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Abstract. We are interested in finding the sufficient conditions on A , B , λ , b and c which
ensure that the generalized Bessel functions uλ := uλ ,b,c satisfies the subordination uλ (z) ≺
(1+Az)/(1+Bz) . Also, conditions for which uλ (z) to be Janowski convex, and zu′λ (z) to be
Janowski starlike in the unit disk D = {z ∈ C : |z| < 1} are obtained.

1. Introduction

We will denote by A the set of functions f , analytic in the open unit disk D =
{z : |z| < 1} , and normalized by the conditions f (0) = 0 = f ′(0)− 1. If f and g are
analytic in D , then f is subordinate to g , written f ≺ g (or f (z) ≺ g(z), z ∈ D), if
there is an analytic self-map w of D , satisfying w(0) = 0 and such that f = g ◦w .
From now on, for −1 � B < A � 1 the set P[A,B] denotes a family of functions
p(z) = 1+ c1z+ · · · , analytic in D and satisfying

p(z) ≺ 1+Az
1+Bz

.

That family, known as the Janowski class of functions [10], contains several other sets.
For instance, if 0 � β < 1, then P[1− 2β ,−1] is the class of functions p(z) = 1+
c1z+ · · · satisfying Re p(z) > β in D which, in the limiting case β = 0, reduces to the
classical Cárathèodory class P .

In relation to P[A,B] several subclasses of A were defined, for example S ∗[A,B] ,
which is called a class of Janowski starlike functions [10] and that consists of f ∈ A
satisfying

z f ′(z)/ f (z) ∈ P[A,B].

For 0 � β < 1, S ∗[1−2β ,−1] := S ∗(β ) is the usual class of starlike functions of or-
der β ; S ∗[1−β ,0] := S ∗

β = { f ∈A : |z f ′(z)/ f (z)−1|< 1−β} , and S ∗[β ,−β ] :=
S ∗[β ] = { f ∈ A : |z f ′(z)/ f (z)− 1| < β |z f ′(z)/ f (z)+ 1|} . These classes have been
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studied, for example, in [1, 2]. A function f ∈ A is said to be close-to-convex of order
β if Re (z f ′(z)/g(z)) > β for some g ∈ S ∗ := S ∗(0) [9, 15].

The second order differential equation of a real variable x of a form

x2u′′+ xu′ +(x2−ν2)u = 0, (1.1)

is known as the Bessel differential equation, where the solutions of the Bessel equation
yields the Bessel functions Jν ,Yν of the first and second kind , and u =CJν(x)+DYν(x)
[16, p. 217]. Here C and D are the arbitrary constants and ν is an arbitrary complex
number (the order of Bessel function). The Bessel functions are named for Bessel
however Bernoulli is generally credited with being the first who introduced the concept
of Bessel’s functions in 1732, when solved the hunging chain problem. It is know that
the Bessel function of the first kind of order ν is defined by [16]

Jν(x) =
∞

∑
n=0

(−1)n

n!Γ(ν +n+1)

( x
2

)2n+ν
, x ∈ R. (1.2)

Bessel’s equation arises when solving the Laplace’s and Helmholtz equation and
are therefore especially important for many problems of wave propagation and static
potentials. In finding the solution in cylindrical coordinate systems, one obtains Bessel
functions of integer order (ν = n ), and in spherical problems one obtains half-integer
orders (ν = n+ 1/2). There are several interesting facts concerning the Bessel func-
tions, in particular the connections between Bessel functions and Legendre polynomi-
als, hypergeometric functions, the usual trigonometric functions and other.

The Bessel functions are valid for complex arguments x , and an important special
case is that of a purely imaginary argument. In this case, the solutions to the Bessel
equation are called the modified Bessel functions or the hyperbolic Bessel functions of
the first and second kind. Several applications have an impact of various generalizations
and modifications.

A second order differential equation which reduces to (1.1) reads as follows

x2v′′ +bxv′+(cx2−ν2 +(1−b)ν)u = 0, (1.3)

b,c,ν ∈ R . A particular solution vν has the form

vν(x) =
∞

∑
n=0

(−1)ncn

n!Γ(ν +n+(b+1)/2
)
( x

2

)2n+ν
, (1.4)

and is called the generalized Bessel function of the first kind of order ν [4]. It is readily
seen that for b = 1 and c = 1, vν becomes Jν .

