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Abstract. Let Iv (x) be modified Bessel functions of the first kind. We prove the monotonicity
property of the function x �→ Iu (x) Iv (x)/I(u+v)/2 (x)2 on (0,∞) . As a direct consequence, it de-
duces some known results including Turán-type inequalities and log-convexity or log-concavity
of Iv in v , as well as it yields some new and interesting monotonicity and convexity concern-
ing the ratios of modified Bessel functions of the first kind. In addition, a few of sharp bounds
involving Iv (x) and their ratios are presented.

1. Introduction

As we know, the modified Bessel functions of the first kind of order v , denoted by
Iv (x) , is a particular solution of the second-order differential equation [41, p. 77]

x2y′′ (x)+ xy′ (x)− (
x2 + v2)y(x) = 0, (1)

which is explicitly represented by

Iv (x) =
(x/2)v

Γ(v+1)

∞

∑
n=0

(x/2)2n

n!(v+1)n
, x ∈ R, v ∈ R\{−1,−2, · · ·}, (2)

where (a)n is the Pochhammer symbol as

(a)n = a(a+1) · · · (a+n−1) =
Γ(a+n)

Γ(a)

for n ∈ N , (a)0 = 1, and a �= 0,−1,−2, · · · .
For various recurrence formulas and many important properties of modified Bessel

functions, readers can refer to the classical book of Watson [41]. In recent decades,
Turán type inequalities for special functions including the modified Bessel functions
have attracted the attention of many mathematicians (see, for example, [26, 20, 6, 3, 8,
9, 25, 13]). In fact, Turán type inequalities for the modified Bessel functions and related
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results appeared in many problems of probability and statistics [19, 34, 16], chemistry
[28], physics [40, 38] and engineering sciences [24].

Turán-type inequality for the first kind modified Bessel functions states that for all
v > −1, the double inequality

0 < Iv (x)2 − Iv−1 (x) Iv+1 (x) <
1

v+1
Iv (x)2 (3)

holds for x > 0, which was proved first by Thiruvenkatachar and Nanjundiah in [39,
Sect. 3] by the approach of comparing the coefficients in Cauchy product. The left-
hand side of (3) was also derived by Amos in [4, p. 243] and Joshi and Bissu in [21,
Sect. 3]. Later, Lorch [27] in 1994 showed that the left-hand side of (3) also holds for
all v > −1/2, and he conjectured that there holds the generalized Turánian Iv (x)2 −
Iv−a (x) Iv+a (x) > 0 for all x > 0, a ∈ (0,1] and v ∈ (−1,−1/2] . On the other hand,
the right-hand side of (3) for v � 0 was also proved in [21, Sect. 3]. In 2010, Baricz
[10] reconsidered the proof of Joshi and Bissu [21] and pointed out that (3) hold true
for all v > −1 with the best constants 0 and 1/(v+1) . An alternative proof of (3) can
see also Segura’s paper [35]. Recently, an improvement of (3) was derived by Baricz in
[14, Theorem 1]. Some new delovements can be found in [22], [14], [29].

Speaking generally, Turán-type inequalities are closely related to log-convexity
or log-concavity. As was shown in [27] by Lorch, the function v �→ Iv+a (x)/Iv (x)
is decreasing for each fixed a ∈ (0,2] and x > 0, while v > max{−1,−(a+1)/2} .
This implies that the function v �→ Iv (x) is log-concave on (−1,∞) . In 2008, Baricz
[7, Theorem 1 (a)] showed that function v �→ 2vΓ(v+1)x−vIv (x) is log-convex on
(−1,∞) , who got it by two methods: one is to make use of the fact that the sum of
log-convex functions is still log-convex, another is to use the expression Iv (x) as an
infinite product and concavity of v �→ jv,n on (−n,∞) for all n � 1, where jv,n denotes
the n th positive zero of the Bessel function Jv .

Recently, Yang and Zheng [43] proved that the function x �→Ku(x)Kv(x)/Ku+v
2

(x)2

is strictly decreasing on (0,∞) , where Kv (x) denotes the modified Bessel functions of
the second kind, which not only solves the conjecture posed by Baricz [10, Conjecture
3.2], but also yields various new results for the monotonicity and convexity of the ratios
of the modified Bessel functions of the second kind. This idea can also be applied
to the modified Bessel functions of the first kind. Indeed, it is easy to check that the
log-concavity of function v �→ Iv (x) and log-convexity of v �→ 2vΓ(v+1)x−vIv (x) on
(−1,∞) are equivalent to the following double inequality

Γ((u+ v)/2+1)2

Γ(u+1)Γ(v+1)
<

Iu (x) Iv (x)
I(u+v)/2 (x)2 < 1 (4)

for u,v > −1 and x > 0. Moreover, by using the asymptotic formulas [1, p. 375, 377]

Iv (x) ∼
( x

2

)v
/Γ(v+1) as x → 0 for v �= −1,−2, · · · , (5)

Iv (x) ∼ ex
√

2πx
as x → ∞, (6)
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we have

lim
x→0

Iu (x) Iv (x)

I(u+v)/2 (x)2 =
Γ((u+ v)/2+1)2

Γ(u+1)Γ(v+1)
and lim

x→∞

Iu (x) Iv (x)

I(u+v)/2 (x)2 = 1.

