) . Define

Ak,p =
(N− kp)[(k−2)p+(p−1)N]

p2 .

Then direct calculation shows that −Δu = rk−2− N
p
(
Ak,pv(r)− r2Δθk v(r)

)
.

Now applying Lemma 2 with the choice a = Ak,pv(r) and b = r2Δθk v(r), and
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using the fact
∫ ∞
0 |v|p−2vv′dr = 0 since v(0) = v(+∞) = 0, we have

J :=
∫

RN

|Δu|p
|x|(k−2)p dx−Ap

k,p

∫
RN

|u|p
|x|kp

dx

= ωN

∫ ∞

0
|−Δu(r)|p rN−1−(k−2)p dr−Ap

k,pωN

∫ ∞

0
|u(r)|prN−kp−1 dr

= ωN

∫ ∞

0

(∣∣Ak,pv(r)− r2Δθk v(r)
∣∣p− (Ak,pv(r))p

)
r−1 dr

� −pωNAp−1
k,p

∫ ∞

0
|v|p−2vΔθk vrdr

= −pωNAp−1
k,p

∫ ∞

0
|v|p−2v

(
v′′ +

θk −1
r

v′
)

rdr

= −pωNAp−1
k,p

∫ ∞

0
|v|p−2vv′′rdr. (24)

Moreover we observe that

−
∫ ∞

0
|v|p−2vv′′rdr = (p−1)

∫ ∞

0
|v|p−2(v′)2rdr+

∫ ∞

0
|v|p−2vv′ dr

=
4(p−1)

p2

∫ ∞

0
|( |v| p−2

2 v)′|2rdr

=
4(p−1)

p2ω2

∫
R2

∣∣∣∣∇( |v| p−2
2 v) · x

|x|
∣∣∣∣
2

dx. (25)

Now, we apply Lemma 11 for |v| p−2
2 v ∈ C1(RN \ {0})∩C0(RN) in α = β = N = 2

case, and combine this to (24) and (25), we obtain

J � C
∫

R2

∣∣∣|v(x)| p−2
2 v(x)−|v(R x

|x|)|
p−2
2 v(R x

|x| )
∣∣∣2

|x|2| log R
|x| |2

dx

= C
∫ ∞

0

∣∣∣|v(r)| p−2
2 v(r)−|v(R)| p−2

2 v(R)
∣∣∣2

r| log R
r |2

dr

= C
∫ ∞

0

∣∣∣|u(r)| p−2
2 u(r)−R

N−kp
2 |u(R)| p−2

2 u(R)r−
N−kp

2

∣∣∣2
r1−N+kp| log R

r |2
dr (26)

for any R > 0. Consequently, from (22), (26) and Ck−2,pAk,p = Ck,p , we obtain

|u|k,p � Cp
k−2,p

∫
RN

|Δu|p
|x|(k−2)p dx

= Cp
k−2,p

(
J +Ap

k,p

∫
RN

|u|p
|x|kp dx

)

� Cp
k,p

∫
RN

|u|p
|x|kp dx+C sup

R>0

∫
RN

∣∣∣|u(x)| p−2
2 u(x)−a|x|− N−kp

2

∣∣∣2
|x|kp| log R

|x| |2
dx,
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where a = R
N−kp

2 |u(R)| p−2
2 u(R) . The proof of Theorem 2 is now complete. �

For the Rellich inequality (2), we can not apply the rearrangement techniques,
namely, Hardy-Littlewood inequality and Pólya-Szegö inequality directly. However,
thanks to Talenti’s comparison principle [31], we can prove Corollary 1 by using The-
orem 2.

Proof of Corollary 1. Let u ∈ D2,p(RN) be a non-radial function. Set f :=
−Δu ∈ Lp(RN) and ũ(x) :=

∫
RN

f #(y)
|x−y|N−2 dy . Note that ũ is a radial function, since

ũ(Ox) = ũ(x) for any O ∈ O(N) , where O(N) is the group of orthogonal matrices in
RN . By f # ∈ Lp(RN) and the Calderon-Zygmund inequality (see [17] Theorem 9.9.),
we obtain that ũ∈D2,p(RN) , and ũ satisfies −Δũ = f # a.e. in RN . Therefore we have

‖Δũ‖p = ‖Δu‖p. (27)

By Talenti’s comparison principle [31], we know that ũ � u# � 0. Hence we have

∫
RN

|ũ|β |x|γ dx �
∫

RN
|u#|β |x|γ dx if β � 0

�
∫

RN
|u|β |x|γ dx if β � 0 and γ � 0. (28)

where second inequality comes from the Hardy-Littlewood inequality (see e.g., [24]).
From (27) and (28), we obtain

∫
RN

|Δu|p dx−Cp
2,p

∫
RN

|u|p
|x|2p dx �

∫
RN

|Δũ|p dx−Cp
2,p

∫
RN

|ũ|p
|x|2p dx.

Thus, by using theorem 2 for the radial function ũ , we obtain (7). �

5. The critical Hardy inequality

It is difficult to show Theorem 3 by applying the transformation used only the vir-
tual extremal and Lemma 1. One of the reasons is that the MOW inequality (11) can not

treat the term
∫ ∣∣∣∇v · x

|x|
∣∣∣N (log R

|x|
)N−1

dx . Therefore we introduce the transformation

(29) to change the remainder term from
∫ ∣∣∣∇v · x

|x|
∣∣∣N (log R

|x|
)N−1

dx to
∫ ∣∣∣∇v · x

|x|
∣∣∣N dx .

