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A GENERALIZATION OF YOUNG-TYPE INEQUALITIES

DAESHIK CHOI

(Communicated by M. Praljak)

Abstract. In this paper, we prove a simple but useful result and apply it to give a generalization
of Young-type inequalities developed by many researchers. Applications to positive definite
matrices will be also provided.

1. Introduction
The classical Young’s inequality states that if a,b >0 and 0 <v < 1, then

(1—v)a+vb>a'""p". (D)

There are many refinements of Young’s inequality and its reverse. Kittaneh and Man-
asrah [6, 7] improved (1) as follows:

a"7'b" + ro(va—Vb)?, )
a' '’ + Ro(va—Vb)?, 3)

(I—=v)a+v

b
(I1—=v)a+vb

NV

where 9 = min{v,1 —v} and Ry = max{v, 1 —v} whose notations will be used through-
out this paper. Hirzallah and Kittaneh [5] and He and Zou [4], respectively, obtained
other refinements:

> (alfvbv)z—l—r%(a—b)z, 4)
< (@7'b") + R(a—b)>. 5)

(1= v)a+vb)>*
(1= v)a+vb)*

Recently, Manasrah and Kittaneh refined Young’s inequality as
(L=v)a+vb)" = (a'Vb*)" + i (a™? — bm/2)? (6)

for any positive integer m. We remark that (2) and (4) are the cases m = 1,2 of (6),
respectively.
This paper is motivated by the following observation:
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e (2) and (4) hold equality when v = %, but (6) which gives
(a+b)" = d"+b"+ (2" —2)(ab)"/?
when v = % does not satisfy such a property for m > 2.
e Considering the form of (3) and (5), we may expect that
(1 =v)a+vb)" < (a'="b")" + Ry (a"/? — b™/?)?

holds for any positive integer m. However, as numerical examples show, the
above does not hold for m > 2.

In this paper, we will present a generalization of (2)—(5), which solves the problems
stated above. As applications, we will give some inequalities involving positive definite
matrices. In the last section, we will generalize other Young-type inequalities. For
readers interested in recent papers closely connected to this paper, we refer to [1, 3].

2. Generalized Young’s inequalities

Our main result is the following theorem which will be proved later in this section.

THEOREM 1. If a,b >0 and 0 < v < 1, then for any positive integer m, we have

(L=v)a+vb)" > (a'"b")" + (2ry)" ((“;b)m - \/E") 7 7
(1 =v)a+vb)" < (a' ") + (2Ro)" ((C’zib)m - @) : )

where ry = min{v,1 —v} and Ry = max{v,1 —v}.

Before we give a proof of the theorem, we observe the following obvious proper-
ties of the result:

1. (2)—(5) are the cases m = 1,2 of the theorem.
2. Equality holds in (7) and (8) when v = 1.
We start with a simple, but useful result in studying Young-type inequalities.
PROPOSITION 1. Let a,b,c,d be positive numbers with a > ¢ and b > d, and let
Oy = (%)Um for m=1,2,... Then,
1. Oy — 5 as m— .

2. {0} is decreasing if ad > bc and increasing if ad < bc.
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mA\ 1/m
Proof. Since ¢, = & (%) ,¢/a<1,and d/b < 1, it is obvious that

ym 1/m
Oy — % as m — oo. Next, we show monotonicity of { o, }. Since o, = § <((Z;;, _ 11> ,

m_\U/m o
(Zm—:l) is decreasing if a > b > 1

we may assume ¢ = d = 1 and show that ¢, =
and increasing if b > a > 1. Moreover, it suffices only to show the decreasing case,

since
a"—1 1/m B 1/ P 1/m
bm—1 P \am—1 '
Simple algebra shows that oy, > 04,41 is equivalent to

(berl_l)m (aerl_l)m
(bm _ l)m-H Z (am _ l)m-H : (9)

([m+l —1 )m

For a fixed positive integer m, let f(r) = Ty for £ > 1. Since

_m(m—|— 1)(1‘_ l)tmfl(thrl _ 1)m71
RV

f is decreasing on (1,e0). Thus if ¢ > b > 1, then (9) holds. [

fle)=

<0,

COROLLARY 1. For 0 <v <1 and a,b> 0 with a# b, let u, = (1 —v)a+vb
and 8, = a'~'b". For convenience, we denote |1, /2 and &y 5 by ) and &, respectively.

