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COVERING UNIT SPHERES AND BALLS
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(Communicated by H. Martini)

Abstract. We amend a widely used result given by Doyle, Lagarias, and Randall concerning
the side length of equilateral Minkowski m-gons inscribed in the unit circle of a Minkowski
plane. Based on this, we obtain the smallest positive number y such that the unit circle Sy of
a Minkowski plane X can be covered by m translates of yByx , where By is the unit ball of X .
Moreover, we improve a recent estimation of the smallest positive number Y such that the unit
ball By of a Minkowski space X can be covered by m translates of yBy .

1. Introduction

Let n > 2 be a positive integer. We denote by [n] the set {m € Z": 1 <m<n}
and by X = (R",||-||) an n-dimensional (normed or) Minkowski space whose unit ball
and unit sphere are denoted by By and Sy, respectively. Clearly, By is a convex body
(i.e., a compact convex set having interior points) symmetric with respect to the origin
o of R". For each m € Z™", put

Tw(X)=inf¢ y>0: 3{x;: i€[m]} CXs.t.Bx C |J (xi+7Bx) ¢

ic[m]

Yu(X)=infQy>0: 3{x;: i€ [m} CXstSxC |J (xi+7¥Bx)

i€[m]

It is clear that
Tn(X) <Tw(X) <1, YmeZF,

and that “inf”s in the definition of I',,(X) and %,(X) can be replaced by “min”s.

As shown in [11], [16], [8], and [12], T}, (X) and %, (X) are both closely related
to the special case of the famous Hadwiger’s covering problem when the convex body
under consideration is centrally symmetric. We refer to [4], [13], [2], and [3] for more
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information and more references concerning this open problem. Recently several pro-
gresses have been made in this direction by using tools and methods from Banach space
theory, see [15], [8], and [12].

In Section 2, we amend a result given by Doyle, Lagarias, and Randall in [5]
saying that the side length of equilateral Minkowski m-gons inscribed in the unit circle
of a Minkowski plane (i.e., a two-dimensional Minkowski space) having a given point
Xo as one of its vertices is uniquely determined by xy, which is generally not true
(see Example 1). Based on this, in Section 3 we compute the precise value of %, (X)
and show that y3(X) = I'3(X) when X is a Minkowski plane. Inspired by the proof
idea of Theorem 19 in [12], we provide an estimation of T, (X) for Minkowski spaces
which is better than the one given in [8] in the last section. As in [8] and [12], we are
following the philosophy provided in [17]: studying classical problems from Discrete
and Convex Geometry by introducing and studying proper functionals defined on the
space of convex bodies.

For each pair of points u,v € Sy satisfying u # —v, we denote by

arc(u,v) 1= {”ZZ% o, =0, au+Bv;£o}

the minor arc connecting u and v, see Figure 1.

Figure 1: The definition of a minor arc
For each bounded subset A of X, put
r(A)=inf{y>0: IxeXst. AC (x+yBx)}.

It is not difficult to verify that, when A is compact, then “inf” in the definition of r(A)
can be replaced by “min”. By the triangle inequality, one can easily verify that

where 6 (A) is the diameter of A.
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2. Side lengths of equilateral Minkowski n:-gons

We shall use the following Monotonicity Lemma.

LEMMA 1. (Monotonicity Lemma, cf. Proposition 31 in [14]) Let X be a Minkow-
ski plane, and a,b,c # o be three points with a # ¢ such that the ray [0,b) lies between
[0,a) and [o,c). If ||b|| = ||c||, then ||a—b]|| < ||la — c||, with equality if and only if ei-
ther

1. b=c;

2. or o and b are on opposite sides of (a,c), and

c—a b
ST gSX7
[Ilc—all b}

3. or o and b are on the same side of {a,c), and
[ﬂ—_ﬁ C Sy
lle —all " [|—cll
LEMMA 2. Let X be a Minkowski plane, u,v € Sx be two points satisfying u #
—v. Then
1
r(arc(u,v)) = 3 llu—v].
Proof. Clearly,

5 (arc(u, v)) > % lu—vl].

