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Abstract. The Petz-Hasegawa function

fp(x) = p(1− p)
(x−1)2

(xp −1)(x1−p −1)

for p ∈ [−1,2] is a well-known operator monotone function on x > 0 . In this paper, we discuss
some properties of the following extension of the Petz-Hasegawa function

f p (x) = xγ
n

∏
i=1

pi
x−1

xpi −1
,

where p = (p1, . . . , pn) by only using an elementary technique. Firstly, we get its upper and
lower bounds. Secondly, we obtain a result on operator monotonicity.

1. Introduction

In what follows, a capital letter means a bounded linear operator on a complex
Hilbert space H . An operator A is positive semi-definite if and only if 〈Ax,x〉 � 0
for all x ∈ H , and we write it A � 0. If an operator A is positive semi-definite and
invertible, A is called positive definite. In this case, we write it A > 0. For self-adjoint
operators A and B , B � A is defined by 0 � A−B . A real valued function f defined
on an interval I ⊂ R is called an operator monotone function if

B � A implies f (B) � f (A)

for all self-adjoint operators A and B whose spectra are contained in I . Typical ex-
amples of operator monotone functions are f (x) = xλ and f (x) = (1−λ +λxq)1/q on
x > 0 for λ ∈ [0,1] and q ∈ [−1,1] \ {0} . Petz and Hasegawa have proven that the
function fp(x) on x > 0 defined by

fp(x) = p(1− p)
(x−1)2

(xp−1)(x1−p−1)
(p �= 0,1),
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f0(x) = limp→0 fp(x) = x−1
logx , f1(x) = limp→1 fp(x) = x−1

logx is operator monotone for
−1 � p � 2 in [8] (see also [1, 4]). We call fp(x) the Petz-Hasegawa function (we
write it PH function, simply). In this paper, we shall consider an extension of the PH
function as follows:

f p (x) = xγ
n

∏
i=1

pi
x−1

xpi −1
,

where p = (p1, . . . , pn) , and give the following two properties of f p (x) : (i) Upper and
lower bounds of f p (x) ; (ii) operator monotonicity of f p (x) .

For the first problem, we get two estimations of f p (x) . J. I. Fujii and M. Fujii

have been considered a function
p

p+1
xp+1−1
xp−1

in [3]. One of our results leads that

this function is an upper bound of the PH function.
For the second problem, Nagisa and Wada have given an equivalent condition of

αi,βi,γ and s ( i = 1,2, . . . ,n ) to that(
xγ

n

∏
i=1

xαi −1

xβi −1

)s

(αi,βi ∈ [0,2],γ � 0)

is operator monotone in [7]. In this paper, we shall only consider the case αi = s = 1
( i = 1, . . . ,n ) of the above function, but we consider the cases γ ∈ R and βi ∈ [−2,2] .
These cases have not been considered in [7].

This paper is organized as follows: In Section 2, we shall give upper and lower
bounds of f p (x) . In Section 3, we shall show the operator monotonicity of f p (x) .
These results are proved by using only an elementary technique.

Takayuki Furuta passed away on 26 June, 2016. He had obtained a small result
(a part of Corollary 4), however it had not been submitted. The rest of the authors
found his unpublished manuscript when we visited his home in order to arrange his
notebooks. Then we added some results into Furuta’s manuscript to make this paper.
Takayuki Furuta made outstanding contributions in Operator Inequalities. We dedicate
this short note to his memory. We will miss him.

2. Upper and lower bounds of f p (x)

In this section, we shall give upper and lower bounds of f p (x) . In what follows,
we consider p x−1

xp−1 for p = 0 as x−1
logx , the limit as p → 0.

THEOREM 1. Let n be a natural number such that n � 2 , and let pi ∈ [0,1] for
i = 0,1,2, . . . ,n such that ∑n

i=0 pi = n. Then

(1− p0)xγ x−1
x1−p0 −1

� fp(x) = xγ
n

∏
i=1

pi
x−1

xpi −1

� xγ
(

μ
x−1
xμ −1

)n

� xγ
(

xμ +1
2

) p0
μ

� xγ
(

x+1
2

)p0
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holds for γ ∈ R and x > 0 , where p = (p1, . . . , pn) and μ = 1
n ∑n

i=1 pi .