Then for all positive integers m, if % > %, then

m m\ 1/m _
Hy < (ouv 51/ ) < Hy 5"

mn o) T u-9

andzf”‘ 3,then

My — 8y < W' — 6" o < &
p—9 —om i
Equivalently, the following holds for all positive integers m:

m__ Sm 1/m _
mm{uv 1y — 6v}<<uv 5v) gmax{&,“v &}'
poopu—29 pm—om uou—98

m__sm
Proof. Let o, = (“L o

1/m
“;n76m> . Since u, > 8, forall 0 <v < 1, the desired result
follows from Proposition 1. [J

Now we prove Theorem | as follows.

Proof of Theorem 1. Under the same notation of Corollary 1, the inequalities in
Theorem 1 can be written as
6‘7/1’1 (2r0)m ( m __ 671’!) ,

m>
uv < 8+ (2R)" (W™ = 8").

v
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Since they obviously hold when v=0, v=1, or a = b, we assume 0 < v < 1 and
a # b. Then the above inequalities are equivalent to

m_ gm 1/m
2 < (%) < 2R, (10)
. _gm 1/m
Since ( pri 5,,7) is between % and ”‘ by Corollary 1, it suffices to show that
e

% and “‘ —5~ are between 2rg and 2R. Slmple algebra shows that

2ry < % < 2Ry
<~ (a+b)ro<(1—=v)a+vb< (a+b)Ry
< (l—=v—rp)a+(v—ro)b =0,
and (Ry— 1+v)a+ (Rp—v)b > 0.
Since ry < v and 1 —v < Ry, the above holds for all v. Meanwhile, (10) holds for
m=1by(@2)and (3). O

REMARK 1. By direct computation, we can show that (7) improves (6). Since
AN m
(@' B*)" + (2r0)™ ((a—; ) —Vab ) > (alfvbv)m + r{’f(am/2 — 22
— (a+b)"— (2Vab)" > d" +b" —2\ab ",

we will show f,,(x) >0 for x >0 and m=1,2,..., where

F(x) = (122" — 2 — 1 — 32 4 2,

Moreover, since x*" f,,(x 1) = f,,(x), we may assume x > 1. We use induction on 7.
Clearly, f; =0. Suppose f,,(x) >0 forall x > 1. Then, since

(1_|_x2)m>2mxm+1_|_x2m_2xm’
we have
f;;1+1(x) _ 2(m—|— 1){x(l_|_x2)m_2mxm_x2m+l_|_xm}
> 2(m+ l){x(zrnxm+l+x2m_2xzn) _2mxm_x2m+l+xm}
=2(m+ )x {2 + 1 —2x" = 2"x" LY
Let gy (x) = 2"x" + 1 —2x" — 2"¢"~ 1 + ¥"~1 Since g, (1) =0 and
gn(x) = 2" {m(2" —2)x — (m—1)(2" - 1)}
> 2" m(2" = 2) — (m— 12"~ 1)}
=x"202"—m—1)
2 07

i1(x) =0 for x > 1. Thus f,1 > 0 follows from f,,;1(1) =0.
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3. Applications

In this section, we show some applications of Theorem 1 to matrix inequalities.
Let M, be the space of n x n complex matrices. For A € M,;, A > 0 denotes that A is
positive definite, i.e., x*Ax > 0 for all nonzero x € C". For A,B >0 and 0 <v <1,
the v-arithmetic mean of A and B is defined by AV, B = (1 —v)A + vB. Similarly, we
define the ¢-weighted geometric mean of two positive definite matrices A,B € M,, by
A#,B = A'2(A=1/2BA=1/2)' A1/2 for any real number 7. For convenience, we denote
AV ! B by AVB.