Then it is natural for us to claim that the ratio

x �→ Iu (x) Iv (x)
I(u+v)/2 (x)2 := Iu,v (x) (7)

is strictly increasing from (0,∞) . It is obvious that if our claim is valid, then the
log-concavity of function v �→ Iv (x) and log-convexity of v �→ 2vΓ(v+1)x−vIv (x)
on (−1,∞) easily follows. Also, replacing (u,v) by (v−1,v+1) we can see that
for v > −1, the function x �→ Iv−1 (x) Iv+1 (x)/Iv (x)2 is strictly increasing from (0,∞)
onto (v/(v+1) ,1) . Consequently, the double inequality

v
v+1

<
Iv−1 (x) Iv+1 (x)

Iv (x)2 < 1 (8)

holds for x > 0 and v > −1, which is clearly equivalent to Turán type inequalities (3)
with the best constants 0 and 1/(v+1). In fact, this assertion has been verified by
Baricz in [10, Theorem 2.1].

The main purpose of this paper is to prove the above claim of the inequality (7),
which is precisely shown as Theorem 1 in Section 2. As direct consequences of Theo-
rem 1, both the convexity of ratios

v �→ I′v (x)
Iv (x)

, v �→ Iv−1 (x)
Iv (x)

, v �→ Iv+1 (x)
Iv (x)

(9)

and the monotonicity of ratios

x �→ Iu (x)p Iv (x)q

Ipu+qv (x)
, x �→ Iu+a (x)

Iu (x)
Iv (x)

Iv+a (x)
(10)

can be readily deduced.
The remainders of the paper are organized as follows. In Section 3, some sharp

estimates for Iv (x) are further presented. In the last section, some known bounds for
certain ratios listed in (9) are reproved in alternating ways, and other new inequalities
are established.

2. Main results

Before proving our main results we need two preliminary lemmas. The first lemma
is stated which first appeared in [39, (3.5)].

LEMMA 1. For Iu (x) and Iv (x) , there holds

Iu (x) Iv (x) =
1

Γ(u+1)Γ(v+1)

∞

∑
n=0

(u+ v+n+1)n
n!(u+1)n (v+1)n

( x
2

)2n+u+v
. (11)
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REMARK 1. Setting u = v in Lemma 1 we have

Iv (x)2 =
1

Γ(v+1)2
∞

∑
n=0

(2v+n+1)n
n!(v+1)2n

( x
2

)2n+2v
. (12)

LEMMA 2. ([15]) Let A(t) = ∑∞
k=0 aktk and B(t) = ∑∞

k=0 bktk be two real power
series converging on (−r,r) (r > 0 ) with bk > 0 for all k . If the sequence {ak/bk} is
increasing (decreasing) for all k , then the function t �→ A(t)/B(t) is also increasing
(decreasing) on (0,r) .

We now are in a position to state and prove our main result.

THEOREM 1. Let u,v be two distinct real numbers satisfying min(u,v)>−2 and
u+ v > −2 with u, v �= −1 . Then the function x �→ Iu,v (x) defined by (7) is strictly
increasing on (0,∞) . Consequently, the double inequality (4) holds for x > 0 .

Proof. By the identity (12) we get

I(u+v)/2 (x)2 =
1

Γ((u+ v)/2+1)2
∞

∑
n=0

(u+ v+n+1)n
n!((u+ v)/2+1)2n

( x
2

)2n+u+v
,

then

Iu (x) Iv (x)

I(u+v)/2 (x)2 =
1

Γ(u+1)Γ(v+1) ∑∞
n=0

(u+v+n+1)n
n!(u+1)n(v+1)n

(
x
2

)2n+u+v

1
Γ((u+v)/2+1)2

∑∞
n=0

(u+v+n+1)n
n!((u+v)/2+1)2n

(
x
2

)2n+u+v

:=
Γ((u+ v)/2+1)2

Γ(u+1)Γ(v+1)
∑∞

n=0 an
(
x2/4

)n

∑∞
n=0 bn (x2/4)n

,

where

an =
(u+ v+n+1)n

n!(u+1)n (v+1)n
, bn =

(u+ v+n+1)n
n!((u+ v)/2+1)2n

.