0| =

r(arc(u,v)) >

Hence we only need to prove that

1
r(arc(u,v)) < 3 llu—v]. (1)
Put |
u+v
w=——— and p=—(u+v).
[+ ]| p=3uty)

Let ¢ be an arbitrary point in arc(u,v). If g =u or g = v, then
Ip—all =5 lu—>
—qll==|u—v|.
P—al=5
If g=w, then

1
lp—all =1~ lIpll < 1= (el = llu—pll) = 5 Ju V|-
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In the following we may assume, without loss of generality, that
q € arc(u,w) \ {u,w}.

Then the ray [o,q) lies between [o,u) and [o,p), and |lu|| = ||¢||. From Lemma 1 it
follows that

1
llg =Pl < [l = plf = 5 [l =]l
Therefore, (1) holds. [
LEMMA 3. Let X be a Minkowski plane, x € X, and y € (0,1). If
Bx N (x—|— )/Bx) 7é 0,

then there exist two points u,v € Sx such that
X

|

Sx N (x+vBx) = arc(u,v) and I € arc(u,v).
X

Figure 2: The intersection of the unit circle and a smaller disc

Proof. Put w= x/||x||, see Figure 2. The hypothesis shows that

L—y< x| <1+,

Therefore,

X

=] = x——H=|||x—1|<y,

E

which shows that
w € Sx N (x+ yBx).
Since
X
o= (—w) | = -+l = x+wH=1+nx>1>y,

there exist two points p and ¢ in Sy lying on different open half-planes bounded by
the line (—x,x) such that min{||p —x||,||g—x||} > 1 > y. Put
<,

Ap+(1—2A)w
12+ (1=2)w|

X —

M :max{l €[0,1]:
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M:max{XG[OJ}: Hx L_WHH }

IAg+ (1—=2)
Ap+(1=A)w Aag+ (1= 2)w
= s d = .
TR+ A=l M T g+ (1= 2o

By applying Lemma 1, we have

arc(u,w)Uarc(v,w) = Sy N (x+ yBx).
Since & (arc(u,w)Uarc(v,w)) < 2y < 2, we have

arc(u,w)Uarc(v,w) = arc(u,v). O

LEMMA 4. Let X be a Minkowski plane, u,v € Sx be two distinct points such
that [u,v|NintBx # 0, H" be an open halfplane bounded by (u,v) not containing o.
If s and t are two distinct points in Sy NH ™, then

[ls =2l <=l 2

equality holds if and only if ||s —t]| = 2.

Proof. The case when u = —v is clear. In the following we assume that u # —v.
The inequality (2) follows directly from the Monotonicity Lemma (Lemma 1). We
only need to consider the case when equality holds. Clearly, if ||s —¢|| = 2, then

2=ls—tl < [lu—vl[ <2

which implies that ||s —z|| = |lu—v||.

Conversely, suppose that ||s—z|| = |lu—v||.

Case I: [s,t] is parallel to [u,v]. Clearly, the parallelogram P having s, t, —s, —t
as vertices is contained in By . Then

(u,v) NP C (u,v)NBx = [u,v].
Since (u,v) NP is a segment parallel to [s,7] whose lengthis ||s —¢||, we have
(u,vyNP = [u,v].

Then the line (—s,7) contains three distinct points from Sy, which shows that [—s,7] C
Sx . Similarly, [s,—7] C Sx. Hence ||u—v||=|[s—t|| =2
Case II: [s,t] is not parallel to [u,v]. We may assume that the distance from s to
the line (u,v) is strictly smaller than the distance from 7 to {u,v). Let ¢’ be the point of
intersection of Sy and the line passing through s and parallel to (u,v). Then Lemma 1
shows that
s =t < [ls =]} < flu— vl

It follows that
s =l = [ls =2l = lu—l.

By Casel, |[s—1¢|| =2. Hence ||s—¢||=2. O

The following example shows that Lemma 2.4 in [5] is not true.
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EXAMPLE 1. Let X = (R2||||), where the norm is defined by ||(c,B)| =
max {|al,|B|}. Puta=(1,1), b=(—1,1), c=(1,—-1), b'=(0,1), ¢ =(1,0). Then
both the triangles abc and ab’c’ are equilateral, but their side lengths are different, see
Figure 3.