Study of the geometric properties of some cases of Bessel functions, like univa-
lence, starlikeness and convexity were initiated in the sixties by Brown [8], and also
by Kreyszig and Todd [11], but a major contributions to the development of a theory
in this direction was made by Baricz et al. see, for example [3]–[7]. Motivated by the
importance of the Bessel functions and the results in the theory of univalent functions
we make a contribution to the subject, by obtaining some necessary and sufficient con-
ditions for Janowski starlikeness and convexity of the generalized Bessel functions of
the first kind.
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For b,λ ,c ∈ C and κ such that κ = λ +(b+1)/2 �= 0,−1,−2,−3, . . . we denote
by uλ = uλ ,b,c the normalized, generalized Bessel function of of the first kind of order
λ given by the power series

uλ (z) = 2λ Γ(κ +1)z−λ/2Jκ(
√

z) = 0F1

(
κ ,

−c
4

z

)
=

∞

∑
k=0

(−1)kck

4k(κ)k

zk

k!
, (1.5)

convergent for all z on the complex plane. We note that uλ (0) = 1, uλ is analytic in D

and is a solution of the differential equation

4z2u′′(z)+4κzu′(z)+ czu(z) = 0. (1.6)

This normalized and generalized Bessel function also satisfy the following recurrence
relation [3]

4κu′λ (z) = −cuλ+1(z), (1.7)

which is an useful tool to study several geometric properties of uλ . There has been sev-
eral papers, where geometric properties of uλ such as on a close-to-convexity, starlike-
ness and convexity, radius of starlikeness and convexity, were studied [3, 4, 6, 7, 20, 21].

In this paper we systematically study the properties of the generalized Bessel func-
tion, specially Janowski convexity and Janowski starlikeness of that function.

In the section 2 of this paper, the sufficient conditions on A , B , c , κ are deter-
mined that will ensure that uλ satisfies the subordination uλ (z) ≺ (1+Az)/(1+Bz) . It
is understood that a computationally-intensivemethodology is required to obtain the re-
sults in this general framework. The benefits of such general results are that by judicious
choice of the parameters A and B , they give rise to several interesting applications,
which include extension of the results of previous works. Using this subordination re-
sult, sufficient conditions are obtained for (−4κ/c)u′λ ∈ P[A,B] , which next readily
gives conditions for (−4κ/c)(uλ − 1) to be close-to-convex. Section 3 gives empha-
sis to the investigation of uλ to be Janowski convex as well as of zu′λ to be Janowski
starlike.

The following lemma is needed in the sequel.

LEMMA 1.1. [14, 15] Let Ω ⊂ C , and Ψ : C2 ×D → C satisfy

Ψ(iρ ,σ ;z) �∈ Ω, (1.8)

for real ρ and σ such that σ � −(1 + ρ2)/2 , z ∈ D . If p is analytic in D with
p(0) = 1 , and Ψ(p(z),zp′(z);z) ∈ Ω for z ∈ D , then Re p(z) > 0 in D . In the case
Ψ : C3×D → C , then the condition (1.8) is generalized to

Ψ(iρ ,σ ,μ + iν;z) �∈ Ω, (1.9)

where ρ ,σ ,μ are real and such that σ + μ � 0 and σ � −(1+ ρ2)/2 .
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2. Membership of the generalized Bessel functions to the Janowski class

In this section we shall discuss the problem of the membership of the generalized
Bessel function in the Janowski class. We find the conditions under which uλ ∈P[A,B]
and provide several consequences of that fact.

THEOREM 2.1. (Main) Let −1 � B < A � 1 . Suppose c, p,b ∈ C and κ = p+
(b+1)/2 �= 0,−1,−2,−3 · · ·, satisfies

Re(κ−1)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|c|
4(1+A)

(√
2(1+A2)+ (1−A)

)
f or −1 = B < A � 3−2

√
2,

|c|(1+A)
8
√

A
and Re(κ −1) � |c|(1+A)

2(1−A)
f or B = −1,A > 3−2

√
2,

|c|(1+A)(1−B)2

4(A−B)(1+B)
− 1+B

(1−B)
f or −1 < B < 0,

|c|(1+A)(1+B)
4(A−B)

− 1−B
1+B

f or B � 0.

