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(Communicated by C. P. Niculescu)

Abstract. We characterize the sequences (wi)∞
i=1 of non-negative numbers for which

∞

∑
i=1

aiwi is of the same order as sup
n

n

∑
i=1

aiw1+n−i

when (ai)∞
i=1 runs over all non-increasing sequences of non-negative numbers. As a by-product

of our work we settle a problem raised in [1] and prove that Garling sequences spaces have no
symmetric basis.

1. Introduction

The rearrangement inequality states that, for n ∈ N , if (ai)n
i=1 and (bi)n

i=1 are a
pair of non-increasing n -tuples of non-negative scalars then we have

n

∑
i=1

aib1+n−i �
n

∑
i=1

aibσ(i) �
n

∑
i=1

aibi

for every permutation σ of the set {1, . . . ,n} (see Theorem 368 of [3]). Consequently,
if (ai)∞

i=1 and (wi)∞
i=1 are non-increasing sequences of non-negative scalars,

sup
n∈N

n

∑
i=1

aiw1+n−i �
∞

∑
i=1

aiwi.

In this note we wonder about which are the non-increasing sequences (wi)∞
i=1 of non-

negative scalars that verify a reverse inequality, i.e., in which cases there is a constant
C < ∞ such that

∞

∑
i=1

aiwi � C sup
n∈N

n

∑
i=1

aiw1+n−i (1)
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for every sequence (ai)∞
i=1 of non-negative scalars. For the time being some simple

answers can be given. Indeed, on the one hand, if w∞ := infi wi > 0 then

∞

∑
i=1

aiwi � w1

∞

∑
i=1

ai = w1 sup
n

n

∑
i=1

ai �
w1

w∞
sup

n

n

∑
i=1

aiw1+n−i.

On the other hand, if we consider W := ∑∞
i=1 wi < ∞ and let w1 > 0 (the case w1 = 0

is trivial) then

∞

∑
i=1

aiwi � a1

∞

∑
i=1

wi =
W
w1

a1w1 � W
w1

sup
n

n

∑
i=1

aiw1+n−i.

In fact, as we will show below, these two cases are the only ones for which (1) holds.
This will be our main result as far as inequalities is concerned:

THEOREM 1. (Main Theorem) Let (wi)∞
i=1 be a non-increasing sequence con-

sisting of non-negative scalars. The following are equivalent:

(i) There is a constant C < ∞ such that

∞

∑
i=1

aiwi � C sup
n∈N

n

∑
i=1

aiw1+n−i

for every sequence (ai)∞
i=1 of non-negative scalars.

(ii) Either ∑∞
i=1 wi < ∞ or infi∈N wi > 0 .

Section 2 is devoted to proving Theorem 1. In Section 3 we use Theorem 1 to
give some functional analytic properties of a recently introduced class of Lorentz-type
spaces, called Garling sequence spaces. In particular, Theorem 1 is applied to show that
Garling sequence spaces have no symmetric basis, answering thus a problem that was
recently posed in [1].

Throughout this note we use standard terminology and notation in Banach space
theory. As is customary, we denote by �q , 1 � q � ∞ , the Banach space consisting
of all q -summable sequences (bounded sequences in the case q = ∞) and by c0 the
subspace of �∞ consisting of all sequences converging to zero. For background on
bases in Banach spaces we refer the reader to [2].

2. Proof of the Main Theorem

Proof of Theorem 1. As explained in the Introduction, we must only prove that (i)
implies (ii).

Assume that (ii) does not hold, that is, w = (wi)∞
i=1 ∈ c0 \ �1 . Let us denote by

D the set of (nonzero) non-increasing sequences of non-negative integers. For f =
(ai)∞

i=1 ∈ D and n ∈ N we put

A( f ,w) =
∞

∑
i=1

aiwi, and
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B( f ,w) = sup
n∈N

B( f ,w,n),

where, for n ∈ N ,

B( f ,w,n) =
n

∑
i=1

aiw1+n−i.