Yi
b T a
N
&

Figure 3: Two equilateral triangles inscribed in Sx

PROPOSITION 5. Let X be a Minkowski plane. If there exist a point a € Sx and
two equilateral triangles T and T' inscribed in Sy having a as one vertex whose side
lengths are different, then Sx is a parallelogram.

Proof. Let {a,b,c} and {a,b’,c'} be the set of vertices of T and T’, respectively.

First we show that at least one of 7 and T’ dose not contain o. Otherwise both
T and T’ contain o. Without loss of generality, we may assume that the side length of
T is strictly less than the side length of 7', which is at most 2. Then it is clear that T
contains o in its interior. Also, —a ¢ [b,c], since otherwise we would have

la=b] = lla—cll=[-a—al =2,

which implies that the triangles T and T’ have the same side length.
In this situation we have

Sy = arc(a,b) Uarc(a,c)Uarc(b,c).
Lemma 1 and the assumption that |la —¢/|| = ||a — &/|| > ||a — b|| show that
b',c € arc(b,c)\ {b,c}.

Then Lemma 4 shows that ||b’ — ¢’|| < ||b— c||, a contradiction.

Thus at least one of 7 and T’ does not contain o. Assume without loss of gener-
ality that o ¢ T and that a and o lie on different sides of (b,c). Therefore, {0,a,b,c}
is the set of vertices of a convex quadrilateral having [0,a] and [b,¢] as diagonals. We
have

2llo=all+1[b—cll) = llo=bll+ lla=cl[ +llo = c[| + lla—b]|.
By Corollary 8 in [14], Sy is a parallelogram. [

The following theorem amends a false statement in Lemma 2.4 in [5] as we have
claimed.
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THEOREM 6. Let X be a Minkowski plane. For any integer m > 3 and each
x € Sx, there exists a convex m-gon inscribed in Bx and having x as a vertex which
is equilateral with respect to ||-|| (called an equilateral Minkowski m-gon having x
as a vertex). If X is strictly convex, this m-gon is unique. Moreover, if Sx is not a
parallelogram or if m > 4, the side length of the m-gon is uniquely determined by x.

Proof. Note that Lemma 2.4 in [5] correctly proved the existence of such convex
m-gons and the uniqueness of the equilateral Minkowski m-gon having x € Sy as a
vertex when X is strictly convex. Proposition 5 shows that when Sx is not a paral-
lelogram, for each x € Sy, the length of equilateral triangles inscribed in Sx having
x as a vertex is uniquely determined. In the rest we show that, when m > 4, for each
Minkowski plane X and each x € Sy the length of an equilateral Minkowski m-gon
having x as a vertex is uniquely determined.

For two distinct points x,y € Sy, we denote by ar¢(x,y) the directed arc that
connects x counter-clockwisely with y. Hence

aré(x,y) # aré(y,x) and Sy = aré(x,y) Uaré(y,x).

First we show that if m >4 and if {a,--- ,a,} is the set of vertices of an equilat-
eral Minkowski m-gon P inscribed in Sy, which are ordered counter-clockwisely on
Sx , then

ﬁ:(ai,aiﬂ) = arc(a,-7a,-+1)7 Viwith 1 <i<m,

where a,,, 1 is set to be a;. Take ar¢(ay,a,) for example. If aré(ay,a;) # arc(ay,az),
then either ap = —ay or P is contained in the closed halfplane bounded by (aj,a;) not
containing o. If @y = —aj , then the side length of P is 2 and ar¢(as,a;) is a semicircle
whose length is not smaller than

lam — ar |l + lam — am—1| + [|@m—1 — am—2l| = 6.

This shows that the circumference of Sy is at least 12. Since the circumference of
Sy ranges from 6 to 8 (see, e.g., [14, p. 130]), this is impossible. Now suppose that
P is contained in the closed halfplane bounded by (aj,a,) not containing o. In this
case, |as,aq] is contained in the open halfplane bounded by (a;,a;) not containing o.
Since ||az —ay|| = ||a; — az]|, Lemma 4 shows that the side length of P is 2. Again
this would show that the circumference of Sy is at least 12.

Note that these arguments also show that o is in the interior of P.