Simple computation yields

an

bn
=

(u+ v+n+1)n
n!(u+1)n (v+1)n

/
(u+ v+n+1)n

n!((u+ v)/2+1)2n
=

((u+ v)/2+1)2n
(u+1)n (v+1)n

,

an+1

bn+1
− an

bn
=

((u+ v)/2+1)2n+1

(u+1)n+1 (v+1)n+1
− ((u+ v)/2+1)2n

(u+1)n (v+1)n

=
(u− v)2

4
((u+ v)/2+1)2n

(u+1)n+1 (v+1)n+1
.

Since u+ v > −2 and min(u,v) > −2 with u �= v , we see that bn > 0 for n � 0, and
max(u,v) > −1. In what follows, we discuss it in two different cases:
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Case 1. While min(u,v) > −1, the sequence {an/bn} is strictly increasing for
n � 0. By Lemma 2 it follows that the ratio

(
∑∞

n=0 an
(
x2/4

)n)
/
(
∑∞

n=0 bn
(
x2/4

)n)
is

strictly increasing on (0,∞) , and so is the function x �→ Iu,v (x) .
Case 2. While min(u,v)∈ (−2,−1), it is easy to check that (u+1)n+1 (v+1)n+1

< 0 for n� 0 due to max(u,v)>−1. Then the sequence {an/bn} is strictly decreasing
for n � 0. So is the ratio

(
∑∞

n=0 an
(
x2/4

)n)
/
(
∑∞

n=0 bn
(
x2/4

)n)
on (0,∞) , together

with Γ(u+1)Γ(v+1) < 0 it yields that function x �→Iu,v (x) is strictly increasing on
(0,∞) . This completes the proof. �

In virtue of Theorem 1, we can deduce some new and interesting further conse-
quences.

THEOREM 2. (i) Each of the functions

v �→ I′v (x)
Iv (x)

, v �→ Iv−1 (x)
Iv (x)

and v �→ Iv+1 (x)
Iv (x)

is strictly convex on (−1,∞) .
(ii) For any fixed a > 0 , each of the functions

v �→ I′v+a (x)
Iv+a (x)

− I′v (x)
Iv (x)

, v �→ Iv+a−1 (x)
Iv+a (x)

− Iv−1 (x)
Iv (x)

and v �→ Iv+a+1 (x)
Iv+a (x)

− Iv+1 (x)
Iv (x)

is still strictly increasing on (−1,∞) .
(iii) For any x > y > 0 , the function v �→ Iv (x)/Iv (y) is log-convex on (−1,∞) .

Proof. (i) By Theorem 1 we easily see that x �→ lnIu,v (x) is strictly increasing
on (0,∞) for u,v > −1. Then we get

(lnIu,v (x))′ =
I′u (x)
Iu (x)

+
I′v (x)
Iv (x)

−2
I′(u+v)/2 (x)

I(u+v)/2 (x)
> 0,

which implies that the function v �→ I′v (x)/Iv (x) is strictly convex on (−1,∞) .
From the recurrence formulas [41, p. 79]

xI′v (x)+ vIv (x) = xIv−1 (x) , (13)

xI′v (x)− vIv (x) = xIv+1 (x) , (14)

we have

I′v (x)
Iv (x)

=
Iv−1 (x)
Iv (x)

− v
x
, (15)

I′v (x)
Iv (x)

=
Iv+1 (x)
Iv (x)

+
v
x
; (16)

which show that v �→ Iv−1 (x)/Iv (x) and v �→ Iv+1 (x)/Iv (x) have the same convexity
as v �→ I′v (x)/Iv (x) on (−1,∞) .
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(ii) The increasing property of the above three functions easily follows from the
property of convex functions.

(iii) It follows from Theorem 1 that the inequality Iu,v (x) > Iu,v (y) for u,v >−1
and x > y > 0, which is equivalent to

Iu (x)
Iu (y)

Iv (x)
Iv (y)

>

[
I(u+v)/2 (x)
I(u+v)/2 (y)

]2

if x > y > 0.

This shows that v �→ Iv (x)/Iv (y) is log-convex on (−1,∞) , which completes the proof.
�

With Theorem 2 in hand, we easily obtain the following statement.

THEOREM 3. Let real numbers u,v, p,q satisfy u,v, pu+qv >−1 with u �= v and
p+q = 1 . Then the function

x �→ Iu (x)p Iv (x)q

Ipu+qv (x)
:= Φu,v (x) (17)

is strictly increasing on (0,∞) if pq > 0 . The function x �→ Φu,v (x) is strictly decreas-
ing on (0,∞) if pq < 0 . Consequently, the double inequality

Γ(pu+qv+1)
Γ(u+1)p Γ(v+1)q

<
Iu (x)p Iv (x)q

Ipu+qv (x)
< 1 (18)

holds for x ∈ (0,∞) if pq > 0 , where the lower and upper bounds are the best possible.
For pq < 0 , the double inequality (18) is reversed.