With this notation we must prove that

S(w) := sup
f∈D

A( f ,w)
B( f ,w)

= ∞.

We will use the convention that ∑0
i=1 ci = 0 for all sequences of scalars (ci)∞

i=1 .
For n ∈ N put W (n) = ∑n

i=1 wi . Since w /∈ �1 we have

lim
n

W (n) = ∞.

Moreover, since w ∈ c0 ,
lim
n∈N

(W (s+n)−W(n)) = 0

for any non-negative integer s . We use these properties to recursively construct an
increasing sequence (dk)∞

k=0 of non-negative integers with d0 = 0 verifying

(i) W (∑k−1
j=1 d j) � 2−1W (dk) , and

(ii) W (dk−1 +dk)−W(dk) � 21−kW (dk−1)

for k = 1,2, . . . .
For every integer k � 0 put nk = ∑k

j=1 d j . For each r ∈ N we define a sequence

f (r) = (ai,r)∞
i=1 by

ai,r =

{
1/W(dk) if, for some 1 � k � r, nk−1 < i � nk

0 if i > nr.

It is clear that f (r) ∈D for all r ∈N . Taking into account the inequality in (i) we obtain

A( f (r),w) =
r

∑
k=1

1
W (dk)

nk

∑
i=1+nk−1

wi =
r

∑
k=1

W (nk)−W(nk−1)
W (dk)

�
r

∑
k=1

W (dk)−2−1W (dk)
W (dk)

=
r

∑
k=1

1
2

=
r
2
.

Let n ∈ N . In case that n > nr we have

B( f (r),w,n) =
nr

∑
i=1

ai,rw1+n−i �
nr

∑
i=1

ai,rw1+nr−i = B( f (r),w,nr).
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In case that n � nr , pick 1 � k � r with nk−1 < n � nk . We have

B( f (r),w,n) =
W (n−nk−1)

W (dk)
+

k−1

∑
j=1

W (n−n j−1)−W(n−n j)
W (d j)

� W (nk −nk−1)
W (dk)

+
k−1

∑
j=1

W (n−n j−1)−W(n−n j)
W (d j)

= 1+
k−1

∑
j=1

W (n−n j−1)−W(n−n j)
W (d j)

.

If k = 1 we get B( f (r),w,n)� 1. Assume that k � 2. Taking into account inequality (ii)
and that, since w is non-increasing, the sequence (W (n + t)−W (n + s))∞

n=1 is non-
increasing for any s � t , we obtain

B( f (r),w,n) � 1+
W (n−nk−2)−W(n−nk−1)

W (dk−1)
+

k−2

∑
j=1

W (n−n j−1)−W(n−n j)
W (d j)

� 1+
W (nk−1 −nk−2)−W(nk−1−nk−1)

W (dk−1)

+
k−2

∑
j=1

W (n j+1−n j−1)−W(n j+1−n j)
W (d j)

= 2+
k−2

∑
j=1

W (d j+1 +d j)−W(d j+1)
W (d j)

� 2+
k−2

∑
j=1

2− j = 3−22−k.

Therefore B( f (r),w) � 3. Thus

S(w) � sup
r∈N

A( f (r),w)
B( f (r),w)

� sup
r∈N

r
6

= ∞,

and the proof is over. �

3. Applications to Garling squence spaces

Let 1 � p < ∞ and let w = (wn)∞
n=1 be a non-increasing sequence of positive

scalars. Given a sequence of (real or comnplex) scalars f = (bk)∞
k=1 we put

‖ f‖g(w,p) = sup
φ∈O

(
∞

∑
i=1

|bφ(i)|pwi

)1/p

where O denotes the set of increasing functions from N to N . The Garling sequence
space g(w, p) is the Banach space consisting of all sequences f with ‖ f‖g(w,p) < ∞ .
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Notice that if in (3) we replace “φ ∈O ” with “φ is a permutation of N” we obtain
the norm that defines the weighted Lorentz sequence space

d(w, p) :=

⎧⎨
⎩(bk)∞

k=1 ∈ c0 :

(
∞

∑
i=1

(b∗i )
pwi

)1/p

< ∞

⎫⎬
⎭ ,

where (b∗i )∞
i=1 denotes the decreasing rearrangement of (bk)∞

k=1 . So, the Garling se-
quence space g(w, p) can be regarded as a variation of the weighted Lorentz sequence
space d(w, p) .