Suppose that there exist two equilateral Minkowski m-gons P and P’ having
ai,---,an and by,---, by, as vertices, respectively, where

1. a) = bl =X,
2. both ay,---,a, and by,---,b,, are in counter-clockwise order,

3. |laa —a1l| > ||z — by]|.
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Since P and P’ both contain o in their interiors, a, and b, are both in ﬁ:(al,—al).
Lemma 1 shows that b, is in the relative interior of zfc)(ahaz). Now suppose that we
have proved that b; is in the relative interior of zfc)(a 1,a;) for some integer 2 <i < m.
We distinguish two cases.

Case I: —b; € R(—al,al) dfaing € R(—bhal), then

a_ré(al,aiH) = eﬁ(al,bi) Ua_rc):(bi, —b;)U aTC)(—b,',aH_l),

and b, | € ar¢(b;,—b;) \ {—b;}. Thus b;, | is in the relative interior of ar¢(aj,a;i1).
If aj € ﬁ:(bh —b;), then q; is in the relative interior of arc(b;,a;+1). If by €
arc(a;y1,—b;), then Lemma 1 shows that

|biv1 = bill = l|aiv1 —ail| s

a contradiction. Thus b;; is in the relative interior of eﬁ:}(bi,a,url) which is contained
in the relative interior of ar¢(ay,a; ).
Case II: —b; € aré(ay,—a;) \ {—a1}. In this case we have

arc(a;,a;11) C arc(b;,ay) = eﬁ(bi,al).

Again, Lemma | shows that b;y; is in the relative interior of arc(b;,a;y1) which is
contained in the relative interior of ﬁ:(a 1,dit1)-
By induction, we know that b,, is in the relative interior of ar¢(a;,a,,). By Lemma
1 again, we have
1bm —ar|| = [|bm — b1 [| = [lam — a1,

a contradiction. [J

For each integer m > 3, each Minkowski plane X, and each x € Sy, denote by
0 (x,X) the maximal side lengths of equilateral Minkowski m-gons inscribed in Sy
having x as a vertex. Theorem 6 shows that if By is not a parallelogram or if m > 4, the
side length of each equilateral Minkowski m-gon inscribed in Sx having x as a vertex
is 04y (x,X). It is not difficult to verify that, for fixed x, 04,(x,X) is non-increasing
with respect to m, see [5, p. 178]. Put

S(m,X) = inf{04, (x,X): x € Sx}.

PROPOSITION 7. Let X be a Minkowski plane. Then S(3,X) =2 if and only if
By is a parallelogram.

Proof. 1t is not difficult to verify that if By is a parallelogram then S(3,X) = 2.

Conversely, suppose that S(3,X) = 2. Then there exists an equilateral tirangle T
having vertices a,b,c € Sx whose side length is 2.

First suppose that one pair of points from a,b,c, say a and b, are linearly depen-
dent. Then b = —a. Then we have

le+all = fle —al| = 2.
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It follows that [a,c] C Sx and [b,c] C Sx, which implies that By is a parallelogram
having a,b,c,—c as vertices.
Now we assume that a, b, c are pairwise linearly independent. Since
2= lla=bll = llall+ 2],
we have [a,—b] C Sx. Suppose that [s,7] is the longest segment contained in Sx and
containing [a,—b]. Let u be the midpoint of [s,7]. By the hypothesis, there exist two
points v,w € Sy such that

[l = vl = [lu—wlf = [lv—wl = 2.

It follows that [—u,v] C Sx . However, [—s,—f] is the unique segment containing —u,
which implies that v € [—s, —]. In a similar way, we can show that w € [—s, —1]. Since

2=v=wli<ls—1l <2,

[s,#] is a segment contained in Sx whose length is 2. Hence, By is a parallelogram
having s,f, —s,—t as vertices. [

3. 7u(X) of Minkowski planes
For the discussion in the sequel, we shall use the following equivalent represen-
tations of the so called non-square constants J(X) and S(X), which were provided in
[10] (see also [7]):
J(X) :=sup{[lx+yll: x,y €8x, [lx+y[ =[x =y}

and
S(X) :==inf{[lx+yl: x,y € Sx, [|x+yll=[lx—y[[}.