(2.1)
If (1+B)uλ �= (1+A) , then uλ ∈ P[A,B] .

Proof. Define the analytic function p : D → C by

p(z) = − (1−A)− (1−B)uλ(z)
(1+A)− (1+B)uλ(z)

, p(0) = 1.

Then, a simple computation yields

uλ (z) =
(1−A)+ (1+A)p(z)
(1−B)+ (1+B)p(z)

, (2.2)

u′λ (z) =
2(A−B)p′(z)

((1−B)+ (1+B)p(z))2 , (2.3)

and

u′′λ (z) =
2(A−B)[(1−B)+ (1+B)p(z)]p′′(z)−4(1+B)(A−B)p′2(z)

((1−B)+ (1+B)p(z))3 . (2.4)

Using the identities (2.2)–(2.4) , the Bessel differential equation (1.6) can be rewritten
as

z2p′′(z) − 2(1+B)
(1−B)+ (1+B)p(z)

(zp′(z))2 + κzp′(z)

+
((1−B)+ (1+B)p(z))((1−A)+(1+A)p(z))

8(A−B)
cz = 0.

Suppose Ω = {0} , and define Ψ(r,s,t;z) by

Ψ(r,s, t;z) := t− 2(1+B)
(1−B)+(1+B)r

s2+κs+
((1−B)+(1+B)r)((1−A)+(1+A)r)

8(A−B)
cz.

(2.5)
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The equation (2.5) yields that Ψ(p(z),zp′(z),z2p′′(z);z) ∈ Ω. To ensure Re p(z) > 0
for z ∈ D we will use the Lemma 1.1. Hence, it suffices to establish ReΨ(iρ ,σ ,μ +
iν;z) � 0 in D for real ρ ,σ such that σ � −(1+ ρ2)/2, and σ + μ � 0. Applying
those inequalities we obtain

ReΨ(iρ ,σ ,μ + iν;z) � −Re(κ −1)
2

(1+ ρ2)− 2(1−B2)σ2

(1−B)2 +(1+B)2ρ2

+Re
[(1−B)+ (1+B)iρ ][(1−A)+(1+A)iρ ]

8(A−B)
cz

� −Re(κ −1)
2

(1+ ρ2)− (1−B2)(1+ ρ2)2

2[(1−B)2 +(1+B)2ρ2]

+
|(1−B)+ (1+B)iρ ||(1−A)+(1+A)iρ ||c|

8(A−B)
.

(2.6)

The proof will be divided into four cases. Consider first B = −1, B < A � 3−
2
√

2. The inequality (2.6) reduces then to the following

ReΨ(iρ ,σ ,μ + iν;z) � −Re(κ −1)(1+ ρ2)
2

+Re
[(1−A)+ (1+A)iρ ]cz

4(1+A)

� −Re(κ −1)(1+ ρ2)
2

+
|c|

4(1+A)
[(1−A)+ (1+A)|ρ |]

= −Re(κ −1)
2

ρ2 +
|c|
4
|ρ |+ |c|(1−A)

4(1+A)
− Re(κ −1)

2

= −Re(κ −1)
2

(
|ρ |− |c|

4Re(κ −1)

)2

+
|c|2

32Re(κ −1)

+
|c|(1−A)
4(1+A)

− Re(κ −1)
2

=: G(ρ).

A quadratic function G takes nonpositive values for any ρ , if

|c|2
32Re(κ −1)

+
|c|(1−A)
4(1+A)

− Re(κ −1)
2

� 0.