Imposing the further conditions w ∈ c0 and w /∈ �1 will prevent us, respectively,
from having g(w, p) = �p or g(w, p) = �∞ . We will assume as well that w is normal-
ized, i.e., w1 = 1. Thus, we put

W := {(wi)∞
i=1 ∈ c0 \ �1 : 1 = w1 � w2 � · · · � wi � wi+1 � · · · > 0}

and we restrict our attention to weights w ∈ W .
For n ∈ N , we will denote en = (δi,n)∞

i=1 , where δi,n = 1 if n = i and δi,n = 0
otherwise. We have (see Theorem 3.1 of [1]) that the canonical sequence (en)∞

n=1 is a
Schauder basis for g(w, p) . A question posed and partially solved in [1] is to determine
the weights w ∈ W and the indices p ∈ [1,∞) for which (en)∞

n=1 is a symmetric basis
of g(w, p) . Here we provide a complete intrinsic solution to this problem, in the sense
that our approach is entirely based on Theorem 1.

LEMMA 2. The canonical sequence (en)∞
n=1 is not a symmetric basis for g(w, p)

for any w ∈ W and any 1 � p < ∞ .

Proof. Assume that (en)∞
n=1 is a symmetric basis for g(w, p) . Then, there is a

constant C so that
‖g‖g(w,p) � C‖ f‖g(w,p)

whenever the sequence g is a permutation of the sequence f .
Given r ∈ N and φ ∈ O let n(r,φ) be the largest integer n such that φ(n) � r .

We have φ(i) � i + r− n(r,φ) for 1 � i � n(r,φ) . Given a non-increasing sequence
(ai)∞

i=1 of non-negative numbers we have

∞

∑
i=1

aiwi = sup
r

r

∑
i=1

aiwi � sup
r∈N

∥∥∥∥∥
r

∑
i=1

a1/p
i ei

∥∥∥∥∥
p

g(w,p)

� C sup
r∈N

∥∥∥∥∥
r

∑
i=1

a1/p
1+r−iei

∥∥∥∥∥
p

g(w,p)

= C sup
r∈N,φ∈O

n(r,φ)

∑
i=1

a1+r−φ(i)wi

� C sup
r∈N,φ∈O

n(r,φ)

∑
i=1

a1+n(r,φ)−iwi = C sup
n∈N

n

∑
i=1

a1+n−iwi

= C sup
n∈N

n

∑
i=1

aiw1+n−i.
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Theorem 1 yields the absurdity w ∈ �1 or w /∈ c0 . �
Now we are ready to establish the advertised structural properties of Garling se-

quence spaces.

THEOREM 3. Let w ∈ W and 1 � p < ∞ .

(i) There is no symmetric basis for g(w, p) .

(ii) d(w, p) � g(w, p) .

(iii) No subspace of d(w, p) is isomorphic to g(w, p) .

(iv) Let Id,g : d(w, p) → g(w, p) be the natural inclusion map, and let T : g(w, p) →
d(w, p) be a bounded linear operator. Then (despite the fact that Id,g is not
a strictly singular operator) T ◦ Id,g does not preserve a copy of d(w, p) , i.e.,
if X is a subspace of d(w, p) isomorphic to d(w, p) then T ◦ Id,g|X is not an
isomorphism.

Proof. It follows using Lemma 2 in combiantion with Theorem 5.1 of [1]. �
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