
Mathematical
Inequalities

& Applications

Volume 21, Number 1 (2018), 139–154 doi:10.7153/mia-2018-21-12

COVERING UNIT SPHERES AND BALLS
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Abstract. We amend a widely used result given by Doyle, Lagarias, and Randall concerning
the side length of equilateral Minkowski m -gons inscribed in the unit circle of a Minkowski
plane. Based on this, we obtain the smallest positive number γ such that the unit circle SX of
a Minkowski plane X can be covered by m translates of γBX , where BX is the unit ball of X .
Moreover, we improve a recent estimation of the smallest positive number γ such that the unit
ball BX of a Minkowski space X can be covered by m translates of γBX .

1. Introduction

Let n � 2 be a positive integer. We denote by [n] the set {m ∈ Z
+ : 1 � m � n}

and by X = (Rn,‖·‖) an n -dimensional (normed or) Minkowski space whose unit ball
and unit sphere are denoted by BX and SX , respectively. Clearly, BX is a convex body
(i.e., a compact convex set having interior points) symmetric with respect to the origin
o of R

n . For each m ∈ Z
+ , put

Γm(X) = inf

⎧⎨
⎩γ > 0 : ∃{xi : i ∈ [m]} ⊆ X s.t. BX ⊆

⋃
i∈[m]

(xi + γBX)

⎫⎬
⎭ ,

γm(X) = inf

⎧⎨
⎩γ > 0 : ∃{xi : i ∈ [m]} ⊆ X s.t. SX ⊆

⋃
i∈[m]

(xi + γBX)

⎫⎬
⎭ .

It is clear that
γm(X) � Γm(X) � 1, ∀m ∈ Z

+,

and that “inf”s in the definition of Γm(X) and γm(X) can be replaced by “min”s.
As shown in [11], [16], [8], and [12], Γm(X) and γm(X) are both closely related

to the special case of the famous Hadwiger’s covering problem when the convex body
under consideration is centrally symmetric. We refer to [4], [13], [2], and [3] for more
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information and more references concerning this open problem. Recently several pro-
gresses have been made in this direction by using tools and methods from Banach space
theory, see [15], [8], and [12].

In Section 2, we amend a result given by Doyle, Lagarias, and Randall in [5]
saying that the side length of equilateral Minkowski m-gons inscribed in the unit circle
of a Minkowski plane (i.e., a two-dimensional Minkowski space) having a given point
x0 as one of its vertices is uniquely determined by x0 , which is generally not true
(see Example 1). Based on this, in Section 3 we compute the precise value of γm(X)
and show that γ3(X) = Γ3(X) when X is a Minkowski plane. Inspired by the proof
idea of Theorem 19 in [12], we provide an estimation of Γm(X) for Minkowski spaces
which is better than the one given in [8] in the last section. As in [8] and [12], we are
following the philosophy provided in [17]: studying classical problems from Discrete
and Convex Geometry by introducing and studying proper functionals defined on the
space of convex bodies.

For each pair of points u,v ∈ SX satisfying u �= −v , we denote by

arc(u,v) :=
{

αu+ βv
‖αu+ βv‖ : α,β � 0, αu+ βv �= o

}

the minor arc connecting u and v , see Figure 1.

o

u v

Figure 1: The definition of a minor arc

For each bounded subset A of X , put

r(A) = inf{γ � 0 : ∃x ∈ X s.t. A ⊆ (x+ γBX)} .

It is not difficult to verify that, when A is compact, then “inf” in the definition of r(A)
can be replaced by “min”. By the triangle inequality, one can easily verify that

r(A) � 1
2

δ (A) ,

where δ (A) is the diameter of A .
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2. Side lengths of equilateral Minkowski m-gons

We shall use the following Monotonicity Lemma.

LEMMA 1. (Monotonicity Lemma, cf. Proposition 31 in [14]) Let X be a Minkow-
ski plane, and a,b,c �= o be three points with a �= c such that the ray [o,b〉 lies between
[o,a〉 and [o,c〉 . If ‖b‖ = ‖c‖ , then ‖a−b‖ � ‖a− c‖ , with equality if and only if ei-
ther

1. b=c;

2. or o and b are on opposite sides of 〈a,c〉 , and

[
c−a

‖c−a‖ ,
b

‖b‖
]
⊆ SX ;

3. or o and b are on the same side of 〈a,c〉 , and

[
c−a

‖c−a‖ ,
−c

‖−c‖
]
⊆ SX .