Proof of Theorem 3. From (i) Step 2 in the proof of Theorem 1 and the Poincaré
inequality W 1,N

0 (BR(0)) ↪→ LN(BR(0)) , it is enough to prove the inequality (10) for
u = u(rω) ∈C∞

0 (BR(0)) where r = |x| . We consider the following transformation

v(sω) =
(

log
R
r

)− N−1
N

u(rω), where s = s(r) =
(

log
R
r

)−1

, ω ∈ SN−1. (29)
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Note that v(0) = v(+∞) = 0 since the support of u is compact. Then direct calculation
shows that

∂
∂ r

u(r) = −
(

N−1
N

)(
log

R
r

)− 1
N v(sω)

r
+
(

log
R
r

)N−1
N ∂

∂ s
v(sω)s′(r).

Set

K :=
∫

BR(0)

∣∣∣∣∇u · x
|x|
∣∣∣∣
N

dx−
(

N−1
N

)N ∫
BR(0)

|u|N
|x|N(log R

|x| )
N

dx. (30)

Then we have

K =
∫

SN−1

∫ R

0

∣∣∣∣ ∂
∂ r

u(rω)
∣∣∣∣
N

rN−1 −
(

N−1
N

)N |u(rω)|N
r(log R

r )N
drdSω

=
∫

SN−1

∫ R

0

∣∣∣∣∣N−1
N

(
r log

R
r

)− 1
N

v(sω)−
(

r log
R
r

)N−1
N ∂

∂ s
v(sω)s′(r)

∣∣∣∣∣
N

−
(

N−1
N

)N |v(sω)|N
r log R

r

drdSω .

Here, we can apply Lemma 3 with the choice

a =
N−1

N

(
r log

R
r

)− 1
N

v(sω) and b =
(

r log
R
r

)N−1
N ∂

∂ s
v(sω)s′(r).

By using the boundary conditions v(0) = v(+∞) = 0 and (30), we obtain

K �
∫

SN−1

∫ R

0
−N

(
N−1

N

)N−1

|v(sω)|N−2v(sω)
∂
∂ s

v(sω)s′(r)

+C

∣∣∣∣ ∂
∂ s

v(sω)
∣∣∣∣
N (

s′(r)
)N(

r log
R
r

)N−1

drdSω

=
∫

SN−1

∫ ∞

0
−N

(
N−1

N

)N−1

|v(sω)|N−2v(sω)
∂
∂ s

v(s)ds+C

∣∣∣∣ ∂
∂ s

v(sω)
∣∣∣∣
N

sN−1 dsdSω

= C
∫

RN

∣∣∣∣∇v · x
|x|
∣∣∣∣
N

dx. (31)
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Now, we apply Lemma 1 for v ∈ C1(RN \ {0})∩C0(RN) in α = β = N case, and
combine this with (31), we obtain

K � C
∫

RN

|v(x)− v(T x
|x| )|N

|x|N | log T
|x| |N

dx = C
∫

SN−1

∫ ∞

0

|v(sω)− v(Tω)|N
s| log T

s |N
dsdSω

= C
∫

SN−1

∫ R

0

∣∣∣∣(log R
r

)− N−1
N u(rω)−T

N−1
N u(Re−

1
T ω)

∣∣∣∣
N

r(log R
r )| log

(
T log R

r

) |N drdSω

= C
∫

SN−1

∫ R

0

∣∣∣u(rω)−T
N−1
N u(Re−

1
T ω)(log R

r )
N−1
N

∣∣∣N
r(log R

r )N | log
(
T log R

r

) |N drdSω .

Therefore the inequality

K � C
∫

BR(0)

|u(x)−a(log R
|x| )

N−1
N |N

|x|N | log R
|x| |N | log(T log R

|x| )|N
dx

holds for any T > 0. The proof of Theorem 3 is now complete. �

Acknowledgement. The author would like to thank Prof. Hidemitsu Wadade
(Kanazawa Univ.) for his lecture about their paper [21].

RE F ER EN C ES

[1] ADIMURTHI, N. CHAUDHURI AND M. RAMASWAMY, An improved Hardy-Sobolev inequality and
its application, Proc. Amer. Math. Soc. 130 (2002), no. 2, 489–505 (electronic).

[2] ADIMURTHI, M. GROSSI, S. AND SANTRA, Optimal Hardy-Sobolev inequalities, maximum principle
and related eigenvalue problem, J. Funct. Anal. 240 (2006), 36–83.

[3] ADIMURTHI, K. SANDEEP, Existence and non-existence of the first eigenvalue of the perturbed
Hardy-Sobolev operator, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 5, 1021–1043.

[4] ADIMURTHI, S. SANTRA, Generalized Hardy-Rellich inequalities in critical dimension and its appli-
cations, Commun. Contemp. Math. 11 (2009), no. 3, 367–394.

[5] P. BARAS, J. A. GOLDSTEIN, The heat equation with a singular potential, Trans. Amer. Math. Soc.,
284 (1984), 121–139.

[6] E. BERCHIO, D. CASSANI, AND F. GAZZOLA, Hardy-Rellich inequalities with boundary remainder
terms and applications, Manuscripta Math., 131 (2010), 427–458.
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