The last inequality may be rewritten as

−Re2(κ −1)+
|c|(1−A)
2(1+A)

Re(κ −1)+
|c2|
16

� 0,

or

−
(

Re(κ −1)− |c|(1−A)
4(1+A)

)2

+
|c|2(1−A)2

16(1+A)2 +
|c|2
16

� 0,

that holds, if

Re(κ −1) � |c|
4(1+A)

(√
(1−A)2 +(1+A)2 +(1−A)

)
,
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which reduces to the assumption. Therefore the assertion follows.
In the second case we consider B = −1, A > 3− 2

√
2. According to (2.6), we

have

ReΨ(iρ ,σ ,μ + iν;z) � −Re(κ −1)(1+ ρ2)
2

+
|(1−A)+ (1+A)iρ ||c|

4(1+A)

= −Re(κ −1)(1+ ρ2)
2

+
|c|

4(1+A)

√
(1−A)2 +(1+A)2ρ2

=: H(ρ).

We note that the function H is even with respect to ρ , and

H(0) =
|c|(1−A)
4(1+A)

− Re(κ −1)
2

,

that satisfies H(0) � 0, if

Re(κ −1) � |c|(1−A)
2(1+A)

. (2.7)

Moreover lim
ρ→∞

H(ρ) = −∞ , and

H ′(ρ) = −Re(κ −1)ρ +
|c|(1+A)ρ

4
√

(1−A)2 +(1+A)2ρ2
,

with H ′(ρ) = 0 if and only if ρ = 0 or

ρ2
0 =

|c|2
16Re2(κ −1)

− (1−A)2

(1+A)2 .

We observe that ρ2
0 � 0 by the inequality

|c|2
16Re2(κ −1)

� (1−A)2

(1+A)2 ,

or

Re(κ −1) � |c|(1+A)
4(1−A)

. (2.8)

Additionally

H ′′(ρ0) = −Re(κ −1)+
16Re3(κ −1)(1−A)2

|c|2(1+A)2 � 0,

in view of (2.8). Hence H(ρ0) = Hmax(ρ) , and

H(ρ0) =
|c|2

32Re(κ −1)
− Re(κ −1)

2

[
1−
(

1−A
1+A

)2
]

� 0
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that holds if

Re(κ −1) � |c|(1+A)
8
√

A
. (2.9)

Since
|c|(1+A)
4(1−A)

� |c|(1+A)
8
√

A
� |c|(1−A)

2(1+A)

holds for 3− 2
√

2 � A � 1, then the conditions (2.7), (2.8) and (2.9) reduce to the
assumption (2.1). Therefore the assertion follows.

Let now −1 < B � 0, A > B . By the fact 1−A
1+A < 1−B

1+B we obtain

|(1−B)+ (1+B)iρ ||(1−A)+(1+A)iρ|

= (1+A)(1+B)

√(
1−B
1+B

)2

+ ρ2

√(
1−A
1+A

)2

+ ρ2

� (1+A)(1+B)

[(
1−B
1+B

)2

+ ρ2

]
.

(2.10)

Also, for B � 0 we have (1+B)/(1−B) � 1, therefore

1+ ρ2

(1−B)2 +(1+B)2ρ2 =
1

(1−B)2

1+ ρ2

1+
(

1+B
1−B

)2 ρ2
� 1

(1−B)2

for any real ρ . Thus

ReΨ(iρ ,σ ,μ + iν;z) � −Re(κ −1)
2

(1+ ρ2)− (1+B)(1+ ρ2)
2(1−B)

+
|c|(1+A)(1+B)

8(A−B)

[(
1−B
1+B

)2

+ ρ2

]

= ρ2
(
−Re(κ −1)

2
− 1+B

2(1−B)
+

|c|(1+A)(1+B)
8(A−B)

)

−Re(κ −1)
2

− 1+B
2(1−B)

+
|c|(1+A)(1−B)2

8(A−B)(1+B)
.