Proof. In fact, from Theorem 2 we see that the function v �→ I′v (x)/Iv (x) is strictly
convex on (−1,∞) . Hence, by the property of convex functions, we get for u,v, pu+
qv > −1 and pq > 0 with p+q = 1 there holds

(lnΦu,v (x))′ = p
I′u (x)
Iu (x)

+q
I′v (x)
Iv (x)

− I′pu+qv (x)
Ipu+qv (x)

> 0,

which indicates that the function x �→ Φu,v (x) is strictly increasing on (0,∞) for pq >
0.

For pq < 0, it implies that p > 0 and q < 0. Setting p∗ = −q/p and q∗ =
1/p , then p∗ and q∗ satisfy p∗,q∗ > 0 with p∗ +q∗ = 1 and p∗v+q∗ (pu+qv) = u .
Therefore, it follows that

(lnΦu,v (x))′ = −p

(
− I′u (x)

Iu (x)
− q

p
I′v (x)
Iv (x)

+
1
p

I′pu+qv (x)
Ipu+qv (x)

)

= −p

(
p∗

I′v (x)
Iv (x)

+q∗
I′pu+qv (x)
Ipu+qv (x)

− I′u (x)
Iu (x)

)
< 0,

which shows that the function x �→ Φu,v (x) is strictly decreasing on (0,∞) for pq < 0.
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Furthermore, using the asymptotic formulas (5) and (6) yields

Φu,v (0) =
Γ(pu+qv+1)

Γ(u+1)p Γ(v+1)q
and Φu,v (∞) = 1.

Thus we complete the proof. �

It is obvious that Theorem 3 can be generalized as the following form.

THEOREM 4. Let real numbers vk >−1, pk > 0 for k = 1,2, . . . ,n with ∑n
k=1 pk =

1 and v = ∑n
k=1 pkvk . Then the function

x �→ ∏n
k=1 Ivk (x)pk

Iv (x)

is increasing on (0,∞) . Consequently, the double inequality

Γ(v +1)
∏n

k=1 Γ(vk +1)pk
� ∏n

k=1 Ivk (x)pk

Iv (x)
� 1

holds for x ∈ (0,∞) , where the lower and upper bounds are the best possible. The
equalities are valid if and only if all vk are equal.

THEOREM 5. Let u,v > −1 and a > 0 . Then for u > v, the function

x �→ Iu+a (x)
Iu (x)

Iv (x)
Iv+a (x)

:= ϒu,v (x)

is strictly increasing on (0,∞) . Furthermore, we have

Γ(u+1)Γ(v+a+1)
Γ(v+1)Γ(u+a+1)

<
Iu+a (x)
Iu (x)

Iv (x)
Iv+a (x)

< 1

for x > 0 , where the lower and upper bounds are sharp.

Proof. By the part (ii) of Theorem 2, we have

(lnϒu,v (x))′ =
I′u+a (x)
Iu+a (x)

− I′u (x)
Iu (x)

−
(

I′v+a (x)
Iv+a (x)

− I′v (x)
Iv (x)

)
> 0,

which implies that the function x �→ ϒu,v (x) is strictly increasing on (0,∞) . So, a direct
computation gives

ϒu,v (0) =
Γ(u+1)Γ(v+a+1)
Γ(v+1)Γ(u+a+1)

and ϒu,v (∞) = 1,

which completes the proof. �
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REMARK 2. Since

lim
a→0+

1
a

ln

(
Iu+a (x)
Iu (x)

Iv (x)
Iv+a (x)

)
=

∂ ln Iu (x)
∂u

− ∂ ln Iv (x)
∂v

,

lim
a→0+

1
a

ln
Γ(u+1)Γ(v+a+1)
Γ(v+1)Γ(u+a+1)

= ψ (v+1)−ψ (u+1) ,

where ψ is the psi function, Theorem 5 shows that for u > v > −1, the function

x �→ ∂ ln Iu (x)
∂u

− ∂ ln Iv (x)
∂v

is strictly increasing from (0,∞) onto (ψ (v+1)−ψ (u+1),1) . Further, it implies
that for v > −1, the function

x �→ ∂ 2 ln Iv (x)
∂v2

is strictly increasing from (0,∞) onto (−ψ ′ (v+1),0) .

3. Sharp estimates for Iv (x) in terms of hyperbolic functions

This section is devoted to presenting some sharp bounds for Iv (x) in terms of
In−1/2 (x) and In+1/2 (x) . As we know, Rayleigh type formula shows (cf. [1, p. 445,
(10.2.24)]) that for n = 0,1,2, · · · ,

In−1/2 (x) =

√
2
π

xn−1/2
(

1
x

d
dx

)n

(coshx) .

