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PROOF OF A MONOTONICITY CONJECTURE

XUN-TUAN SU

(Communicated by I. Pinelis)

Abstract. Bennett gave a generalization of Schur’s theorem to study various moment-preserving
transformations. In this paper, we confirm a monotonicity conjecture of Bennett which is related
to the generalized Schur’s theorem and Haber’s inequality.

1. Introduction

Bennett [1] gave a generalization of Schur’s theorem and utilized its special cases
to study various moment-preserving transformations. See [6, p. 164] for the original
form of Schur’s theorem and [1] for the application of the generalized Schur’s theorem
to the study of moment sequences. Note that various moment sequences arise naturally
in many branches of mathematics and have been extensively studied. The reader is
referred to [10, 16] for the broad background of moment sequences and [7, 15] for the
latest work on some moment sequences.

While considering one special case of the generalized Schur’s theorem, Bennett
proposed the following conjecture [1, p. 31]. To formulate Bennett’s conjecture, define
the generalized binomial coefficients by

(λ
k

)
:= λ (λ − 1) · · ·(λ − k + 1)/k! , where λ

is a complex number and k is a nonnegative integer (see [4, p. 8]). Let n be a fixed
nonnegative integer and x,y be fixed nonnegative real numbers. Define a univariate
function by

F(a) =
1(n+2a−1
n

) n

∑
k=0

(
k+a−1

k

)
xk
(

n− k+a−1
n− k

)
yn−k,

where a ∈ (0,+∞) .

CONJECTURE 1. (proposed by Bennett [1, p. 31]) The function F(a) decreases.

The object of this paper is to confirm Conjecture 1 by showing the following result.

THEOREM 1. The function F(a) strictly decreases for n � 2 , x �= y and x,y > 0 .
Otherwise, F(a) is a constant function.

In the next section, we give the proof of Theorem 1 by means of the symmetry
and the unimodality of some binomial sequences. We end this paper with an interesting
open problem and the connection between Theorem 1 and Haber’s inequality.
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2. The proof of Theorem 1

We begin with preliminary terminologies. Let a0,a1, . . . ,an be a sequence of real
numbers. It is unimodal if a0 � a1 � · · · � am−1 � am � am+1 � · · · � an for some m .
In other words, the sequence {ak}0�k�n is unimodal if it does not increase strictly after
a strict decrease (see [17]). The sequence {ak}0�k�n is symmetric (or palindromic)
with center of symmetry at n/2 if ak = an−k for all k .

A real polynomial f (t) is unimodal (resp. symmetric) if the sequence of its coef-
ficients has the corresponding property. Symmetric and unimodal sequences or poly-
nomials arise often in combinatorics, algebra, geometry, analysis and have a number
of applications in computer science, probability and statistics. See [3, 11] for a broad
overview of the subject.

The sequence of binomial coefficients {(nk)}n
k=0 are probably the best-known ex-

ample of symmetric and unimodal sequences. More precisely, the binomial sequence
{(nk)}n

k=0 is symmetric since
(n
k

)
=
( n
n−k

)
, and is (strictly) unimodal since

(n
0

)
<
(n
1

)
<

· · · < ( n
�n/2�

)
, where �n/2� stands for the largest integer not exceeding the center n/2.

See [9, 12, 13, 14] for the results on the unimodality of various binomial sequences.

LEMMA 1. Suppose that f (t) = ∑n
i=0 aiti is a symmetric polynomial of degree n

and that f (t) = (t − 1)2h(t) . Then h(t) is also symmetric. In addition, if ∑k
i=0 ai > 0

for 0 � k � �(n−2)/2�, then h(t) is strictly unimodal and the coefficients of h(t) are
all positive.

Proof. It is known that if f (t) and g(t) are two symmetric polynomials and
f (t) = g(t)h(t) , then h(t) is also symmetric ([14, Corollary 2.3(ii)]). Thus, the sym-
metry of h(t) in the lemma follows from that of (t−1)2 .

Next we will prove the second part of the lemma. It is trivially true when n = 2.
For n = 3, suppose that h(t) = b0 + b1t . Then b0 = b1 = a0 = a1 > 0, which yields
the lemma.

For n � 4, assume that h(t) = ∑n−2
k=0 bktk . In order to show the strict unimodality

of h(t) and the positivity of bk s when ∑k
i=0 ai > 0 for 0 � k � �(n−2)/2�, it suffices

to prove that 0 < b0 < b1 < · · · < b�(n−2)/2� due to the symmetry of h(t) . Indeed, note

that bk = ∑k
i=0(k+1− i)ai since

bk = [tk]h(t) = [tk] f (t)(1− t)−2 = [tk] f (t) ∑
j�0

(
1+ j

j

)
t j =

k

∑
i=0

(k+1− i)ai.