To give a proof of Theorem 1, we shall use the following theorem.

THEOREM A. ([9]) Let p,q ∈ [−1,1]\ {0} . Then

Fp,q(x) =
[∫ 1

0
(1−λ + λxp)

q
p dλ

] 1
q

=
(

p
p+q

xp+q−1
xp−1

) 1
q

is a positive operator monotone function on x > 0 , and increasing on p,q ∈ [−1,1] \
{0} .

In [9], Theorem A is shown by using a technique of complex analysis. But it can
be shown by the following facts, easily: (i) (1−λ + λxp)1/p is operator monotone on
x > 0 for λ ∈ [0,1] and p ∈ [−1,1]\{0} , and increasing on p ∈ [−1,1]\{0} , and (ii)
for operator monotone functions fi(x) (i = 1,2, . . . ,n) , (∑n

i=1 wi fi(x)q)1/q is operator
monotone for q ∈ [−1,1] \ {0} and wi > 0 such that ∑n

i=1 wi = 1, and increasing on
q ∈ [−1,1]\ {0} .

Proof of Theorem 1. First of all, if we take pi = 0 for an arbitrary i , then p j = 1
for all j �= i since the condition ∑n

i=0 pi = n . If pi = 1 for an arbitrary i , then pi
x−1

xpi−1 =
1. Hence we only consider pi ∈ (0,1) . It is enough to show

(1− p0)
x−1

x1−p0 −1
�

n

∏
i=1

pi
x−1

xpi −1

�
(

μ
x−1
xμ −1

)n

�
(

xμ +1
2

) p0
μ

�
(

x+1
2

)p0

(1)

for x > 0.
Firstly, we shall show the first inequality in (1).

(1− p0)
x−1

x1−p0 −1
=

n−1

∏
i=0

∑i
k=0(1− pk)

∑i+1
j=0(1− p j)

x∑i+1
j=0(1−p j)−1

x∑i
k=0(1−pk) −1

=
n−1

∏
i=0

(
∑i

k=0(1− pk)

∑i+1
j=0(1− p j)

x∑i+1
j=0(1−p j) −1

x∑i
k=0(1−pk)−1

) 1−pi+1
1−pi+1

=
n−1

∏
i=0

F∑i
k=0(1−pk),1−pi+1

(x)1−pi+1

�
n−1

∏
i=0

Fpi+1,1−pi+1(x)
1−pi+1 =

n

∏
i=1

pi
x−1

xpi −1
,

where the inequality follows from Theorem A and the following fact: Since ∑n
k=0(1−

pk) = 1 and pi ∈ (0,1) for i = 0,1,2, . . . ,n ,

i

∑
k=0

(1− pk) = 1− (1− pi+1)−·· ·− (1− pn) � pi+1.
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Next, we shall prove the second inequality in (1). To prove this inequality, we
show that for each x > 0,

g(t) = log

(
t
x−1
xt −1

)
is a concave function on (0,1) . (2)

For 0 < t1 < t2 < 1,

t1
x−1
xt1 −1

· t2 x−1
xt2 −1

=
t1

t1+t2
2

x
t1+t2

2 −1
xt1 −1

· t1 + t2
2

x−1

x
t1+t2

2 −1
· t2 x−1

xt2 −1

= F
t1,

t2−t1
2

(x)
t2−t1

2 Ft1+t2
2 ,1− t1+t2

2
(x)1− t1+t2

2 Ft2,1−t2(x)
1−t2

� Ft1+t2
2 ,

t2−t1
2

(x)
t2−t1

2 Ft1+t2
2 ,1− t1+t2

2
(x)1− t1+t2

2 Ft2,1−t2(x)
1−t2

=
t1+t2

2

t2

xt2 −1

x
t1+t2

2 −1
· t1 + t2

2
x−1

x
t1+t2

2 −1
· t2 x−1

xt2 −1

=

(
t1 + t2

2
x−1

x
t1+t2

2 −1

)2

holds by Theorem A. Then

1
2
{g(t1)+g(t2)} =

1
2

log

(
t1

x−1
xt1 −1

· t2 x−1
xt2 −1

)