Using (6), Manasrah and Kittaneh [8] improved the inequalities
[tr(AV,B)]" > (w]A'vBY|)",
[det(AV,B)]" > det(A'VB")™,
[(L=w)I[[AX I+ vI[IXBII" > [[]A"" X B[||"

for A,B,X € M, with A,B >0 and 0 <v < 1, where |X| = (X*X)!/? and |||-||| stands
for any unitarily invariant norm on M,,. Since (7) is stronger than (6), their results can
be further improved. We state the following without proof. See [8] for detailed proofs.

THEOREM 2. Let A,B € M, be positive definite. Then for 0 <v <1 and m =
1,2,..., we have

1 [tr(AV,B)]" > (tr|AY="B"|)" + (2r0)" <(trAVB)m—\/trAter>,
m —vpv\m mn etA/"4+detBY/" \mn m
2. [det(AV,B)]" > det(A'"B")" + (2ro) ((%) — \/det(AB) )

3. [(1=w)IlIAX] ||+ vI[XBI" > |14~ XBY|[" §
AX XB m
o (2ry ( (AU TAXTITIXBT" )
forall X e M,,.

To show matrix (or operator) inequalities corresponding to their scalar versions,
we can use the operator monotonicity of continuous functions; that is, if f is a real
valued continuous function defined on the spectrum of a self-adjoint operator A, then
f(t) = 0 for every ¢ in the spectrum of A implies f(A) is a positive operator. The
following follows from the property and Theorem 1.

THEOREM 3. Let A,B € M, be positive definite. Then for 0 <v < 1 and m =
1,2,..., we have

A#,(AV\B) > A#yB + (2r9)" (A#,,(AVB) — A#,, 1B) , (11)
A#y,(AV,B) < Aty B+ (2Ro)" (A#,(AVB) — A#,, /1B) . (12)

Proof. For any positive definite matrix X € M,,, it follows from Theorem 1 with

a =1 that
I+X\"
(L =)+ vX)™ = X"+ (2r)" <<+T> _Xm/2) ,
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where I is the identity matrix in M, . Letting X = A~'/2BA~!/2 and multiplying both
sides of the above inequality by A'/? on their left and right hand sides, we get (11). We
can also derive (12) in the same way. [J

4. Other generalized inequalities

In this section, we will show more examples which can be generalized by Propo-
sition 1. For convenience of notation, we have used u, and §,, respectively, for the
v-weighted arithmetic and geometric means of a and b in the second section. As
shown in [2] and other references, however, we will now use the following well-known
notation:

aVyb = (1 —v)a+vb,

attb = a' b,

alb = ((1=v)a ' 4vp~H™!
for a,b >0 and 0 <v<1. When v= %, we write aVb, a#b, and a!b for brevity,
respectively.

There are many inequalities which can be generalized by Proposition 1, but we
will apply the proposition to the following ones shown in [2] and its references.

THEOREM 4. For a,b >0 and 0 <v < 1, we have
1. al,b+2ry(aVb—a'b) <aV,b < al,b+2Ry(aVb—alb),

2. K(h,2)0a#,b < aV,b < K(h,2)Roat#,b, where h = s and K(t,2) is the Kan-

. _ (t+1)?
torovich constant defined by K(t,2) = ~——.

We generalize the first one in the above theorem as follows.

THEOREM 5. For a,b >0, 0<v< 1, and m=1,2,..., we have

(@Vyb)" = (alyb)" + (2ro)" ((aVh)" — (a!b)™)),
(@Vyb)™ < (alyb)" + (2Ro)™ ((aVb)™ — (alb)™)).