LEMMA 2. Let X be a Minkowski plane, u,v ∈ SX be two points satisfying u �=
−v. Then

r(arc(u,v)) =
1
2
‖u− v‖ .

Proof. Clearly,

r(arc(u,v)) � 1
2

δ (arc(u,v)) � 1
2
‖u− v‖ .

Hence we only need to prove that

r(arc(u,v)) � 1
2
‖u− v‖ . (1)

Put

w =
u+ v
‖u+ v‖ and p =

1
2
(u+ v).

Let q be an arbitrary point in arc(u,v) . If q = u or q = v , then

‖p−q‖=
1
2
‖u− v‖.

If q = w , then

‖p−q‖= 1−‖p‖ � 1− (‖u‖−‖u− p‖) =
1
2
‖u− v‖ .
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In the following we may assume, without loss of generality, that

q ∈ arc(u,w)\ {u,w} .

Then the ray [o,q〉 lies between [o,u〉 and [o, p〉 , and ‖u‖ = ‖q‖ . From Lemma 1 it
follows that

‖q− p‖� ‖u− p‖=
1
2
‖u− v‖ .

Therefore, (1) holds. �

LEMMA 3. Let X be a Minkowski plane, x ∈ X , and γ ∈ (0,1) . If

BX ∩ (x+ γBX) �= /0,

then there exist two points u,v ∈ SX such that

SX ∩ (x+ γBX) = arc(u,v) and
x

‖x‖ ∈ arc(u,v).

o
x

w

u

v

Figure 2: The intersection of the unit circle and a smaller disc

Proof. Put w = x/‖x‖ , see Figure 2. The hypothesis shows that

1− γ � ‖x‖ � 1+ γ.

Therefore,

‖x−w‖ =
∥∥∥∥x− x

‖x‖
∥∥∥∥ = |‖x‖−1|� γ,

which shows that
w ∈ SX ∩ (x+ γBX).

Since

‖x− (−w)‖= ‖x+w‖ =
∥∥∥∥x+

x
‖x‖

∥∥∥∥ = 1+‖x‖ > 1 > γ,

there exist two points p and q in SX lying on different open half-planes bounded by
the line 〈−x,x〉 such that min{‖p− x‖ ,‖q− x‖} � 1 > γ . Put

λ1 = max

{
λ ∈ [0,1] :

∥∥∥∥x− λ p+(1−λ )w
‖λ p+(1−λ )w‖

∥∥∥∥ � γ
}

,
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λ2 = max

{
λ ∈ [0,1] :

∥∥∥∥x− λq+(1−λ )w
‖λq+(1−λ )w‖

∥∥∥∥ � γ
}

,

u =
λ1p+(1−λ1)w

‖λ1p+(1−λ1)w‖ , and v =
λ2q+(1−λ2)w

‖λ2q+(1−λ2)w‖ .

By applying Lemma 1, we have

arc(u,w)∪ arc(v,w) = SX ∩ (x+ γBX).

Since δ (arc(u,w)∪ arc(v,w)) � 2γ < 2, we have

arc(u,w)∪ arc(v,w) = arc(u,v). �

LEMMA 4. Let X be a Minkowski plane, u,v ∈ SX be two distinct points such
that [u,v]∩ intBX �= /0 , H+ be an open halfplane bounded by 〈u,v〉 not containing o.
If s and t are two distinct points in SX ∩H+ , then

‖s− t‖� ‖u− v‖ ; (2)

equality holds if and only if ‖s− t‖ = 2 .

Proof. The case when u = −v is clear. In the following we assume that u �= −v .
The inequality (2) follows directly from the Monotonicity Lemma (Lemma 1). We

only need to consider the case when equality holds. Clearly, if ‖s− t‖= 2, then

2 = ‖s− t‖� ‖u− v‖� 2,

which implies that ‖s− t‖= ‖u− v‖.
Conversely, suppose that ‖s− t‖= ‖u− v‖ .
Case I: [s, t] is parallel to [u,v] . Clearly, the parallelogram P having s , t , −s , −t

as vertices is contained in BX . Then

〈u,v〉∩P ⊆ 〈u,v〉∩BX = [u,v] .

