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A GENERALIZATION OF YOUNG–TYPE INEQUALITIES
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(Communicated by M. Praljak)

Abstract. In this paper, we prove a simple but useful result and apply it to give a generalization
of Young-type inequalities developed by many researchers. Applications to positive definite
matrices will be also provided.

1. Introduction

The classical Young’s inequality states that if a,b > 0 and 0 � v � 1, then

(1− v)a+ vb � a1−vbv. (1)

There are many refinements of Young’s inequality and its reverse. Kittaneh and Man-
asrah [6, 7] improved (1) as follows:

(1− v)a+ vb � a1−vbv + r0(
√

a−
√

b)2, (2)

(1− v)a+ vb � a1−vbv +R0(
√

a−
√

b)2, (3)

where r0 = min{v,1−v} and R0 = max{v,1−v} whose notations will be used through-
out this paper. Hirzallah and Kittaneh [5] and He and Zou [4], respectively, obtained
other refinements:

((1− v)a+ vb)2 �
(
a1−vbv)2

+ r2
0(a−b)2, (4)

((1− v)a+ vb)2 �
(
a1−vbv)2

+R2
0(a−b)2. (5)

Recently, Manasrah and Kittaneh refined Young’s inequality as

((1− v)a+ vb)m �
(
a1−vbv)m

+ rm
0 (am/2 −bm/2)2 (6)

for any positive integer m . We remark that (2) and (4) are the cases m = 1,2 of (6),
respectively.

This paper is motivated by the following observation:
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• (2) and (4) hold equality when v = 1
2 , but (6) which gives

(a+b)m � am +bm +(2m−2)(ab)m/2

when v = 1
2 does not satisfy such a property for m > 2.

• Considering the form of (3) and (5), we may expect that

((1− v)a+ vb)m �
(
a1−vbv)m

+Rm
0 (am/2−bm/2)2

holds for any positive integer m . However, as numerical examples show, the
above does not hold for m > 2.

In this paper, we will present a generalization of (2)–(5), which solves the problems
stated above. As applications, we will give some inequalities involving positive definite
matrices. In the last section, we will generalize other Young-type inequalities. For
readers interested in recent papers closely connected to this paper, we refer to [1, 3].

2. Generalized Young’s inequalities

Our main result is the following theorem which will be proved later in this section.

THEOREM 1. If a,b > 0 and 0 � v � 1 , then for any positive integer m, we have

((1− v)a+ vb)m � (a1−vbv)m +(2r0)m
((

a+b
2

)m

−
√

ab
m
)

, (7)

((1− v)a+ vb)m � (a1−vbv)m +(2R0)m
((

a+b
2

)m

−
√

ab
m
)

, (8)

where r0 = min{v,1− v} and R0 = max{v,1− v} .

Before we give a proof of the theorem, we observe the following obvious proper-
ties of the result:

1. (2)–(5) are the cases m = 1,2 of the theorem.

2. Equality holds in (7) and (8) when v = 1
2 .

We start with a simple, but useful result in studying Young-type inequalities.

PROPOSITION 1. Let a,b,c,d be positive numbers with a > c and b > d , and let

αm =
(

am−cm

bm−dm

)1/m
for m = 1,2, . . . Then,

1. αm → a
b as m → ∞ .

2. {αm} is decreasing if ad � bc and increasing if ad � bc.
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Proof. Since αm = a
b

(
1−(c/a)m

1−(d/b)m

)1/m
, c/a < 1, and d/b < 1, it is obvious that

αm → a
b as m→∞ . Next, we show monotonicity of {αm} . Since αm = c

d

(
(a/c)m−1
(b/d)m−1

)1/m
,

we may assume c = d = 1 and show that αm =
(

am−1
bm−1

)1/m
is decreasing if a � b > 1

and increasing if b � a > 1. Moreover, it suffices only to show the decreasing case,
since (

am−1
bm−1

)1/m

= 1/

(
bm−1
am−1

)1/m

.

Simple algebra shows that αm � αm+1 is equivalent to

(bm+1−1)m

(bm −1)m+1 � (am+1−1)m

(am −1)m+1 . (9)

For a fixed positive integer m , let f (t) = (tm+1−1)m

(tm−1)m+1 for t > 1. Since

f ′(t) =
−m(m+1)(t−1)tm−1(tm+1 −1)m−1

(tm −1)m+2 < 0,

f is decreasing on (1,∞) . Thus if a � b > 1, then (9) holds. �

COROLLARY 1. For 0 < v < 1 and a,b > 0 with a �= b, let μv = (1− v)a+ vb
and δv = a1−vbv . For convenience, we denote μ1/2 and δ1/2 by μ and δ , respectively.

Then for all positive integers m, if μv
μ � δv

δ , then

μv

μ
�

(
μm

v − δm
v

μm− δm

)1/m

� μv − δv

μ − δ

and if μv
μ � δv

δ , then

μv − δv

μ − δ
�

(
μm

v − δm
v

μm − δm

)1/m

� μv

μ
.