� log

(
t1 + t2

2
x−1

x
t1+t2

2 −1

)
= g

(
t1 + t2

2

)
,

that is, g(t) is a concave function on (0,1) since g(t) is continuous. Therefore we get

1
n

log

(
n

∏
i=1

pi
x−1

xpi −1

)
=

1
n
{g(p1)+ · · ·+g(pn)}

� g

(
p1 + · · ·+ pn

n

)
= g(μ) = log

(
μ

x−1
xμ −1

)
,

that is,
n

∏
i=1

pi
x−1

xpi −1
�
(

μ
x−1
xμ −1

)n

.

Next, we shall show the third inequality in (1). Since

μ =
1
n

n

∑
i=1

pi = 1− p0

n
� 1− p0

2
>

1
2
, that is, 1− μ < μ

and

(1− μ)n = n−
n

∑
i=1

pi = p0,
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Theorem A ensures that(
μ

x−1
xμ −1

)n

= Fμ,1−μ(x)(1−μ)n � Fμ,μ(x)(1−μ)n =
(

xμ +1
2

) p0
μ

.

The last inequality in (1) follows from the fact that Fq,q(x) = ( xq+1
2 )1/q is mono-

tone increasing on q ∈ [−1,1]\ {0} by Theorem A.
Therefore the proof is completed. �

We remark that (2) can be shown by differential calculations, but we prove it by
using Theorem A here.

COROLLARY 2. Let n be a natural number such that n � 2 , and let pi ∈ [0,1]
for i = 1,2, . . . ,n such that ∑n

i=1 pi = n−1 . Then

xγ x−1
logx

� fp(x) = xγ
n

∏
i=1

pi
x−1

xpi −1

� xγ
(

μ
x−1
xμ −1

)n

� xγ
(

xμ +1
2

) 1
μ

� xγ x+1
2

holds for γ ∈ R and x > 0 , where p = (p1, . . . , pn) and μ = 1
n ∑n

i=1 pi = 1− 1
n .

Proof. By taking a limit p0 → 1 in Theorem 1, we have the desired inequality

since lim
α→0

xα −1
α

= logx holds for all x > 0. �

We can obtain another upper bound of f p (x) .

THEOREM 3. Let n be a natural number, and let pi ∈ [0,1] for i = 0,1,2, . . . ,n
such that ∑n

i=0 pi = n. Then

fp(x) = xγ
n

∏
i=1

pi
x−1

xpi −1
� xγ

(
n−1

∏
i=1

pi
x−1

xpi −1

)
1

2− pn

x2−pn −1
x−1

� xγ
n

∏
i=1

1
2− pi

x2−pi −1
x−1

� xγ
(

x+1
2

)p0

holds for γ ∈ R and x > 0 , where p = (p1, . . . , pn) .

Proof. It is enough to show

n

∏
i=1

pi
x−1

xpi −1
�
(

n−1

∏
i=1

pi
x−1

xpi −1

)
1

2− pn

x2−pn −1
x−1

�
n

∏
i=1

1
2− pi

x2−pi −1
x−1

�
(

x+1
2

)p0

(3)
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for x > 0.
We shall show the first inequality in (3).

n

∏
i=1

pi
x−1

xpi −1
=

n

∏
i=1

Fpi,1−pi(x)
1−pi

�
(

n−1

∏
i=1

Fpi,1−pi(x)
1−pi

)
F1,1−pn(x)

1−pn (by Theorem A)

=

(
n−1

∏
i=1

pi
x−1

xpi −1

)
1

2− pn

x2−pn −1
x−1

.

The second and the third inequalities in (3) are obtained by Theorem A as follows:(
n−1

∏
i=1

pi
x−1

xpi −1

)
1

2− pn

x2−pn −1
x−1

=

(
n−1

∏
i=1

Fpi,1−pi(x)
1−pi

)
F1,1−pn(x)

1−pn

�
n

∏
i=1

F1,1−pi(x)
1−pi =

n

∏
i=1

1
2− pi

x2−pi −1
x−1

�
n

∏
i=1

F1,1(x)1−pi

=
n

∏
i=1

(
x+1

2

)1−pi

=
(

x+1
2

)p0

,

where the last equality holds by ∑n
i=1(1− pi) = p0 . �

Especially, we have upper and lower bounds of the PH function by Corollary 2
and Theorem 3 as follows:

COROLLARY 4. Let p ∈ [0,1] .