Since for B � 0

−Re(κ −1)
2

− 1+B
2(1−B)

+
|c|(1+A)(1+B)

8(A−B)

� −Re(κ −1)
2

− 1+B
2(1−B)

+
|c|(1+A)(1−B)2

8(A−B)(1+B)
,

and the last expression is nonpositive in view of (2.1) then the assertion follows.
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Finally, consider 0 � B < A � 1. In this case β = (1−B)/(1+B) � 1. Hence,
setting t = β 2 + ρ2 with t � β 2 and using (2.10), we obtain from (2.6)

ReΨ(iρ ,σ ,μ+iν;z) � −Re(κ−1)
2

(1−β 2+t)−β (1−β 2+t)2

2t
+
|c|(1+A)(1+B)

8(A−B)
t

= t

{
−Re(κ−1)

2
−β

2
+
|c|(1+A)(1+B)

8(A−B)

}

−Re(κ −1)
2

(1−β 2)− β (1−β 2)2

2t
−β (1−β 2)

that is nonpositive because of the inequality

Re(κ −1) � |c|(1+A)(1+B)
4(A−B)

− 1−B
1+B

,

that is equivalent to the assumption (2.1).
Taking into account the above reasoning we see that Ψ satisfies the hypothesis of

Lemma 1.1, and thus Re p(z) > 0, that is,

− (1−A)− (1−B)uλ(z)
(1+A)− (1+B)uλ(z)

≺ 1+ z
1− z

.

Hence there exists an analytic self-map w of D with w(0) = 0 such that

− (1−A)− (1−B)uλ(z)
(1+A)− (1+B)uλ(z)

=
1+w(z)
1−w(z)

,

which implies that uλ (z) ≺ (1+Az)/(1+Bz). �
By the recurrence relation (1.7), we have

Reuλ+1 = Re

(−4κ
c

u′λ

)
,

therefore as an immediate consequence of Theorem 2.1 we obtain the following.

THEOREM 2.2. Let −1 � B < A � 1 . Suppose c,λ ,b ∈ C and κ = λ + (b +
1)/2 �= 0,−1,−2,−3 · · ·, satisfy

Re(κ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|c|
4(1+A)

(√
2(1+A2)+ (1−A)

)
f or −1 = B < A � 3−2

√
2,

|c|(1+A)
8
√

A
and Re(κ) � |c|(1+A)

4(1−A)
f or B = −1, A > 3−2

√
2,

|c|(1+A)(1−B)2

4(A−B)(1+B)
− 1+B

(1−B)
f or −1 < B < 0,

|c|(1+A)(1+B)
4(A−B)

− 1−B
1+B

f or B � 0.

If (1+B)uλ+1(z) �= (1+A) , then (−4κ/c)u′λ (z) ∈ P[A,B] .
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3. Janowski convexity and starlikeness of the generalized Bessel functions

This section is devoted to the study of the Janowski convexity and the Janowski
starlikeness of the normalized and generalized Bessel functions zuλ . We proceed anal-
ogously to the proof of Theorem 2.1 applying modification of the Bessel differential
equation (1.6) and Lemma 1.1. An application of the Janowski convexity and the rela-
tion (1.7) yield conditions for zuλ to be in S ∗[A,B].

THEOREM 3.1. Let −1 � B < A � 1 and λ ,b,c ∈ C and κ = λ +(b+ 1)/2 �=
0,−1,−2 . . . . Suppose that

Reκ � (Imκ)2

2(2+A)
+

A
2

+
|c|

2(A+1)
for −1 = B < A � 1, (3.1)

or, for −1 < B < A � 1

A−B−1
1−B

+
|c|(1−B)
4(A−B)

� Reκ <
A−B+1

1+B
− |c|(1+B)

4(A−B)
, (3.2)

and

(B Imκ)2 �
{

A−B+1− |c|(1+B)2

4(A−B)
− (1+B)Reκ

}

×
{

(1−B)Reκ − |c|(1−B)2

4(A−B)
−A+B+1

}
,

(3.3)

with

|c| < 4(A−B)(1+B2−AB)
1−B2 . (3.4)

If (A−B)u′λ(z) �= (1+B)zu′′λ (z) , 0 /∈ u′λ (D) and 0 /∈ u′′λ (D) , then

1+
zu′′λ (z)
u′λ (z)

≺ 1+Az
1+Bz

.

Proof. Define an analytic function p : D → C by

p(z) :=
(A−B)u′λ(z)+ (1−B)zu′′λ(z)
(A−B)u′λ(z)− (1+B)zu′′λ(z)

, p(0) = 1.