Since 〈u,v〉∩P is a segment parallel to [s,t] whose length is ‖s− t‖ , we have

〈u,v〉∩P = [u,v] .

Then the line 〈−s, t〉 contains three distinct points from SX , which shows that [−s,t]⊆
SX . Similarly, [s,−t] ⊆ SX . Hence ‖u− v‖= ‖s− t‖= 2.

Case II: [s, t] is not parallel to [u,v] . We may assume that the distance from s to
the line 〈u,v〉 is strictly smaller than the distance from t to 〈u,v〉 . Let t ′ be the point of
intersection of SX and the line passing through s and parallel to 〈u,v〉 . Then Lemma 1
shows that

‖s− t‖�
∥∥s− t ′

∥∥ � ‖u− v‖ .

It follows that
‖s− t‖=

∥∥s− t ′
∥∥ = ‖u− v‖ .

By Case I, ‖s− t ′‖ = 2. Hence ‖s− t‖= 2. �
The following example shows that Lemma 2.4 in [5] is not true.
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EXAMPLE 1. Let X = (R2,‖·‖) , where the norm is defined by ‖(α,β )‖ =
max{|α|, |β |} . Put a = (1,1) , b = (−1,1) , c = (1,−1) , b′ = (0,1) , c′ = (1,0) . Then
both the triangles abc and ab′c′ are equilateral, but their side lengths are different, see
Figure 3.

o x

y

ab

b
′

c
′

c

Figure 3: Two equilateral triangles inscribed in SX

PROPOSITION 5. Let X be a Minkowski plane. If there exist a point a ∈ SX and
two equilateral triangles T and T ′ inscribed in SX having a as one vertex whose side
lengths are different, then SX is a parallelogram.

Proof. Let {a,b,c} and {a,b′,c′} be the set of vertices of T and T ′ , respectively.
First we show that at least one of T and T ′ dose not contain o . Otherwise both

T and T ′ contain o . Without loss of generality, we may assume that the side length of
T is strictly less than the side length of T ′ , which is at most 2. Then it is clear that T
contains o in its interior. Also, −a �∈ [b,c] , since otherwise we would have

‖a−b‖= ‖a− c‖= ‖−a−a‖= 2,

which implies that the triangles T and T ′ have the same side length.
In this situation we have

SX = arc(a,b)∪ arc(a,c)∪ arc(b,c).

Lemma 1 and the assumption that ‖a− c′‖ = ‖a−b′‖ > ‖a−b‖ show that

b′,c′ ∈ arc(b,c)\ {b,c} .

Then Lemma 4 shows that ‖b′ − c′‖ < ‖b− c‖, a contradiction.
Thus at least one of T and T ′ does not contain o . Assume without loss of gener-

ality that o �∈ T and that a and o lie on different sides of 〈b,c〉 . Therefore, {o,a,b,c}
is the set of vertices of a convex quadrilateral having [o,a] and [b,c] as diagonals. We
have

2(‖o−a‖+‖b− c‖) = ‖o−b‖+‖a− c‖+‖o− c‖+‖a−b‖ .

By Corollary 8 in [14], SX is a parallelogram. �
The following theorem amends a false statement in Lemma 2.4 in [5] as we have

claimed.
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THEOREM 6. Let X be a Minkowski plane. For any integer m � 3 and each
x ∈ SX , there exists a convex m-gon inscribed in BX and having x as a vertex which
is equilateral with respect to ‖·‖ (called an equilateral Minkowski m-gon having x
as a vertex). If X is strictly convex, this m-gon is unique. Moreover, if SX is not a
parallelogram or if m � 4 , the side length of the m-gon is uniquely determined by x .

Proof. Note that Lemma 2.4 in [5] correctly proved the existence of such convex
m-gons and the uniqueness of the equilateral Minkowski m-gon having x ∈ SX as a
vertex when X is strictly convex. Proposition 5 shows that when SX is not a paral-
lelogram, for each x ∈ SX , the length of equilateral triangles inscribed in SX having
x as a vertex is uniquely determined. In the rest we show that, when m � 4, for each
Minkowski plane X and each x ∈ SX the length of an equilateral Minkowski m-gon
having x as a vertex is uniquely determined.