(i) The inequality

f0(x) = f1(x) =
x−1
logx

� fp(x) = p(1− p)
(x−1)2

(xp−1)(x1−p−1)

�
(√

x+1
2

)2

� x+1
2

holds for x > 0 .

(ii) The inequality

f0(x) = f1(x) =
x−1
logx

� fp(x) = p(1− p)
(x−1)2

(xp−1)(x1−p−1)

� p
p+1

xp+1−1
xp−1

� 1
(p+1)(2− p)

(xp+1−1)(x2−p−1)
(x−1)2 � x+1

2
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holds for x > 0 .

p
p+1

xp+1−1
xp−1

in Corollary 4 has been considered in [2, 3].

Proof. (i) and the first inequality in (ii) are obtained by putting n = 2, γ = 0,
p1 = p and p2 = 1− p in Corollary 2. The other inequalities in (ii) are obtained by
putting n = 2, γ = 0, p0 = 1, p1 = p and p2 = 1− p in Theorem 3. �

3. Operator monotonicity of f p (x)

First of all, we shall give an elementary proof of the following known result.

THEOREM B. ([5]) For −2 � p � 2 , sp(x) =
(

p
x−1
xp−1

) 1
1−p

is an operator

monotone function on x > 0 , where s0(x) and s1(x) are defined by using the limit
as follows:

s0(x) = lim
p→0

sp(x) =
x−1
logx

and s1(x) = lim
p→1

sp(x) =
1
e
x

x
x−1 .

In [5], Theorem B has been proven by using a technique of complex analysis. This
proof is very nice, but it is a little bit difficult. Here, we shall give an alternative proof
of Theorem B by using only Theorem A and the following well-known fact:

LEMMA C. (ex. [6]) Let f (x) and g(x) be operator monotone functions. Then
the following functions are also operator monotone:

(i) f (x)αg(x)β for α,β � 0 such that α + β � 1 ,

(ii) f (x−1)−1 .

Alternative proof of Theorem B. (i) The case 0 � p � 1 . In the case 0 < p < 1,
sp(x) is operator monotone since sp(x) = Fp,1−p(x) and Theorem A. If p = 0,1, it is
also operator monotone by taking a limit p→ 0+ or p→ 1−0. It is still true (see [9]).

(ii) The case 1 < p � 2 . sp(x) is operator monotone since sp(x)=
(

1
p

xp−1
x−1

) 1
p−1

= F1,p−1(x) and Theorem A.

(iii) The case −1 � p < 0 .

sp(x) =
(
−|p| x−1

x−|p| −1

) 1
1+|p|

=
(

x|p||p| x−1

x|p| −1

) 1
1+|p|

= x
|p|

1+|p| s|p|(x)
1−|p|
1+|p| .

Since |p|
1+|p| ,

1−|p|
1+|p| ∈ [0,1] and (i), we have operator monotonicity of sp(x) for p ∈

[−1,0] by Lemma C.
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(iv) The case −2 � p � −1 .

sp(x) =
(
−|p| x−1

x−|p| −1

) 1
1+|p|

=
(

x|p| x−1−1

x−|p| −1

) 1
1+|p|

=
{

xs|p|(x−1)1−|p|
} 1

1+|p|

= x
1

1+|p|
{
s|p|(x−1)−1} |p|−1

1+|p| .

Since 1
1+|p| ,

|p|−1
1+|p| ∈ [0,1] and (ii), we have operator mononicity of sp(x) by Lemma C.

Therefore sp(x) is operator monotone for p ∈ [−2,2] . �

By the same way, we can obtain operator monotonicity of f p (x) .