Proof. Since equality holds in them when either a = b or v =0, 1, we may assume
a# b and 0 <v < 1. Then we have

by the first part of Theorem 4. Thus it suffices to show

aV,b
aVb

by Proposition 1, and the above is already shown in the proof of Theorem 1. [

2rp < < 2R



A GENERALIZATION OF YOUNG-TYPE INEQUALITIES 105

Note that the second part of Theorem 4 can be written as

aVb\ 2" aVb\ *Ro
—_— < < | — .
(a#b) a,b <aV,b < (a#b) at,b (13)
or equivalently, using natural logarithm,
In(aV,b) > In(a#,b) + 2ro (In(aVb) — In(a#b)), (14)

n(a#,b) + 2Ry (In(aVD) — In(at#b)).

THEOREM 6. For a,b> 1, 0<v<1,and m=1,2,..., we have

[In(aV,b)]"
(In(aV,b)]"

(In(a#,b)]" + (2r0)™ ([In(aVb)]" — [In(a#b)]"),

>
< [In(a#,b)]" + (2Ro)" ([In(aVb)]" — [In(a#b)]") .

Proof. Without loss of generality, we may assume a # b and 0 <v < 1. Since

In(aV,b) — In(at#,D)

2rp < < 2R

"0 Tn(aVb) — In(a#b) 0

by (14), it suffices to show
In(aV,b)
2rp < ——= < 2R
"OS T@ve) S

by Proposition 1, which is equivalent to

(aVbh)*" < aV,b < (aVb)*Ro. (15)
Note that (13) can be expressed as

(aVbh)*0g' ~"=0pY =70 < qV b < (aVb)*Rog! ~Ropr—Fo, (16)

Since a,b > 1 and ro <v,1 —v< Ry, we have a' 7V""0p"""0 > | and a' " ~Rop'—Ro < 1.
Thus (15) follows from (16). [

Replacing a,b with a=!,b~!, respectively, in the above theorem, we get the fol-
lowing.

COROLLARY 2. For a,b€ (0,1), 0<v< 1, and m=1,2,..., we have

|In(a!,b)[™

™ > |In(athb)|" + (2r0)™ (|In(alb)|" — |In(atb)|")
[In(atvb)" < |

In(a#,b) " + (2Ro)" (|In(al)|" — | In(a#b)|") .

Acknowledgement. The author acknowledges an anonymous referee for his/her
comments and suggestions.



106

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

D. CHol

REFERENCES

D. CHOI, M. KRNIC, AND J. PECARIC, Improved Jensen-type inequalities via linear interpolation
and applications, J. Math. Inequal. 11 (2017), 301-322.

D. CHOI AND M. SABABHEH, Inequalities related to the arithmetic, geometric, and harmonic means,
J. Math. Ineq., vol. 11, no. 1 (2017), 1-16.

M. G. GHAEMI, N. GHARAKHANLU, AND S. FURUICHI, On the reverse Young and Heinz inequali-
ties, J. Math. Inequal. 11 (2017), 641-652.

C. HE AND L. Zou, Some inequalities involving unitarily invariant norms, Math. Inequal. Appl. 12
(4) (2012) 767-776.

O. HIRZALLAH AND F. KITTANEH, Matrix Young inequalities for the Hilbert—Schmidt norm, Linear
Algebra Appl. 308 (2000) 77-84.

F. KITTANEH AND Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math.
Anal. Appl. 361 (2010), pp. 262-269.

F. KITTANEH AND Y. MANASRAH, Reverse Young and Heinz inequalities for matrices, Linear Mul-
tilinear Algebra. 59 (2011), pp. 1031-1037.

Y. MANASRAH AND F. KITTANEH, A generalization of two refined Young inequalities, Positivity
(2015) 19: 757-768.

(Received March 28, 2017) Daeshik Choi

Department of Mathematics and Statistics
Southern Illinois University Edwardsville
Box 1653, Edwardsville, IL 62026
e-mail: dchoi@siue.edu

Mathematical Inequalities & Applications

mia@

v.ele-math.com

ele-math.com