For two distinct points x,y ∈ SX , we denote by −→arc(x,y) the directed arc that
connects x counter-clockwisely with y . Hence

−→arc(x,y) �= −→arc(y,x) and SX = −→arc(x,y)∪−→arc(y,x).

First we show that if m � 4 and if {a1, · · · ,am} is the set of vertices of an equilat-
eral Minkowski m-gon P inscribed in SX , which are ordered counter-clockwisely on
SX , then

−→arc(ai,ai+1) = arc(ai,ai+1), ∀i with 1 � i � m,

where am+1 is set to be a1 . Take −→arc(a1,a2) for example. If −→arc(a1,a2) �= arc(a1,a2) ,
then either a2 = −a1 or P is contained in the closed halfplane bounded by 〈a1,a2〉 not
containing o . If a2 =−a1 , then the side length of P is 2 and −→arc(a2,a1) is a semicircle
whose length is not smaller than

‖am −a1‖+‖am−am−1‖+‖am−1−am−2‖ = 6.

This shows that the circumference of SX is at least 12. Since the circumference of
SX ranges from 6 to 8 (see, e.g., [14, p. 130]), this is impossible. Now suppose that
P is contained in the closed halfplane bounded by 〈a1,a2〉 not containing o . In this
case, [a3,a4] is contained in the open halfplane bounded by 〈a1,a2〉 not containing o .
Since ‖a3−a4‖ = ‖a1−a2‖ , Lemma 4 shows that the side length of P is 2 . Again
this would show that the circumference of SX is at least 12.

Note that these arguments also show that o is in the interior of P .
Suppose that there exist two equilateral Minkowski m-gons P and P′ having

a1, · · · ,am and b1, · · · ,bm as vertices, respectively, where

1. a1 = b1 = x ,

2. both a1, · · · ,am and b1, · · · ,bm are in counter-clockwise order,

3. ‖a2−a1‖ > ‖b2−b1‖ .
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Since P and P′ both contain o in their interiors, a2 and b2 are both in −→arc(a1,−a1) .
Lemma 1 shows that b2 is in the relative interior of −→arc(a1,a2) . Now suppose that we
have proved that bi is in the relative interior of −→arc(a1,ai) for some integer 2 � i < m .
We distinguish two cases.

Case I: −bi ∈−→arc(−a1,a1) . If ai+1 ∈ −→arc(−bi,a1) , then

−→arc(a1,ai+1) = −→arc(a1,bi)∪−→arc(bi,−bi)∪−→arc(−bi,ai+1),

and bi+1 ∈ −→arc(bi,−bi)\ {−bi} . Thus bi+1 is in the relative interior of −→arc(a1,ai+1) .
If ai+1 ∈ −→arc(bi,−bi) , then ai is in the relative interior of arc(bi,ai+1) . If bi+1 ∈

arc(ai+1,−bi) , then Lemma 1 shows that

‖bi+1−bi‖ � ‖ai+1−ai‖ ,

a contradiction. Thus bi+1 is in the relative interior of −→arc(bi,ai+1) which is contained
in the relative interior of −→arc(a1,ai+1) .

Case II: −bi ∈ −→arc(a1,−a1)\ {−a1} . In this case we have

arc(ai,ai+1) ⊆ arc(bi,a1) = −→arc(bi,a1).

Again, Lemma 1 shows that bi+1 is in the relative interior of arc(bi,ai+1) which is
contained in the relative interior of −→arc(a1,ai+1) .

By induction, we know that bm is in the relative interior of −→arc(a1,am) . By Lemma
1 again, we have

‖bm −a1‖ = ‖bm−b1‖ � ‖am −a1‖ ,

a contradiction. �
For each integer m � 3, each Minkowski plane X , and each x ∈ SX , denote by

αm(x,X) the maximal side lengths of equilateral Minkowski m-gons inscribed in SX

having x as a vertex. Theorem 6 shows that if BX is not a parallelogram or if m � 4, the
side length of each equilateral Minkowski m-gon inscribed in SX having x as a vertex
is αm(x,X) . It is not difficult to verify that, for fixed x , αm(x,X) is non-increasing
with respect to m , see [5, p. 178]. Put

S(m,X) = inf{αm(x,X) : x ∈ SX} .

PROPOSITION 7. Let X be a Minkowski plane. Then S(3,X) = 2 if and only if
BX is a parallelogram.