In particular,

I−1/2 (x) =

√
2

πx
coshx, I1/2 (x) =

√
2

πx
sinhx, I3/2 (x) =

√
2

πx

(
coshx− sinhx

x

)
;

(19)
which means that the modified Bessel functions of half-integer order are all elementary
functions. Now let us put (u,v)= (n−1/2,n+1/2) and (p,q)= (n−v+1/2,v−n+1/2)
in Theorem 3, then we obtain

PROPOSITION 6. For n = 0,1,2, · · · , the function

x �→
(

In+1/2 (x)
In−1/2 (x)

)n−v
Iv (x)√

In−1/2 (x) In+1/2 (x)

is strictly decreasing on (0,∞) if v∈ (n−1/2,n+1/2), and increasing on (0,∞) if v∈
(−1,n−1/2)∪ (n+1/2,∞). Consequently, while v ∈ (n−1/2,n+1/2), the double
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inequality(
In−1/2 (x)
In+1/2 (x)

)n−v √
In−1/2 (x) In+1/2 (x) < Iv (x) <

(n+1/2)v−n+1/2 Γ(n+1/2)
Γ(v+1)

(
In−1/2 (x)
In+1/2 (x)

)n−v √
In−1/2 (x) In+1/2 (x)

holds for x ∈ (0,∞) , where the lower and upper bounds are the best. It is reversed
while v ∈ (−1,n−1/2)∪ (n+1/2,∞).

Furthermore, if taking n = 0,1 in Proposition 6 we immediately conclude the
following corollaries.

COROLLARY 1. Let v > −1 . Then, for v ∈ (−1/2,1/2) the function

x �→
√

2x
sinh2x

(cothv x) Iv (x)

is strictly decreasing on (0,∞) ; it is strictly increasing on the same interval while
v∈ (−1,−1/2)∪(1/2,∞) . Consequently, if v∈ (−1/2,1/2) then the double inequality√

2
π

√
sinh2x

2x
tanhv x < Iv (x) <

1
2vΓ(v+1)

√
sinh2x

2x
tanhv x (20)

holds for x ∈ (0,∞) , where the coefficients 1/(2vΓ(v+1)) and
√

2/π are the best. If
v ∈ (−1,−1/2)∪ (1/2,∞) then the double inequality (20) is reversed.

REMARK 3. Letting v = 0 in the above corollary, we see that x �→√
2x/sinh2xI0 (x)

is strictly decreasing on (0,∞) , and we have√
sinh2x

πx
< I0 (x) <

√
sinh2x

2x

for x > 0 with the best constants π and 2. Indeed, this double inequality has been
appeared in [42, Theorem 3.2].

COROLLARY 2. Let v > −1 . Then, for v ∈ (1/2,3/2) the function

x �→
√

xIv (x)

(cothx−1/x)v−1/2 sinhx

is strictly decreasing on (0,∞) ; it is strictly increasing on (0,∞) while v∈ (−1,1/2)∪
(3/2,∞) . Therefore, if v ∈ (1/2,3/2) then it holds that√

2
π

sinhx√
x

(
cothx− 1

x

)v−1/2

< Iv (x) <
3v−1/2

2vΓ(v+1)
sinhx√

x

(
cothx− 1

x

)v−1/2

(21)

for x∈ (0,∞) with the best coefficients
√

2/π and 2−v3v−1/2/Γ(v+1) . If v∈ (−1,1/2)
∪ (3/2,∞) , then the double inequality (21) is reversed.
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Taking v = n in Proposition 6 gives the following statement.

COROLLARY 3. The function

x �→ In (x)√
In−1/2 (x) In+1/2 (x)

is strictly decreasing (0,∞) . Consequently, the double inequality√
In−1/2 (x) In+1/2 (x) < In (x) < αn

√
In−1/2 (x) In+1/2 (x)

holds for x ∈ (0,∞) with the best coefficients

1 and αn =
(n+1/2)1/2 Γ(n+1/2)

n!
.

REMARK 4. It is easy to see that

αn =
√

π (n+1/2)
(2n−1)!!

(2n)!!
:=

√
π (n+1/2)Wn,

where Wn denotes the Wallis ratio. From the Wallis inequalities proved first by Kazari-
noff (see [23])

1√
π (n+1/2)

< Wn <
1√

π (n+1/4)
(22)

we have

1 < αn <

√
n+1/2
n+1/4

< 1+
1

2(4n+1)
.

This shows that

lim
n→∞

In (x)√
In−1/2 (x) In+1/2 (x)

= 1,

or
In (x) ∼

√
In−1/2 (x) In+1/2 (x) as n → ∞.