Equivalently, the following holds for all positive integers m:

min

{
μv

μ
,

μv− δv

μ − δ

}
�

(
μm

v − δm
v

μm− δm

)1/m

� max

{
μv

μ
,

μv− δv

μ − δ

}
.

Proof. Let αm =
(

μm
v −δm

v
μm−δm

)1/m
. Since μv > δv for all 0 < v < 1, the desired result

follows from Proposition 1. �
Now we prove Theorem 1 as follows.

Proof of Theorem 1. Under the same notation of Corollary 1, the inequalities in
Theorem 1 can be written as

μm
v � δm

v +(2r0)m (μm − δm) ,
μm

v � δm
v +(2R0)m (μm− δm) .
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Since they obviously hold when v = 0, v = 1, or a = b , we assume 0 < v < 1 and
a �= b . Then the above inequalities are equivalent to

2r0 �
(

μm
v − δm

v

μm − δm

)1/m

� 2R0. (10)

Since
(

μm
v −δm

v
μm−δm

)1/m
is between μv

μ and μv−δv
μ−δ by Corollary 1, it suffices to show that

μv
μ and μv−δv

μ−δ are between 2r0 and 2R0 . Simple algebra shows that

2r0 � μv

μ
� 2R0

⇐⇒ (a+b)r0 � (1− v)a+ vb � (a+b)R0

⇐⇒ (1− v− r0)a+(v− r0)b � 0,

and (R0 −1+ v)a+(R0− v)b � 0.

Since r0 � v and 1− v � R0 , the above holds for all v . Meanwhile, (10) holds for
m = 1 by (2) and (3). �

REMARK 1. By direct computation, we can show that (7) improves (6). Since

(a1−vbv)m +(2r0)m
((

a+b
2

)m

−
√

ab
m
)

�
(
a1−vbv)m

+ rm
0 (am/2 −bm/2)2

⇐⇒ (a+b)m− (2
√

ab)m � am +bm−2
√

ab
m
,

we will show fm(x) � 0 for x > 0 and m = 1,2, . . . , where

fm(x) = (1+ x2)m −2mxm −1− x2m +2xm.

Moreover, since x2m fm(x−1) = fm(x) , we may assume x � 1. We use induction on m .
Clearly, f1 ≡ 0. Suppose fm(x) � 0 for all x � 1. Then, since

(1+ x2)m � 2mxm +1+ x2m−2xm,

we have

f ′m+1(x) = 2(m+1)
{
x(1+ x2)m −2mxm − x2m+1 + xm}

� 2(m+1)
{
x
(
2mxm +1+ x2m−2xm)−2mxm − x2m+1 + xm}

= 2(m+1)x
{
2mxm +1−2xm−2mxm−1 + xm−1} .

Let gm(x) = 2mxm +1−2xm−2mxm−1 + xm−1 . Since gm(1) = 0 and

g′m(x) = xm−2 {m(2m −2)x− (m−1)(2m−1)}
� xm−2 {m(2m −2)− (m−1)(2m−1)}
= xm−2(2m−m−1)
� 0,

f ′m+1(x) � 0 for x � 1. Thus fm+1 � 0 follows from fm+1(1) = 0.
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3. Applications

In this section, we show some applications of Theorem 1 to matrix inequalities.
Let Mn be the space of n×n complex matrices. For A ∈ Mn , A > 0 denotes that A is
positive definite, i.e., x∗Ax > 0 for all nonzero x ∈ Cn . For A,B > 0 and 0 � v � 1,
the v-arithmetic mean of A and B is defined by A∇vB = (1− v)A+ vB . Similarly, we
define the t -weighted geometric mean of two positive definite matrices A,B ∈ Mn by
A#tB = A1/2(A−1/2BA−1/2)tA1/2 for any real number t . For convenience, we denote
A∇ 1

2
B by A∇B .
Using (6), Manasrah and Kittaneh [8] improved the inequalities

[tr(A∇vB)]m �
(
tr|A1−vBv|)m

,

[det(A∇vB)]m � det(A1−vBv)m,

[(1− v)|||AX |||+ v|||XB|||]m � |||A1−vXBv|||m

for A,B,X ∈Mn with A,B > 0 and 0 � v � 1, where |X |= (X∗X)1/2 and ||| · ||| stands
for any unitarily invariant norm on Mn . Since (7) is stronger than (6), their results can
be further improved. We state the following without proof. See [8] for detailed proofs.

THEOREM 2. Let A,B ∈ Mn be positive definite. Then for 0 � v � 1 and m =
1,2, . . . , we have

1. [tr(A∇vB)]m �
(
tr|A1−vBv|)m +(2r0)m

(
(trA∇B)m −√

trAtrB
m
)

,

2. [det(A∇vB)]m � det(A1−vBv)m +(2r0)mn
(
( detA1/n+detB1/n

2 )mn −√
det(AB)

m
)

,

3. [(1− v)|||AX |||+ v|||XB|||]m � |||A1−vXBv|||m
+(2r0)m

(( |||AX |||+|||XB|||
2

)m−√|||AX ||| |||XB|||m
)

for all X ∈ Mn .