Proof. It is not difficult to verify that if BX is a parallelogram then S(3,X) = 2.
Conversely, suppose that S(3,X) = 2. Then there exists an equilateral tirangle T

having vertices a,b,c ∈ SX whose side length is 2.
First suppose that one pair of points from a,b,c , say a and b , are linearly depen-

dent. Then b = −a . Then we have

‖c+a‖= ‖c−a‖= 2.
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It follows that [a,c] ⊆ SX and [b,c] ⊆ SX , which implies that BX is a parallelogram
having a,b,c,−c as vertices.

Now we assume that a,b,c are pairwise linearly independent. Since

2 = ‖a−b‖= ‖a‖+‖b‖ ,

we have [a,−b] ⊆ SX . Suppose that [s,t] is the longest segment contained in SX and
containing [a,−b] . Let u be the midpoint of [s,t] . By the hypothesis, there exist two
points v,w ∈ SX such that

‖u− v‖= ‖u−w‖= ‖v−w‖= 2.

It follows that [−u,v] ⊆ SX . However, [−s,−t] is the unique segment containing −u ,
which implies that v∈ [−s,−t] . In a similar way, we can show that w∈ [−s,−t] . Since

2 = ‖v−w‖ � ‖s− t‖ � 2,

[s,t] is a segment contained in SX whose length is 2. Hence, BX is a parallelogram
having s, t,−s,−t as vertices. �

3. γm(X) of Minkowski planes

For the discussion in the sequel, we shall use the following equivalent represen-
tations of the so called non-square constants J(X) and S(X) , which were provided in
[10] (see also [7]):

J(X) := sup{‖x+ y‖ : x,y ∈ SX , ‖x+ y‖ = ‖x− y‖}

and

S(X) := inf{‖x+ y‖ : x,y ∈ SX , ‖x+ y‖= ‖x− y‖}.
It is always true that (see, e.g., [6] and [7])

1 � S(X) �
√

2 � J(X) � 2.

REMARK 8. One can easily verify that, for each Minkowski plane X , S(4,X) is
the Schäffer constant S(X) . Therefore

1 � S(4,X) �
√

2.

THEOREM 9. Let X be a Minkowski plane and m � 3 . Then

γm(X) =
1
2
S(m,X).
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Proof. The case when m = 3 and SX is a parallelogram is clear. In the following
we always assume that m > 3 or SX is not a parallelogram. In this case the side
length of equilateral Minkowski m-gons inscribed in SX having x ∈ SX as a vertex
is uniquely determined by m and x , and each equilateral Minkowski m-gon inscribed
in SX contains o in its interior. By Lemma 2, we only need to show that γm(X) �
(1/2)S(m,X) . Suppose the contrary, namely that

γ := γm(X) <
1
2
S(m,X) � 1.

Then there exists a set {pi : i ∈ [m]} such that

SX ⊆
⋃

i∈[m]

(pi + γBX).

By Lemma 3, there exist two points u1,v1 ∈ SX such that

(p1 + γBX)∩SX = −→arc(u1,v1) = arc(u1,v1).

There exists an equilateral Minkowski m-gon P = x1x2 · · ·xm inscribed in SX such that
x1 = u1 , and that, for each i ∈ [m− 1] , the orientation from xi to xi+1 is counter-
clockwise. We may also require that

−→arc(xi,xi+1) = arc(xi,xi+1), ∀i ∈ [m].

Moreover, the side length of this equilateral Minkowski m-gon is strictly greater than
2γ . Then, for each i ∈ [m] , pi + γBX can only cover at most one (and, consequencely,
precisely one) vertex of P . Thus we may assume without loss of generality that,
for each i ∈ [m] , there exist two points ui,vi ∈ SX such that xi ∈ (pi + γBX )∩ SX =−→arc(ui,vi) = arc(ui,vi) .

Next we show that, for each i ∈ [m] , vi ∈ arc(xi,xi+1)\ {xi+1} (we put xm+1 = x1

and x0 = xm ). Since

‖u1− v1‖ � 2γ < ‖x1 − x2‖ = ‖u1− x2‖ ,

Lemma 1 shows that v1 ∈ arc(x1,x2) \ {x2} . Now suppose that vk ∈ arc(xk,xk+1) \
{xk+1} for some k ∈ [m−1] . It is clear that there exists a j ∈ [m]\ {k} such that

vk ∈ (p j + γBX)∩SX = arc(u j,v j).