It is always true that (see, e.g., [6] and [7])

1<S(X)<V2<iX) <2

REMARK 8. One can easily verify that, for each Minkowski plane X, S(4,X) is
the Schiiffer constant S(X). Therefore

1<8(4,X)<V2.
THEOREM 9. Let X be a Minkowski plane and m > 3. Then

%n(X) = %S(m,X).
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Proof. The case when m =3 and Sy is a parallelogram is clear. In the following
we always assume that m > 3 or Sy is not a parallelogram. In this case the side
length of equilateral Minkowski m-gons inscribed in Sy having x € Sx as a vertex
is uniquely determined by m and x, and each equilateral Minkowski m-gon inscribed
in Sy contains o in its interior. By Lemma 2, we only need to show that y,(X) >
(1/2)S(m,X). Suppose the contrary, namely that

1
Yi=mm(X) < ES(m’X> <1
Then there exists a set {p; : i € [m]} such that

Sx € |J (pi+vBx).

i€[m]
By Lemma 3, there exist two points u;,v; € Sy such that
(p1+vBx) N Sx = arc(uy,v1) = arc(uy,vy).

There exists an equilateral Minkowski m-gon P = x1x; - - - X, inscribed in Sx such that
x; = uy, and that, for each i € [m — 1], the orientation from x; to x;| is counter-
clockwise. We may also require that

aré(x;,x;11) = arc(x;,x;11), Vi € [m].

Moreover, the side length of this equilateral Minkowski m-gon is strictly greater than
2y. Then, for each i € [m], p;+ yBx can only cover at most one (and, consequencely,
precisely one) vertex of P. Thus we may assume without loss of generality that,
for each i € [m], there exist two points u;,v; € Sx such that x; € (p;+ yBx) N Sx =
eﬁ:}(ui, V,‘) = arc(u,-, V,‘).

Next we show that, for each i € [m], v; € arc(x;,x;1) \ {Xit1} (We put x,,11 = X
and xp = x;;;). Since

g —vi |l <27 < []x1 —x2f| = [lug — x2 ],

Lemma 1 shows that v; € arc(xy,x2) \ {x2}. Now suppose that v € arc(xg,xg+1) \
{xp+1} for some k € [m — 1]. Itis clear that there exists a j € [m] \ {k} such that

Vg € (pj+')/BX)ﬁSX = arc(uj7vj).

If x; lies in the open semicircle connecting v, with —v; and containing x;, then, since
llux — vi|] < ka —xj’ , we have x; € arc(uy, —vy). It follows that

|pj=vel| = [lve =l = P = pil| = [ = x| = v> 7,

which is impossible. Therefore, x; has to be in the semicircle connecting vy with —vy
and containing x;,;. We claim that j = k+ 1, since otherwise, by using the fact that
x;j & arc(xg,xx+1), we would have

P =vill = [lve =xill = [}x = pill = [Poesr =25 = 7>,
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a contradiction. Now it is clear that arc(vg,xx41) C arc(ugr1,vkr1). If xppo lies in the
semicircle connecting uy; and —u, | and containing v |, then

Nurs1 —vir |l <27 < lxagr = Xesal| < Mters — 2] -
Otherwise, v lies in arc(xz. 1, —ugrq). In both cases we have
Vit 1 € arc(er1,Xe42) \ {Xer2} -
It follows by induction that
Vi € arc(Xp, X 1) \ {Xm+1} = arc (o, x1) \ {x1}.

Thus the relative interior of arc(v,,,x;) is not contained in Ui, (pi + ¥Bx), a contra-
diction. [J

REMARK 10. Proposition 14 in [12] proved a result similar to Theorem 9 for
planar convex bodies that are strictly convex and smooth.