4. Sharp bounds for certain ratios

In this section, we focus on some sharp bounds for certain ratios. Note that the
ratio xIv (x)/Iv+1 (x) := Wv (x) plays an important role in the finite elasticity [36, 37]
and the epidemiological models [30, 31]. It was showed in [5, Theorem 2.2] that Wv is
strictly increasing on (0,∞) for v >−2, so one has Wv (x) > limx→0Wv (x) = 2v+2. In
addition, the ratio Iv+1 (x)/Iv (x) := Rv (x) usually appeared in probability and statistics
[34, 16] with applications in chemical kinetics [2, 28], optics [38] and signal processing
[24]. As for the ratio I′v (x)/Iv (x) , it can be explicitly expressed by Iv−1 (x)/Iv (x) or
Iv+1 (x)/Iv (x) as shown in the relations (15) and (16).

In the sequel we will present some sharp bounds for these ratios above, which is
as another application of our Theorems 1–5.
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PROPOSITION 7. Let v � 0 . The the following inequalities√
v

v+1
+

v2

x2 <
I′v (x)
Iv (x)

<

√
1+

v2

x2 , (23)

√
v

v+1
x2 + v2 + v <

xIv−1 (x)
Iv (x)

<
√

x2 + v2 + v

<
xIv (x)
Iv+1 (x)

<

√
v+1

v
x2 +(v+1)2 + v+1

(24)

hold for x > 0 , where in particular the right hand side inequality in (23) holds for
v > −1 .

Proof. Joshi and Bissu [21, (3.6)] showed that

Iv−1 (x) Iv+1 (x)
Iv (x)2 = 1− 1

x

(
xI′v (x)
Iv (x)

)′
,

which together with (8) implies that (xI′v (x)/Iv (x))′ > 0, that is, the function x �→
xI′v (x)/Iv (x) is strictly increasing on (0,∞) for v > −1. Hence we have

xI′v (x)
Iv (x)

> lim
x→0

xI′v (x)
Iv (x)

= lim
x→0

(
xIv+1 (x)

Iv (x)
+ v

)
= v,

which yields I′v (x)/Iv (x) > v/x for v > −1.
Note that from the recurrence relations (15) and (16) we get

Iv−1 (x) Iv+1 (x)

Iv (x)2 =
Iv−1 (x)
Iv (x)

Iv+1 (x)
Iv (x)

=
(

I′v (x)
Iv (x)

)2

− v2

x2 ,

which implies that x �→ Iv−1 (x) Iv+1 (x)/Iv (x)
2 is strictly increasing on (0,∞) for v >

−1 due to Theorem 4. Therefore we have

v
v+1

<
Iv−1 (x) Iv+1 (x)

Iv (x)2 =
(

I′v (x)
Iv (x)

)2

− v2

x2 < 1,

which yields
v

v+1
+

v2

x2 <

(
I′v (x)
Iv (x)

)2

< 1+
v2

x2 for v > −1. (25)

Since I′v (x)/Iv (x) = Iv+1 (x)/Iv (x)+ v/x > v/x , we have

I′v (x)
Iv (x)

+

√
1+

v2

x2 >
v
x

+

√
1+

v2

x2 >
v
x

+
|v|
x

> 0.

As a result of the second inequality in (25), we get that the second one in (23) holds for
x > 0 and v > −1.
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While v � 0, we have

I′v (x)
Iv (x)

+

√
v

v+1
+

v2

x2 >
v
x

+

√
v

v+1
+

v2

x2 � 0,

Therefore, the left hand side inequality in (23) for v � 0 follows from the left hand side
one in (25).

Next let us apply the formula (15) to (23), then the first, second and third inequal-
ities in (24) follow immediately.

Finally, utilizing the formula (16) to (23) it yields

√
v

v+1
+

(v
x

)2
<

Iv+1 (x)
Iv (x)

+
v
x

<

√
1+

(v
x

)2
,

which is equivalent to the third, fourth and fifth inequalities in (24). This completes the
proof. �

REMARK 5. The second inequality in (23) can be written as

√
v

v+1
x2 + v2 <

xI′v (x)
Iv (x)

<
√

x2 + v2 (26)

for x > 0. We would like to mention that the right hand side inequality in (26) for v > 0
was first proved by Gronwall [17] in 1932, motivated by a problem in wave mechanics,
which was also reproved in [33] by Phillips and Malin for v ∈ N in different way.
Recently, Baricz in [8, 10] further showed that which holds for v � −1/2 and v > −1,
respectively. The left hand side inequality in (26) for v ∈ N was also first proved in
[33] by Phillips and Malin, which was established by Baricz in [8] that it holds for all
v > 0. More details to see [35, 25, 18, 12, 14].

PROPOSITION 8. Let v > −1 . If v ∈ (−1/2,1/2), then the double inequality

I′v (x)
Iv (x)

<
2v+ cosh2x

sinh2x
+

2v−3
4x

, (27)

holds for x ∈ (0,∞) . If v ∈ (−1,−1/2)∪ (1/2,∞) , then the inequality is reversed.