THEOREM 5. Let γ ∈R and p = (pi)= (a1, . . . ,al,b1, . . . ,bm,c1, . . . ,cu,d1, . . . ,dv)
(n = l +m+u+ v) such that

−2 � d1 � · · · � dv < −1 � c1 � · · · � cu < 0 � b1 � · · · � bm < 1 � a1 � · · · � al � 2,

0 � γ +(l + v)−
l

∑
i=1

ai−
u

∑
i=1

ci � 1 and 0 � γ +(m+u)−
m

∑
i=1

bi−
v

∑
i=1

di � 1.

Then f p (x) = xγ
n

∏
i=1

pi
x−1

xpi −1
is operator monotone on x > 0 .

In [7], Nagisa and Wada have obtained the following result on operator mono-
tonicity of the function related to f p (x) .

THEOREM D. ([7]) Let αi,βi ∈ [0,2] such that βi < αi and βi � 1 (i=1,2,. . . ,n).
Then the function (

xγ
n

∏
i=1

xαi −1

xβi −1

)s

is operator monotone on x > 0 if 0 � s � 1/(γ + ∑n
i=1(αi −βi)) and is not operator

monotone on x > 0 if s > 1/(γ + ∑n
i=1(αi −βi)) for any γ � 0 .

In particular, by putting s = 1, αi = 1, βi = pi , we have the following corollary.

COROLLARY E. Let pi ∈ (0,1) (i = 1,2, . . . ,n) . Then the function

f p (x) = xγ
n

∏
i=1

x−1
xpi −1

is operator monotone on x > 0 if 0 � γ + ∑n
i=1(1− pi) � 1 and is not operator mono-

tone on x > 0 if γ + ∑n
i=1(1− pi) > 1 for any γ � 0 .
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Theorem 5 is a kind of an extension of Corollary E, because we consider the cases
γ < 0 and pi ∈ [−2,0)∪ (1,2] in Theorem 5. Moreover, Theorem 5 implies operator
monotonicity of the PH function fp(x) for p ∈ [−1,2] . If p ∈ [ 1

2 ,1] , we can get it
by putting γ = 0, n = 2, b1 = 1− p and b2 = p . If p ∈ (1,2] , we can get it by
putting γ = 0, n = 2, a1 = p and c1 = 1− p . We have the case p ∈ [−1, 1

2 ] since
f1−p(x) = fp(x) always holds.

Proof of Theorem 5. Since

ai
x−1
xai −1

= x1−ai

{
ai

x−1−1
(x−1)ai −1

} −1
1−ai

·{−(1−ai)}
= x1−ai

{
sai(x

−1)−1}ai−1
,

bi
x−1
xbi −1

= sbi(x)
1−bi ,

ci
x−1
xci −1

= x−ci

{
(−ci)

x−1
x−ci −1

} 1
1+ci

·(1+ci)

= x−ci s−ci(x)
1+ci and

di
x−1
xdi −1

= x

{
(−di)

x−1−1
(x−1)−di −1

} −1
1+di

·{−(1+di)}
= x
{
s−di(x

−1)−1}−(1+di)

hold for each i , we have

fp(x) = xγ
l

∏
i=1

ai
x−1
xai −1

m

∏
i=1

bi
x−1
xbi −1

u

∏
i=1

ci
x−1
xci −1

v

∏
i=1

di
x−1
xdi −1

= xw
l

∏
i=1

{
sai(x

−1)−1}ai−1
m

∏
i=1

sbi(x)
1−bi

u

∏
i=1

s−ci(x)
1+ci

v

∏
i=1

{
s−di(x

−1)−1}−(1+di) ,

where w = γ +
l

∑
i=1

(1−ai)+
u

∑
i=1

(−ci)+
v

∑
i=1

1 = γ +(l + v)−
l

∑
i=1

ai−
u

∑
i=1

ci.

By the assumption, w,ai−1,1−bi,1+ ci,−(1+di) ∈ [0,1] for every i and

w+
l

∑
i=1

(ai −1)+
m

∑
i=1

(1−bi)+
u

∑
i=1

(1+ ci)−
v

∑
i=1

(1+di)

= γ +(m+u)−
m

∑
i=1

bi −
v

∑
i=1

di ∈ [0,1].

Hence f p (x) is operator monotone by Theorem B and Lemma C. �
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