If x j lies in the open semicircle connecting vk with −vk and containing xk , then, since
‖uk − vk‖ <

∥∥xk − x j
∥∥ , we have x j ∈ arc(uk,−vk) . It follows that∥∥p j − vk

∥∥ �
∥∥vk − x j

∥∥−∥∥x j − p j
∥∥ �

∥∥xk − x j
∥∥− γ > γ,

which is impossible. Therefore, x j has to be in the semicircle connecting vk with −vk

and containing xk+1 . We claim that j = k + 1, since otherwise, by using the fact that
x j �∈ arc(xk,xk+1) , we would have∥∥p j − vk

∥∥ �
∥∥vk − x j

∥∥−∥∥x j − p j
∥∥ �

∥∥xk+1− x j
∥∥− γ > γ,
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a contradiction. Now it is clear that arc(vk,xk+1) ⊆ arc(uk+1,vk+1) . If xk+2 lies in the
semicircle connecting uk+1 and −uk+1 and containing vk+1 , then

‖uk+1− vk+1‖ � 2γ < ‖xk+1− xk+2‖ � ‖uk+1− xk+2‖ .

Otherwise, vk+1 lies in arc(xk+1,−uk+1) . In both cases we have

vk+1 ∈ arc(xk+1,xk+2)\ {xk+2} .

It follows by induction that

vm ∈ arc(xm,xm+1)\ {xm+1} = arc(xm,x1)\ {x1} .

Thus the relative interior of arc(vm,x1) is not contained in ∪i∈[m](pi + γBX) , a contra-
diction. �

REMARK 10. Proposition 14 in [12] proved a result similar to Theorem 9 for
planar convex bodies that are strictly convex and smooth.

LEMMA 11. Let X be a Minkowski plane, u ∈ SX , and [a,b] and [s,t] be two
chords of SX parallel to 〈−u,u〉 such that 〈s,t〉 lies strictly between 〈a,b〉 and 〈−u,u〉 .
Then

‖s+ t‖< ‖a+b‖. (3)

o

a
s

b
t

−u u

−t

−b

s
′

t
′

−a

Figure 4: The proof of Lemma 11

Proof. It is not difficult to see that we only need to consider the case when ‖a+b‖
< 2. Without loss of generality we may assume that t − s and b−a are both positive
scalar multiples of u . Since 〈s,t〉 lies strictly between 〈a,b〉 and 〈−u,u〉 , the lines
〈a,−b〉 and 〈−a,b〉 intersect 〈s,t〉 in a point s′ and t ′ , respectively; see Figure 4.
Clearly, [s′, t ′] ⊆ [s, t] . If one of the two points s′ and t ′ is in SX (note that these two
points lie in the relative interior of [a,−b] and [−a,b]), then both [a,−b] and [−a,b]
are contained in SX . It follows that [s,−t] and [−s,t] are contained in the relative
interiors of [a,−b] and [−a,b] , respectively. Hence, (3) holds. In the following we
assume that s′ and t ′ are both interior points of BX . Then s and −t is contained in the
open halfplane bounded by 〈a,−b〉 not containing o . By Lemma 4 and the fact that
‖a+b‖< 2, we have (3). �

Let x,y ∈ X . If ‖x+ y‖ = ‖x− y‖ , then we say that x is isosceles orthogonal to
y , denoted x ⊥I y , see [9].
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COROLLARY 12. Let X be a Minkowski plane, u∈ SX . Then there exists a unique
pair of chords [a,b] and [−a,−b] parallel to 〈−u,u〉 such that ‖a+b‖= ‖a−b‖.

Proof. By the uniqueness of isosceles orthogonality (see [1, Theorem 4.35]), there
exists a unique v ∈ SX (except for the sign) such that u ⊥I v . Put

a =
−u+ v

‖−u+ v‖ and b =
u+ v
‖u+ v‖ .

Then

a,b ∈ SX , b−a =
2

‖u+ v‖u, a+b =
2

‖u+ v‖v, ‖a−b‖=
2

‖u+ v‖ = ‖a+b‖ .