Proof. Theorems 2 tells us that the function v �→ I′v (x)/Iv (x) is convex on (−1,∞) ,
which implies that for u,v > −1, the inequality

I′pu+qv (x)
Ipu+qv (x)

< p
I′u (x)
Iu (x)

+q
I′v (x)
Iv (x)

holds for x∈ (0,∞) , where pq > 0 with p+q= 1. If pq < 0, the inequality is reversed.
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Putting (u,v) = (−1/2,1/2) and (p,q) = (1/2− v,1/2+ v) together with the for-
mulas listed in (19) it yields that for v ∈ (−1/2,1/2),

I′v (x)
Iv (x)

<

(
1
2
− v

) I′−1/2 (x)

I−1/2 (x)
+

(
1
2

+ v

) I′1/2 (x)

I1/2 (x)

=
(

1
2
− v

)(
sinhx
coshx

− 1
2x

)
+

(
1
2

+ v

)(
coshx
sinhx

− 1
2x

)

=
2v+ cosh2x

sinh2x
+

2v−3
4x

,

which proves the desired inequality. �

REMARK 6. Thanks to Proposition 27, we can easily get a simple inequality as
follows: for v < (>)1/2 and x > 0,

I′v (x)
Iv (x)

< (>)cothx− 1
2x

,

or
xI′v (x)
Iv (x)

< (>)xcothx− 1
2
,

which was first appeared in [17]. In fact, for v < (>)1/2 and x > 0, we have

I′v (x)
Iv (x)

< (>)
2v+ cosh2x

sinh2x
+

2v−3
4x

< (>)
1+ cosh2x

sinh2x
+

1−3
4x

= cothx− 1
2x

.

PROPOSITION 9. For −1 < u < v and x > 0 , there holds the following inequality

Iv (x) Iv+1 (x)
Iu (x) Iu+1 (x)

<
Iv (x)2− Iv−1 (x) Iv+1 (x)

Iu (x)2 − Iu−1 (x) Iu+1 (x)
. (28)

In particular, for v > −1/2 it holds

Iv (x)2− Iv−1 (x) Iv+1 (x) >

(
2

sinh2x
+

1
x

)
Iv (x) Iv+1 (x) , (29)

which is reversed for −1 < v < −1/2 .

Proof. Based on Theorems 2 we see that for a > 0, the function

v �→ Iv+a−1(x)/Iv+a(x)− Iv−1(x)/Iv(x)

is strictly increasing on (−1,∞) . Then, for a = 1 and −1 < u < v we have

Iu (x)
Iu+1 (x)

− Iu−1 (x)
Iu (x)

<
Iv (x)

Iv+1 (x)
− Iv−1 (x)

Iv (x)
, (30)
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which proves the inequality (28) for u,v > −1 with u < v .
Letting u = −1/2 in the inequality (30) yields

Iv (x)2 − Iv−1 (x) Iv+1 (x)
Iv (x) Iv+1 (x)

>
I−1/2 (x)
I1/2 (x)

− I−3/2 (x)
I−1/2 (x)

=
2

sinh2x
+

1
x
,

which proves (29). �

PROPOSITION 10. Let 0 < u < v and x > 0 . Then the inequality

Iv (x)2− Iv−1 (x) Iv+1 (x)

Iu (x)2 − Iu−1 (x) Iu+1 (x)
<

Iv (x) Iv−1 (x)
Iu (x) Iu−1 (x)

(31)

holds. Particularly, for v > 1/2 , we have

Iv (x)2 − Iv−1 (x) Iv+1 (x) <
sinh2x−2x

xsinh2x
Iv−1 (x) Iv (x) , (32)

which is reversed for 0 < v < 1/2 .

Proof. Likewise, thanks to the increasing property of the function

v �→ Iv+a+1 (x)/Iv+a (x)− Iv+1 (x)/Iv (x)

we get that for −1 < u < v ,

Iu+1+1 (x)
Iu+1 (x)

− Iu+1 (x)
Iu (x)

<
Iv+1+1 (x)
Iv+1 (x)

− Iv+1 (x)
Iv (x)

.

Replacing (u,v) with (u−1,v−1) gives (31) for 0 < u < v .
Taking u = 1/2 in (31) leads to

Iv (x)2− Iv−1 (x) Iv+1 (x) < Iv−1 (x) Iv (x)
I1/2 (x)2 − I−1/2 (x) I3/2 (x)

I1/2 (x) I−1/2 (x)
,

which proves (32). �

REMARK 7. It would be pointed out that Baricz in [14, Theorem 1] gave an im-
provement of the double inequality (3), which shows that for x > 0,

v+1/2
v+1

Iv (x)2√
x2 +(v+1/2)2

< Iv (x)2− Iv−1 (x) Iv+1 (x) <
Iv (x)2√

x2 + v2−1/4
, (33)

where the left hand side inequality holds for v � −1/2 and the right hand side one
holds for v � 1/2.