LEMMA 11. Let X be a Minkowski plane, u € Sx, and [a,b] and [s,t] be two
chords of Sx parallel to (—u,u) suchthat (s,t) lies strictly between {a,b) and (—u,u).
Then

Is-+e]) < fla+]. )

bt
—U{ 0 }U
_—tb .\_/ —a

Figure 4: The proof of Lemma 11

Proof. Ttisnot difficult to see that we only need to consider the case when ||a + b||
< 2. Without loss of generality we may assume that r —s and b — a are both positive
scalar multiples of u. Since (s,7) lies strictly between (a,b) and (—u,u), the lines
{(a,—b) and {—a,b) intersect (s,¢) in a point s’ and ¢, respectively; see Figure 4.
Clearly, [s,¢'] C [s,]. If one of the two points s’ and ¢’ is in Sx (note that these two
points lie in the relative interior of [a,—b] and [—a,b]), then both [a,—b] and [—a,b]
are contained in Sy. It follows that [s,—7] and [—s,7] are contained in the relative
interiors of [a,—b] and [—a,b], respectively. Hence, (3) holds. In the following we
assume that s’ and " are both interior points of By . Then s and —t is contained in the
open halfplane bounded by (a,—b) not containing 0. By Lemma 4 and the fact that
lla+0b|| <2, wehave (3). O

Let x,y € X. If |[x+y| = ||[x—y]||, then we say that x is isosceles orthogonal to
y, denoted x Ly, see [9].
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COROLLARY 12. Let X be a Minkowski plane, u € Sx . Then there exists a unique
pair of chords [a,b] and [—a,—b] parallel to {—u,u) such that ||a+ b|| = |la—b]|.

Proof. By the uniqueness of isosceles orthogonality (see [, Theorem 4.35]), there
exists a unique v € Sy (except for the sign) such that u L; v. Put

—u-+v u+v
a=——— an = —
[—u+v| [+ v]
Then
abeSx,b—a=——u,at+b=——v, |la—b||=——=|a+0b|.
[+ vl [+ v] [Ju+v]|

Thus, [a,b] and [—a,—D] is a pair of chords having the desired properties.

In the following we show the uniqueness. Otherwise, there exists another pair of
chords [s,z] and [—s,—f] having the required properties. Without loss of generality
we may assume that (s,z) lies strictly between (a,b) and (—u,u), and that t —s is
a positive scalar multiple of u. Suppose that s € [a,—b] or t € [b,—a]. Then —t €
[a,—b] C Sx, —s € [b,—a] C Sx. It follows that

ls+2l| <lla+bll = lla=bll = |ls =],

a contradiction. Similarly, s & [a,—b], —s & [b,—a]. Lemma 11 and Lemma 4 show
that
Is+2l[ < lla+bll = lla= bl < [ls =z,

a contradiction. [

LEMMA 13. Let X be a Minkowski plane, and T be an equilateral triangle hav-
ing a,b,c as vertices which is inscribed in Sx so that o € T. Then

la+b] < lla—bl|.

Proof. The case ||ja— b|| =2 is clear. In the rest of the proof we assume that
la=bll = lla=cl[=[|b—c| <2.

In this case, o is an interior point of 7', which implies that —c is a relatively interior
point of arc(a,b). Put
_a—b
la— bl
Suppose the contrary, that ||a+ b|| > |ja — b||. Then there exists a unique pair of
points 5,7 € Sy such that

u

1. (s,) lies strictly between (a,b) and {—u,u),

2. t—s is a positive scalar multiple of —u, and
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3. s+l =s—1].

Since o is an interior point of T, ¢ lies in the open halfplane bounded by (—u,u)
not containing [a,b]. If ¢ € arc(—u,—s), then T is completely contained in the open
halfplane bounded by (—s,s) containing [a,b], which is in contradiction to o € intT .
Thus ¢ ¢ arc(—u, —s) . Similarly, ¢ & arc(u, —1). It follows that c is a relatively interior
point of arc(—s,—7). By Lemma | and Lemma 4, we have

[=s—tl = lls+zl = lls =2l > la— bl
|t =sll=lls+zl = lls =zl > [la—b]|.

These are in contradiction to the fact that 7 is equilateral. [

THEOREM 14. Let X be a Minkowski plane. Then

BX)=T3(X)= %S(&X).

Proof. When Sy is a parallelogram, it is clear that
1
1) =T3(X)=556,X)=1.

In the following we assume that Sy is not a parallelogram. In this case we have
S(3,X) <2, and o is the interior of each equilateral triangle inscribed in Sy .