Thus, [a,b] and [−a,−b] is a pair of chords having the desired properties.
In the following we show the uniqueness. Otherwise, there exists another pair of

chords [s, t] and [−s,−t] having the required properties. Without loss of generality
we may assume that 〈s,t〉 lies strictly between 〈a,b〉 and 〈−u,u〉 , and that t − s is
a positive scalar multiple of u . Suppose that s ∈ [a,−b] or t ∈ [b,−a] . Then −t ∈
[a,−b]⊂ SX , − s ∈ [b,−a]⊂ SX . It follows that

‖s+ t‖ < ‖a+b‖= ‖a−b‖= ‖s− t‖ ,

a contradiction. Similarly, s �∈ [a,−b] , −s �∈ [b,−a] . Lemma 11 and Lemma 4 show
that

‖s+ t‖< ‖a+b‖= ‖a−b‖� ‖s− t‖ ,

a contradiction. �

LEMMA 13. Let X be a Minkowski plane, and T be an equilateral triangle hav-
ing a,b,c as vertices which is inscribed in SX so that o ∈ T . Then

‖a+b‖� ‖a−b‖.

Proof. The case ‖a−b‖= 2 is clear. In the rest of the proof we assume that

‖a−b‖= ‖a− c‖= ‖b− c‖< 2.

In this case, o is an interior point of T , which implies that −c is a relatively interior
point of arc(a,b) . Put

u =
a−b

‖a−b‖ .

Suppose the contrary, that ‖a+b‖ > ‖a−b‖. Then there exists a unique pair of
points s, t ∈ SX such that

1. 〈s, t〉 lies strictly between 〈a,b〉 and 〈−u,u〉 ,
2. t− s is a positive scalar multiple of −u , and



COVERING UNIT SPHERES AND BALLS OF NORMED SPACES BY SMALLER BALLS 151

3. ‖s+ t‖ = ‖s− t‖ .

Since o is an interior point of T , c lies in the open halfplane bounded by 〈−u,u〉
not containing [a,b] . If c ∈ arc(−u,−s) , then T is completely contained in the open
halfplane bounded by 〈−s,s〉 containing [a,b] , which is in contradiction to o ∈ intT .
Thus c �∈ arc(−u,−s) . Similarly, c �∈ arc(u,−t) . It follows that c is a relatively interior
point of arc(−s,−t) . By Lemma 1 and Lemma 4, we have

‖c−b‖� ‖−s− t‖= ‖s+ t‖ = ‖s− t‖ > ‖a−b‖ ,

‖c−a‖� ‖−t− s‖ = ‖s+ t‖ = ‖s− t‖ > ‖a−b‖ .

These are in contradiction to the fact that T is equilateral. �

THEOREM 14. Let X be a Minkowski plane. Then

γ3(X) = Γ3(X) =
1
2
S(3,X).

Proof. When SX is a parallelogram, it is clear that

γ3(X) = Γ3(X) =
1
2
S(3,X) = 1.

In the following we assume that SX is not a parallelogram. In this case we have
S(3,X) < 2, and o is the interior of each equilateral triangle inscribed in SX .

By Theorem 9, γ3(X) = (1/2)S(3,X) . Let {a1,a2,a3} be the vertex set of an
equilateral triangle inscribed in SX whose side length is γ = S(3,X) . Let c1,c2,c3 be
the midpoint of [a1,a2] , [a2,a3] , and [a3,a1] , respectively. Then

SX ⊆
⋃
i∈[3]

(
ci +

1
2
S(3,m)

)
,

and, by Lemma 13,

o ∈
⋂
i∈[3]

(
ci +

1
2
S(3,m)

)
.

It follows that

BX ⊆
⋃
i∈[3]

(
ci +

1
2
S(3,m)

)
.

Thus Γ3(X) � (1/2)S(3,X) , which implies that Γ3(X) = (1/2)S(3,X) . �

REMARK 15. The situation is much more complicated when m � 5. On the one
hand, if SX is a parallelogram, then we have

1
2

= γ4(X) � γ5(X) � γ6(X) =
1
2
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and

γ6(X) � Γ6(X) � Γ5(X) � Γ4(X) =
1
2
.

It follows that

γ5(X) = γ6(X) = Γ5(X) = Γ6(X) =
1
2
.

On the other hand, when X is the Euclidean plane we clearly have

Γ5(X) > γ5(X).