Numeric computations show that the lower bounds given in inequalities (33) and
(29) are not comparable for all v � −1/2 and x > 0. Analogously, the upper bounds
given in inequalities (33) and (32) are also not comparable for all v � 1/2 and x > 0.
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PROPOSITION 11. Let x > 0 . If v > (<)u >−1 , then ratio Wv (x)= xIv (x)/Iv+1 (x)
satisfies

Wv (x)− x2

Wv (x)
−2v > (<)Wu (x)− x2

Wu (x)
−2u. (34)

In particular, while −1 < v > (<)−1/2 it holds

Wv (x) > (<)v+
1
2

+
x

sinh2x
+

√(
v+

1
2

+
x

sinh2x

)2

+ x2; (35)

while −2 < v > (<)−3/2 there holds

Wv (x) < (>)v+
1
2
− x

sinh2x
+

√(
v+

3
2

+
x

sinh2x

)2

+ x2. (36)

Proof. By the relations (15) and (16) we have

Wv−1 (x) =
xIv−1 (x)

Iv (x)
=

xIv+1 (x)
Iv (x)

+2v =
x2

Wv (x)
+2v, (37)

and applying it to the inequality (30) gives (34).
Particularly, while u = −1/2 we see that

W−1/2 (x) =
xI−1/2 (x)
I1/2 (x)

= xcothx,

W−1/2 (x)− x2

W−1/2 (x)
= xcothx− x2

xcothx
=

2x
sinh2x

.

By (34) we obtain

Wv (x)− x2

Wv (x)
−2v > (<)W−1/2 (x)− x2

W−1/2 (x)
+1 =

2x
sinh2x

+1,

or equivalently,

[
Wv (x)−

(
x

sinh2x
+ v+

1
2

)]2

> (<)x2 +
(

x
sinh2x

+ v+
1
2

)2

. (38)

As mentioned at the beginning of this section, Wv (x) > 2v+2 for v > −2, therefore

Wv (x)−
(

x
sinh2x

+ v+
1
2

)
> v+

3
2
− 1

2
2x

sinh(2x)
> v+1 > 0.

Thus, the desired inequality (35) follows from (38).
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Finally, putting the inequality (35) together with (37) gives that for −1 < v >
(<)−1/2,

Wv−1 (x) =
x2

Wv (x)
+2v

< (>)
x2

v+ 1
2 + x

sinh2x +
√(

v+ 1
2 + x

sinh2x

)2 + x2
+2v

= v− 1
2
− x

sinh2x
+

√(
v+

1
2

+
x

sinh2x

)2

+ x2.

Replacing v− 1 by v yields (36) for −2 < v > (<)− 3/2, and the proof is com-
plete. �

REMARK 8. Note that [4] showed that for v � 0,

Wv (x) < v+
1
2

+

√
x2 +

(
v+

3
2

)2

, (39)

which also is valid for v > −3/2 due to

Wv (x)2 − (2v+1)Wv (x)−
(

x2 + v+
1
2

)
< v+

3
2
, (40)

see [32, Proposition 5]. Here, we claim that the upper bound for Wv (x) given in (36) is
superior to that given in (39) for v > −3/2. In fact, consider

v+
1
2
− x

sinh2x
+

√(
v+

3
2

+
x

sinh2x

)2

+ x2−
⎛
⎝v+

1
2

+

√
x2 +

(
v+

3
2

)2
⎞
⎠

=

√(
v+

3
2

+
x

sinh2x

)2

+ x2−
⎛
⎝ x

sinh2x
+

√
x2 +

(
v+

3
2

)2
⎞
⎠

and

(
v+

3
2

+
x

sinh2x

)2

+ x2−
⎛
⎝ x

sinh2x
+

√
x2 +

(
v+

3
2

)2
⎞
⎠

2

= 2
x

sinh2x

⎡
⎣(

v+
3
2

)
−

√
x2 +

(
v+

3
2

)2
⎤
⎦ < 0.

Letting u = −1/2 and a = 1 in Theorem 5, we conclude the following immedi-
ately
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PROPOSITION 12. The function x �→ (cothx) Iv+1 (x)/Iv (x) is strictly increasing
(0,∞) if v > −1/2 , and decreasing on (0,∞) if −1 < v < −1/2 . Moreover, for v >
−1/2 the double inequality

tanhx
2(v+1)

<
Iv+1 (x)
Iv (x)

< tanhx (41)

holds for x > 0 , where 2(v+1) and 1 are the best possible. It is reversed for −1 <
v < −1/2 .

REMARK 9. The right hand side inequality for v > −1/2 in (41) and its reverse
for v < −1/2 were proved in [11, Theorem 2.2].
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