To show matrix (or operator) inequalities corresponding to their scalar versions,
we can use the operator monotonicity of continuous functions; that is, if f is a real
valued continuous function defined on the spectrum of a self-adjoint operator A , then
f (t) � 0 for every t in the spectrum of A implies f (A) is a positive operator. The
following follows from the property and Theorem 1.

THEOREM 3. Let A,B ∈ Mn be positive definite. Then for 0 � v � 1 and m =
1,2, . . . , we have

A#m(A∇vB) � A#vmB+(2r0)m (
A#m(A∇B)−A#m/2B

)
, (11)

A#m(A∇vB) � A#vmB+(2R0)m (
A#m(A∇B)−A#m/2B

)
. (12)

Proof. For any positive definite matrix X ∈ Mn , it follows from Theorem 1 with
a = 1 that

((1− v)I + vX)m � Xvm +(2r0)m
((

I +X
2

)m

−Xm/2
)

,
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where I is the identity matrix in Mn . Letting X = A−1/2BA−1/2 and multiplying both
sides of the above inequality by A1/2 on their left and right hand sides, we get (11). We
can also derive (12) in the same way. �

4. Other generalized inequalities

In this section, we will show more examples which can be generalized by Propo-
sition 1. For convenience of notation, we have used μv and δv , respectively, for the
v-weighted arithmetic and geometric means of a and b in the second section. As
shown in [2] and other references, however, we will now use the following well-known
notation:

a∇vb = (1− v)a+ vb,

a#vb = a1−vbv,

a!vb = ((1− v)a−1 + vb−1)−1

for a,b > 0 and 0 � v � 1. When v = 1
2 , we write a∇b , a#b , and a!b for brevity,

respectively.
There are many inequalities which can be generalized by Proposition 1, but we

will apply the proposition to the following ones shown in [2] and its references.

THEOREM 4. For a,b > 0 and 0 � v � 1 , we have

1. a!vb+2r0(a∇b−a!b) � a∇vb � a!vb+2R0(a∇b−a!b) ,

2. K(h,2)r0a#vb � a∇vb � K(h,2)R0a#vb , where h = b
a and K(t,2) is the Kan-

torovich constant defined by K(t,2) = (t+1)2
4t .

We generalize the first one in the above theorem as follows.

THEOREM 5. For a,b > 0 , 0 � v � 1 , and m = 1,2, . . . , we have

(a∇vb)m � (a!vb)m +(2r0)m ((a∇b)m − (a!b)m)),
(a∇vb)m � (a!vb)m +(2R0)m ((a∇b)m− (a!b)m)).

Proof. Since equality holds in them when either a = b or v = 0,1, we may assume
a �= b and 0 < v < 1. Then we have

2r0 � a∇vb−a!vb
a∇b−a!b

� 2R0

by the first part of Theorem 4. Thus it suffices to show

2r0 � a∇vb
a∇b

� 2R0

by Proposition 1, and the above is already shown in the proof of Theorem 1. �
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Note that the second part of Theorem 4 can be written as

(
a∇b
a#b

)2r0

a#vb � a∇vb �
(

a∇b
a#b

)2R0

a#vb. (13)

or equivalently, using natural logarithm,

ln(a∇vb) � ln(a#vb)+2r0 (ln(a∇b)− ln(a#b)) , (14)

ln(a∇vb) � ln(a#vb)+2R0 (ln(a∇b)− ln(a#b)) .

THEOREM 6. For a,b > 1 , 0 � v � 1 , and m = 1,2, . . . , we have

[ln(a∇vb)]m � [ln(a#vb)]m +(2r0)m ([ln(a∇b)]m − [ln(a#b)]m) ,
[ln(a∇vb)]m � [ln(a#vb)]m +(2R0)m ([ln(a∇b)]m − [ln(a#b)]m) .

Proof. Without loss of generality, we may assume a �= b and 0 < v < 1. Since

2r0 � ln(a∇vb)− ln(a#vb)
ln(a∇b)− ln(a#b)

� 2R0

by (14), it suffices to show

2r0 � ln(a∇vb)
ln(a∇b)

� 2R0

by Proposition 1, which is equivalent to

(a∇b)2r0 � a∇vb � (a∇b)2R0 . (15)

Note that (13) can be expressed as

(a∇b)2r0a1−v−r0bv−r0 � a∇vb � (a∇b)2R0a1−v−R0bv−R0 . (16)

Since a,b > 1 and r0 � v,1−v� R0 , we have a1−v−r0bv−r0 � 1 and a1−v−R0bv−R0 � 1.
Thus (15) follows from (16). �

Replacing a,b with a−1,b−1 , respectively, in the above theorem, we get the fol-
lowing.

COROLLARY 2. For a,b ∈ (0,1) , 0 � v � 1 , and m = 1,2, . . . , we have

| ln(a!vb)|m � | ln(a#vb)|m +(2r0)m (| ln(a!b)|m −| ln(a#b)|m) ,
| ln(a!vb)|m � | ln(a#vb)|m +(2R0)m (| ln(a!b)|m−| ln(a#b)|m) .
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