4. A better estimation for Γm(X)

Let X be a Minkowski space, u ∈ SX and ε ∈ [0,2] . The directional modulus of
convexity δX (u,ε) is defined by

δX (u,ε) := inf

{
1−

∥∥∥∥x+ y
2

∥∥∥∥ : x,y ∈ SX , ∃λ ∈ R s.t. x− y = λu �∈ intεBX

}
.

For each u ∈ SX and each λ > 0, we put

I(u,λ ) = {z ∈ SX : z+ λu ∈ BX},

Um(X) =

⎧⎨
⎩{ui : i ∈ [m]} ⊂ SX : ∃λ > 0 such that SX ⊆

⋃
i∈[m]

I(ui,λ )

⎫⎬
⎭ ,

and, for each U = {ui : i ∈ [m]} ∈ Um(X) ,

λ (U) = sup

⎧⎨
⎩λ > 0 : SX ⊆

⋃
i∈[m]

I(ui,λ )

⎫⎬
⎭ ,

and

δ (U) = 1−min{δX (ui,λ (U)) : i ∈ [m]} .

Note that, for a particular choices of m∈Z
+ , Um(X) might be empty. By standard

compactness arguments, one can show that “sup” in the definition of λ (U) can be
replaced by “max”.

Now we improve the estimation of Γm(X) provided in [8].

THEOREM 16. Suppose that m ∈ Z
+ and Um(X) �= /0 . Then

Γm(X) � inf

{
max

{
δ (U),

1
2

λ (U)
}

: U ∈ Um(X)
}

.
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Proof. Let U = {ui : i ∈ [m]} be an arbitrary element in Um(X) . We show that

Γm(X) � max

{
δ (U),

1
2

λ (U)
}

.

The case when δ (U) = 1 or λ (U) = 2 is clear. In the following we assume that
δ (U) < 1 and λ (U) < 2. In this case we have

δX (ui,λ (U)) � 1− δ (U) > 0, ∀i ∈ [m]. (4)

Therefore, if [a,b] is a chord of SX whose length is not smaller than λ (U) and which
is parallel to 〈−ui,ui〉 for some i ∈ [m] , then [a,b]\ {a,b} ⊂ intBX .

Let i be an arbitrary integer in [m] . Put

xi = −λ (U)
2

ui.

We show that I(ui,λ (U)) ⊆ BX(xi,δ (U)) , where BX(xi,δ (U)) is the ball centered at
xi whose radius is δ (U) .

For each x ∈ I(ui,λ (U)) , there exists a point y ∈ SX such that

[x,y] = BX ∩ (x+ 〈−ui,ui〉).
Clearly, ‖x− y‖� λ (U) . Whether x and y are linearly independent or not, there exist
two points u,v ∈ SX such that

v−u = λ (U)ui, x,y ∈ span{u,v} , [u,v] = 〈u,v〉∩BX ,

and that 〈x,y〉 lies between 〈−ui,ui〉 and 〈u,v〉 (cf. the proof of Theorem 12 in [8]).
Then

‖u− xi‖ =
∥∥∥∥u+

λ (U)
2

ui

∥∥∥∥ =
∥∥∥∥1

2
(u+ v)

∥∥∥∥ � 1− δX(ui,λ (U)) � δ (U).

Lemma 1 shows that
‖x− xi‖ � ‖u− xi‖ � δ (U).

Therefore I(ui,λ (U)) ⊆ BX (xi,δ (U)) .
Moreover,

o ∈
⋂

i∈[m]

BX

(
xi,

1
2

λ (U)
)

.

It follows that

BX ⊆
⋃

i∈[m]

BX

(
xi,max

{
δ (U),

1
2

λ (U)
})

,

which completes the proof. �

REMARK 17. The estimation of Γm(X) above is better than the estimation given
by Theorem 12 in [8]. Take, for example, l2∞ =

(
R

2,‖.‖∞
)
. Theorem 12 in [8] gives

Γ4(l2∞) � 1. Let U = {(1,1),(−1,1),(−1,−1),(1,−1)}. It is not difficult to see that
λ (U) = 1 and δ (U) = 1/2. Theorem 16 yields Γ4(l2∞) � 1/2 = Γ4(l2∞) , an estimation
which is best possible.
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