Then bk−bk−1 = ∑k
i=0 ai > 0 for 1 � k � �(n−2)/2� and b0 = a0 > 0, as desired. �

LEMMA 2. Let a be a real number and n an integer (n � 2 ). Then

� n−2
2 �

∑
k=0

(
k+a−1

k

)(
n− k+a−1

n− k

)
=

⎧⎪⎪⎨
⎪⎪⎩

1
2

(n+2a−1
n

)− �n/2�+a
�n/2�+1

(�n/2�+a−1
�n/2�

)2
, n is odd;

1
2

((n+2a−1
n

)− (n/2+a−1
n/2

)2)
, n is even.
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Proof. Note that both sides of the desired identities can be viewed as polynomials
in a of fixed degree if n is fixed. Thus, it suffices to show that the identities in the
lemma hold under the assumption that a is any positive integer.

Suppose that a is a positive integer. It is known that the number of ways of placing
n indistinguishable balls into 2a distinguishable boxes equals

(n+2a−1
n

)
(see [4, p. 15]).

Now we divide the boxes into two classes: one class contains a boxes and each box
is colored red, the other class consists of the remaining boxes which are colored blue.
Then one distribution of n indistinguishable balls into 2a distinguishable boxes can be
obtained by placing k balls into one class of boxes and n− k balls into the other class
of boxes. It follows that

n

∑
k=0

(
k+a−1

k

)(
n− k+a−1

n− k

)
=
(

n+2a−1
n

)
. (1)

Since the roles of the two colors are completely symmetric, when n is odd, we
obtain the half sum

� n−2
2 �

∑
k=0

(
k+a−1

k

)(
n−k+a−1

n−k

)
=

1
2

((
n+2a−1

n

)
−2

(⌊ n
2

⌋
+a−1⌊
n
2

⌋ )(⌊ n
2

⌋
+a⌊

n
2

⌋
+1

))

=
1
2

(
n+2a−1

n

)
−
⌊

n
2

⌋
+a⌊

n
2

⌋
+1

(⌊ n
2

⌋
+a−1⌊
n
2

⌋ )2

.

When n is even, the second required identity can be obtained in a similar way. �

We are now in a position to prove Theorem 1.

The proof of Theorem 1. Obviously, F(a) ≡ 0 if x or y equals to 0.
Now assume that x and y are both positive. Set t = x

y . Then

F(a) =
yn(n+2a−1
n

) n

∑
k=0

(
k+a−1

k

)(
n− k+a−1

n− k

)
tk.

For n = 0,1, it is clear that F(a) is a constant function.
For n � 2, assume that a1,a2 be two positive numbers and a2 > a1 . We will prove

that F(a1) > F(a2) if t �= 1 and F(a1) = F(a2) if t = 1. Note that

F(a1)−F(a2) =
yn(n+2a1−1

n

)(n+2a2−1
n

)G(t),

where we set G(t) = ∑n
k=0 Aktk with

Ak =
(

n+2a2−1
n

)(
k+a1−1

k

)(
n− k+a1−1

n− k

)

−
(

n+2a1−1
n

)(
k+a2−1

k

)(
n− k+a2−1

n− k

)
.
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In the rest of the proof, we regard t as an indeterminate. So F(a1) , F(a2) and
G(t) are three polynomials in t . Note that F(a1) and F(a2) are both symmetric with

the same center due to the symmetry of the binomial sequence
{(k+a−1

k

)(n−k+a−1
n−k

)}n

k=0
.

Then G(t) is symmetric since it is a linear combination of F(a1) and F(a2) .
In order to prove Theorem 1, it suffices to show respectively that (t − 1)2|G(t) ,

i.e., G(t) = (t −1)2H(t) , and that the coefficients of H(t) are all positive.
To show that (t − 1)2|G(t) , it suffices to prove G(1) = 0 and G′(1) = 0 respec-

tively.
Indeed, it follows from (1) that

G(1) =
n

∑
k=0

Ak

=
(

n+2a2−1
n

) n

∑
k=0

(
k+a1−1

k

)(
n− k+a1−1

n− k

)

−
(

n+2a1−1
n

) n

∑
k=0

(
k+a2−1

k

)(
n− k+a2−1

n− k

)

=
(

n+2a2−1
n

)(
n+2a1−1

n

)
−
(

n+2a1−1
n

)(
n+2a2−1

n

)
= 0.