Then

zu′′λ (z)
u′λ (z)

=
(A−B)(p(z)−1)

(1−B)+ (1+B)p(z)
, (3.5)
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and

z2u′′′λ (z)+ zu′′λ (z)
zu′′λ (z)

− zu′′λ (z)
u′λ (z)

=
zp′(z)

p(z)−1
− (1+B)zp′(z)

(1−B)+ (1+B)p(z)

=
zp′(z) [(1−B)+ (1+B)p(z)− (1+B)(p(z)−1)]

(p(z)−1)[(1−B)+ (1+B)p(z)]
.

(3.6)

A rearrangement of (3.6) yields

zu′′′λ (z)
u′′λ (z)

=
2zp′(z)

(p(z)−1)[(1−B)+ (1+B)p(z)]
−1+

zu′′λ (z)
u′λ (z)

.

Thus,(
zu′′′λ (z)
u′′λ (z)

) (
zu′′λ (z)
u′λ (z)

)

=
2(A−B)(p(z)−1)zp′(z)

(p(z)−1)((1−B)+(1+B)p(z))2−
(A−B)(p(z)−1)

(1−B)+(1+B)p(z)
+

(A−B)2(p(z)−1)2

((1−B)+(1+B)p(z))2 .

(3.7)

Now a differentiation of (1.6) leads to

4z2u′′′λ (z)+4(κ +1)zu′′λ (z)+ czu′λ (z) = 0,

which gives if u′λ �= 0, u′′λ �= 0(
zu′′′λ (z)
u′′λ (z)

) (
zu′′λ (z)
u′λ (z)

)
+(κ +1)

zu′′λ (z)
u′λ (z)

+
c
4
z = 0. (3.8)

Substituting (3.5) and (3.7) into (3.8) we obtain

2(A−B)zp′(z)
((1−B)+(1+B)p(z))2 +

(A−B)2(p(z)−1)2

((1−B)+(1+B)p(z))2 +
κ(A−B)(p(z)−1)
(1−B)+(1+B)p(z)

+
c
4
z = 0,

or equivalently

zp′(z)+
(A−B)

2
(p(z)−1)2 +

κ (p(z)−1)
2

((1−B)+ (1+B)p(z))

+
cz((1−B)+ (1+B)p(z))2

8(A−B)
= 0.

Set now

Ψ(p(z),zp′(z);z) := zp′(z)+
(A−B)

2
(p(z)−1)2 +

κ (p(z)−1)
2

((1−B)+(1+B)p(z))

+
cz((1−B)+ (1+B)p(z))2

8(A−B)
.
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Then for ρ ∈ R and σ � −(1+ ρ2)/2 we obtain

ReΨ(iρ ,σ ;z) = σ +
(A−B)

2
Re(iρ −1)2 +Re

(
κ(iρ −1)

2
((1−B)+ (1+B)iρ)

)

+Re

(
cz((1−B)+ (1+B)iρ)2

8(A−B)

)

� −1+ρ2

2
+

(A−B)
2

(1−ρ2)+Re
(κ

2
(−2Biρ−(1−B)−(1+B)ρ2)

)
+
|c|((1−B)2 +(1+B)2ρ2

)
8(A−B)

= −ρ2

{
A−B+1

2
− (1+B)Reκ

2
− |c|(1+B)2

8(A−B)

}
+(B Imκ)ρ

+
A−B−1

2
− (1−B)Reκ

2
+

|c|(1−B)2

8(A−B)
:= Q(ρ).

In order to get the contradiction we need to show Q(ρ) � 0 for ρ ∈ R . We divide the
proof into two cases. Consider first the case B = −1 < A � 1. Then the function Q
becomes

Q(ρ) = −2+A
2

ρ2− (Imκ)ρ +
A
2
−Reκ +

|c|
2(A+1)

,

that attains its maximum at ρ0 = − Imκ/(2+A) , and

Q(ρ0) =
(Imκ)2

2(2+A)
+

A
2
−Reκ +

|c|
2(A+1)

which is nonpositive by the assumption equivalent to (3.1), that is

Reκ � (Imκ)2

2(2+A)
+

A
2

+
|c|

2(A+1)
.