By Theorem 9, y3(X) = (1/2)S(3,X). Let {aj,az,as} be the vertex set of an
equilateral triangle inscribed in Sy whose side length is v = §(3,X). Let ¢1,cz,¢3 be
the midpoint of [a;,az], [a2,a3], and [a3,a], respectively. Then

sxc U (e,-+%5(3,m)>,

i€[3]

and, by Lemma 13,
1
o€ ﬂ (c,-—i— 5S(3,m)> .
i€[3]

It follows that

Bx C | (c,-—i— %S(lm)).

i€[3]

Thus I'3(X) < (1/2)S(3,X), which implies that I'3(X) = (1/2)S(3,X). O

REMARK 15. The situation is much more complicated when m > 5. On the one
hand, if Sy is a parallelogram, then we have
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and
1
16(X) <Te(X) < Ts(X) <Tu(X) = 5.
It follows that

BX) = 1(X) = Ts(X) = Te(X) = %

On the other hand, when X is the Euclidean plane we clearly have

I5(X) > %5(X).

4. A better estimation for I',,(X)

Let X be a Minkowski space, u € Sx and € € [0,2]. The directional modulus of
convexity Ox (u,€) is defined by

Ox (u,€) := inf{l— H%H X, yESx, M eRst.x—y=2u §_iinteBX}.

For each u € Sx and each A > 0, we put

I(u,?t) :{ZGSX IZ-l—AuEBx},

Un(X) = {ui: i€[m]} CSx: IA >0suchthatSxy C | J I(ui,A) ¢,

ic[m]

and, foreach U = {u; : i € [m|} € % (X),

A(U)=supq A >0: Sx C U I(uj,A) 5,

i€[m]

and

8(U) =1 —min {8 (us, A(U)) : i € [m]}.

Note that, for a particular choices of m € Z, %,(X) might be empty. By standard
compactness arguments, one can show that “sup” in the definition of A(U) can be
replaced by “max”.

Now we improve the estimation of I',,(X) provided in [8].

THEOREM 16. Suppose that m € Z and %y(X) # 0. Then

In(X) <inf{max{6(U)7%/l(U)} :Ue %m(X)}
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Proof. Let U = {u; : i € [m|} be an arbitrary element in %, (X). We show that

T(X) < max{5(U), %JL(U)}.

The case when 8(U) =1 or A(U) =2 is clear. In the following we assume that
0(U) <1 and A(U) < 2. In this case we have

Sx (ui, A(U)) = 1-8(U) >0, Vi € [m]. @)

Therefore, if [a,b] is a chord of Sy whose length is not smaller than A(U) and which
is parallel to (—u;,u;) for some i € [m], then [a,b]\ {a,b} C intBx.
Let i be an arbitrary integer in [m]. Put

We show that I(u;,A(U)) C Bx(x;,8(U)), where Bx(x;,0(U)) is the ball centered at
x; whose radius is 6(U).
For each x € I(u;, A(U)), there exists a point y € Sx such that

[x,¥] = Bx N (x+ (—uj,u;)).

Clearly, ||x—y|| > A(U). Whether x and y are linearly independent or not, there exist
two points u,v € Sx such that

v—u=2A(U)u;, x,y € span{u,v}, [u,v] = (u,v) By,

and that (x,y) lies between (—u;,u;) and (u,v) (cf. the proof of Theorem 12 in [8]).
Then

1

ut S :HE(Hv) <1—8x(u, A(U)) < 8(U).

o0 —2xil| =

A(U) ’

Lemma 1 shows that
[l =il < fJu—xill < 8(U).
Therefore I(u;,A(U)) C Bx(x;,6(U)).

Moreover,
1
[AS ﬂ Bx <)C,', 51((])) .
i€[m]
It follows that |
BX - U BX (x,-,max{5(U), EA(U)}) s

i€[m]

which completes the proof. [

REMARK 17. The estimation of T,,(X) above is better than the estimation given
by Theorem 12 in [8]. Take, for example, /2 = (R?]|.||..). Theorem 12 in [8] gives
T4(2) < 1. Let U = {(1,1),(—1,1),(—1,—1),(1,—1)}. It is not difficult to see that
A(U) =1 and §(U)=1/2. Theorem 16 yields T'4(12) < 1/2 =T4(I2), an estimation
which is best possible.
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