Similarly,

G′(1) =
n

∑
k=1

kAk

=
(

n+2a2−1
n

) n

∑
k=1

k

(
k+a1−1

k

)(
n− k+a1−1

n− k

)

−
(

n+2a1−1
n

) n

∑
k=1

k

(
k+a2−1

k

)(
n− k+a2−1

n− k

)

=
(

n+2a2−1
n

) n

∑
k=1

a1

(
k+a1−1

k−1

)(
n− k+a1−1

n− k

)

−
(

n+2a1−1
n

) n

∑
k=1

a2

(
k+a2−1

k−1

)(
n− k+a2−1

n− k

)

= a1

(
n+2a2−1

n

) n−1

∑
k=0

(
k+a1

k

)(
n− k−1+a1−1

n−1− k

)

−a2

(
n+2a1−1

n

)n−1

∑
k=0

(
k+a2

k

)(
n−1− k+a2−1

n−1− k

)

= a1

(
n+2a2−1

n

)(
n+2a1−1

n−1

)
−a2

(
n+2a1−1

n

)(
n+2a2−1

n−1

)
= 0.
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Thus, G(t) = (t−1)2H(t) . Moreover, since G(t) is symmetric, H(t) is also symmetric
by Lemma 1.

For the positivity of the coefficients of H(t) , by Lemma 1, it suffices to prove
∑k

i=0 Ai > 0 for 0 � k � �(n−2)/2�, which also yields the strict unimodality of H(t) .
Denote Bk = ∑k

i=0 Ai for brevity. We will prove respectively that B0,B�(n−2)/2� > 0
and that the sequence {Bk}1�k��(n−2)/2� is unimodal. Then each Bk > 0.

Note that

A0 =
(

n+2a2−1
n

)(
n+a1−1

n

)
−
(

n+2a1−1
n

)(
n+a2−1

n

)

=
1

n!2

(
n

∏
i=1

(n+2a2− i)(n+a1− i)−
n

∏
i=1

(n+2a1− i)(n+a2− i)

)

and

(n+2a2− i)(n+a1− i)− (n+2a1− i)(n+a2− i) = (n− i)(a2−a1) � 0,

where the equality holds if and only if n = i . This implies that B0 = A0 > 0.
Now consider the positivity of B�(n−2)/2� . When n is even, by Lemma 2,

B�(n−2)/2� =
(

n+2a2−1
n

)
· 1
2

((
n+2a1−1

n

)
−
( n

2 +a1−1
n
2

)2
)

−
(

n+2a1−1
n

)
· 1
2

((
n+2a2−1

n

)
−
(n

2 +a2−1
n
2

)2
)

=
1
2

((
n+2a1−1

n

)( n
2 +a2−1

n
2

)2

−
(

n+2a2−1
n

)( n
2 +a1−1

n
2

)2
)

.

Note that(
n+2a1−1

n

)( n
2 +a2−1

n
2

)2

−
(

n+2a2−1
n

)( n
2 +a1−1

n
2

)2

=
1

n!( n
2)!2

[
n

∏
i=1

(n+2a1− i)
n/2

∏
i=1

(n
2

+a2− i
)2−

n

∏
i=1

(n+2a2− i)
n/2

∏
i=1

(n
2

+a1− i
)2
]

=
2

n
2

n!( n
2)!2

n/2

∏
i=1

(n
2

+a1− i
)(n

2
+a2− i

)

×
[

n/2

∏
i=1

(n+2a1−2i+1)
(n

2
+a2− i

)
−

n/2

∏
i=1

(n+2a2−2i+1)
(n

2
+a1− i

)]

> 0,

which follows from that

(n+2a1−2i+1)
(n

2
+a2− i

)
− (n+2a2−2i+1)

(n
2

+a1− i
)

= a2−a1 > 0.
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Hence B�(n−2)/2� > 0.
For odd n , by Lemma 2 again, we get

B�(n−2)/2� =
(

n+2a2−1
n

)(
1
2

(
n+2a1−1

n

)
−
⌊

n
2

⌋
+a1⌊

n
2

⌋
+1

(⌊ n
2

⌋
+a1−1⌊

n
2

⌋ )2)

−
(

n+2a1−1
n

)(
1
2

(
n+2a2−1

n

)
−
⌊

n
2

⌋
+a2⌊

n
2

⌋
+1

(⌊ n
2

⌋
+a2−1⌊

n
2

⌋ )2)

=
1⌊

n
2

⌋
+1

[(⌊n
2

⌋
+a2

)(n+2a1−1
n

)(⌊ n
2

⌋
+a2−1⌊

n
2

⌋ )2

−
(⌊n

2

⌋
+a2

)(n+2a2−1
n

)(⌊ n
2

⌋
+a1−1⌊

n
2

⌋ )2
]

=
1

(
⌊

n
2

⌋
+1)n!