We now turn to the case −1 < B < A � 1. We rewrite Q in the form

Q(ρ) = −Pρ2 +Rρ −S = −P

{(
ρ − R

2P

)2

+
4PS−R2

4P2

}
,

where

P =
A−B+1

2
− (1+B)Reκ

2
− |c|(1+B)2

8(A−B)
,

R = B Imκ , S =
(1−B)Reκ

2
− |c|(1−B)2

8(A−B)
− A−B−1

2
.

The inequality Q(ρ) � 0 holds for any real ρ , if P > 0,S � 0 and R2 � 4PS or,
equivalently ⎧⎪⎪⎨

⎪⎪⎩
A−B+1

1+B
− |c|(1+B)

4(A−B)
> Reκ ,

A−B−1
1−B

+
|c|(1−B)
4(A−B)

� Reκ ,

(3.9)
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and

(B Imκ)2 �
{

A−B+1− |c|(1+B)2

4(A−B)
− (1+B)Reκ

}

×
{

(1−B)Reκ − |c|(1−B)2

4(A−B)
−A+B+1

}
,

that holds by the hypothesis (3.2) and (3.3). The inequalities (3.9) can be satisfied only
if

|c| < 4(A−B)(1+B2−AB)
1−B2

that is equivalent to (3.4). Therefore, in both cases the function Ψ satisfies the hypoth-
esis of Lemma 1.1, and hence Re p(z) > 0, or equivalently

(A−B)u′λ +(1−B)zu′′λ
(A−B)u′λ − (1+B)zu′′λ

≺ 1+ z
1− z

.

By definition of subordination, there exists an analytic self-map w of D with w(0) = 0,
and

(A−B)u′λ(z)+ (1−B)zu′′λ(z)
(A−B)u′λ(z)− (1+B)zu′′λ(z)

=
1+w(z)
1−w(z)

,

that gives the equality

1+
zu′′λ (z)
u′λ (z)

=
1+Aw(z)
1+Bw(z)

.

Hence

1+
zu′′λ (z)
u′λ (z)

≺ 1+Az
1+Bz

,

which is the desired conclusion. �

Based on the relation (1.7) we also show that

z (zu′λ (z)))′

zu′λ (z)
= 1+

zu′′λ−1(z)
u′λ−1(z)

.

Applying the above and Theorem 3.1, the following result for zu′λ (z) ∈ S ∗[A,B] im-
mediately follows.

THEOREM 3.2. Let −1 � B < A � 1 and λ ,b,c ∈ C and κ = λ +(b+ 1)/2 �=
0,−1,−2 . . . . Suppose that

Reκ � (Imκ)2

2(2+A)
+

A
2

+
|c|

2(A+1)
for −1 = B < A � 1, (3.10)
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or, for −1 < B < A � 1

A−B−1
1−B

+
|c|(1−B)
4(A−B)

� Reκ <
A−B+1

1+B
− |c|(1+B)

4(A−B)
, (3.11)

and

(B Imκ)2 �
{

A−B+1− |c|(1+B)2

4(A−B)
− (1+B)Reκ

}
(3.12)

×
{

(1−B)Reκ − |c|(1−B)2

4(A−B)
−A+B+1

}
,

with

|c| < 4(A−B)(1+B2−AB)
1−B2 . (3.13)

If (A−B)u′λ(z) �= (1+B)zu′′λ (z) , 0 /∈ u′λ (D) and 0 /∈ u′′λ (D) , then zu′λ (z) ∈ S ∗[A,B] .

In the special case B = −1 and A = 1−2γ we have from Theorem 3.1

COROLLARY 3.1. Let γ ∈ [0,1) and λ ,b,c ∈ C and κ = λ +(b+1)/2 �= 0,−1,
−2 . . . , and

Reκ � (Imκ)2

2(3−2γ)
+

1−2γ
2

+
|c|

4(1− γ)
. (3.14)

If 0 /∈ u′λ (D) then

Re

(
1+

zu′′λ (z)
u′λ (z)

)
> γ.
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