⌊
n
2

⌋
!2

[(⌊n
2

⌋
+a2

) n

∏
i=1

(n+2a1− i)
�n/2�
∏
i=1

(⌊n
2

⌋
+a2− i

)2

−
(⌊n

2

⌋
+a1

) n

∏
i=1

(n+2a2− i)
�n/2�
∏
i=1

(⌊n
2

⌋
+a1− i

)2
]

=
1

(
⌊

n
2

⌋
+1)n!

⌊
n
2

⌋
!2

·2�n/2�
�n/2�
∏
i=1

(⌊n
2

⌋
+a1− i

)(⌊n
2

⌋
+a2− i

)

×
[(⌊n

2

⌋
+a2

)
(n+2a1−1)

�n/2�
∏
i=1

(n+2a1−2i)
(⌊n

2

⌋
+a2− i

)

−
(⌊n

2

⌋
+a1

)
(n+2a2−1)

�n/2�
∏
i=1

(n+2a2−2i)
(⌊n

2

⌋
+a1− i

)]

> 0,

where the strict inequality follows from that(⌊n
2

⌋
+a2

)
(n+2a1−1)−

(⌊n
2

⌋
+a1

)
(n+2a2−1) = 2(a2−a1) > 0,

(n+2a1−2i)
(⌊n

2

⌋
+a2− i

)
− (n+2a2−2i)

(⌊n
2

⌋
+a1− i

)
= a2−a1 > 0.

Now we will prove that {Bk}0�k��(n−2)/2� is unimodal. It is clearly true when
n = 2,3. Consider the cases when n � 4. Note that Ak = Bk −Bk−1 . By the definition
of unimodality, we will prove the unimodality of {Bk}0�k��(n−2)/2� by showing that
the sequence {Ak}1�k��(n−2)/2� will not be positive afterwards once it is negative.

Set Ak = αk −βk , where

αk =
(

n+2a2−1
n

)(
k+a1−1

k

)(
n− k+a1−1

n− k

)
,
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βk =
(

n+2a1−1
n

)(
k+a2−1

k

)(
n− k+a2−1

n− k

)
.

Clearly, βk > 0 since n � k � 1 and a1,a2 > 0.
To prove the desired change of the signs of {Ak} , it suffices to show a chain of

inequalities: for 1 � k �
⌊

n−2
2

⌋−1,

Ak+1

βk+1
=

αk+1 −βk+1

βk+1
<

αk −βk

βk
=

Ak

βk
. (2)

Indeed, the following equivalent form of (2)

αk+1

βk+1
<

αk

βk

is valid because
αk+1βk

αkβk+1
=

(k+a1)(n− k+a2−1)
(k+a2)(n− k+a1−1)

and

(k+a1)(n− k+a2−1)− (k+a2)(n− k+a1−1) = (n−2k+1)(a1−a2) < 0.

Thus, the sequence {Bk}0�k��(n−2)/2� is unimodal. The proof is completed. �

REMARK 1. In the proof of Theorem 1, we get a positive binomial sequence
{Bk}0�k�n−2 , where Bk = ∑k

i=0 Ai . Furthermore, by Lemma 1, there is another pos-
itive binomial sequence {∑k

i=0(k + 1− i)Ai}n
k=0 which follows from the positivity of

the coefficients of H(t) . It would be interesting to give combinatorial interpretations
for these two positive binomial sequences.

REMARK 2. Bennett[1] revealed the connection between Schur’s theorem and
Haber’s inequality. The original version of Haber’s inequality [5] states that, if x,y � 0
and n is a positive integer, then(

x+ y
2

)n

� xn + xn−1y+ · · ·+ xyn−1 + yn

n+1
,

which is a special case of Schur’s theorem with N = 2. Haber’s inequality has been
extensively developed. Its convexity version has been shown to connect with moment
sequences (see [2]). As mentioned in [1], Conjecture 1 implies that when a → ∞ ,
Haber’s inequality follows from the monotonicity of F(a) . When a → 0,

xn + xn−1y+ · · ·+ yn

n+1
� xn + yn

2
,

which is an inequality complementary to Haber’s inequality. So the extension of Haber’s
inequality by Theorem 1 would be expected to be developed further.
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