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HARDY TYPE INEQUALITIES AND COMPACTNESS OF A CLASS OF

INTEGRAL OPERATORS WITH LOGARITHMIC SINGULARITIES

AKBOTA M. ABYLAYEVA AND LARS-ERIK PERSSON

(Communicated by M. Praljak)

Abstract. We establish criteria for both boundedness and compactness for some classes of inte-
gral operators with logarithmic singularities in weighted Lebesgue spaces for cases 1 < p � q <
∞ and 1 < q < p < ∞ . As corollaries some corresponding new Hardy inequalities are pointed
out.

1. Introduction

Let 0 < q < ∞ , 1 < p < ∞ , 1
p + 1

p′ = 1, R+ = (0,∞) . Moreover, let u : R+ → R
and v : R+ → R be weight functions, i.e. non-negative measurable functions on R+ .

Since the 70-s of the last century weighted estimates of the form

‖vK f‖q � C‖u f‖p (1)

are intensively studied in the literature for different classes of the operators K , where
‖ · ‖p is the usual norm of the space Lp ≡ Lp(R+) . Review of research in the period
1970− 1982, where estimates of the form (1) are given, can be found in [5]. Some
directions of research of the estimate (1) until 2009 for integral operators are summa-
rized in the books [6, 11, 12, 14]. Estimates of the form (1) are considered not only in
Lebesgue spaces but also in other function spaces (see. e.g. [4, 8, 17] and Chapter 11
of the book [11]). Moreover, in [18] a sequence of classes of non-negative functions
K(·, ·) was considered and when the kernels K(x,s) of an integral operator

K f (x) =
x∫

0

K(x,s) f (s)ds, (2)

belong to these classes, a full description of weights v and u was given, so that, the
estimate (1) holds for the operator K defined by (2). However, these results do not
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include the operator in the form of (2), when the kernel K(·, ·) have a singularity, for
example, the Riemann-Liouville operator

Rα f (x) =
x∫

0

f (s)ds
(x− s)1−α , (3)

when 0 < α < 1. The estimate of the form (1) remains open for the operator (3) in
the general case. However, the following cases are studied: v ≡ u in [3], u ≡ 1 in
[15, 20] and u is non-decreasing in [7] and when one of the weighted functions v,u is
non-increasing in [21].

The estimate (1) for a singular operator in a form

K f (x) =
x∫

0

sγ−1 ln
x

x− s
f (s)ds, (4)

is equivalent to an estimate
‖Kγ f‖q � C‖ f‖p (5)

for the operator

Kγ f (x) = v(x)
x∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds. (6)

The estimate (5) is equivalent to the boundedness of the operator (6) from Lp to Lq

with the norm ‖Kγ‖ = C , where C is the best constant in (5). The operator (4) in the
case γ = 0 is called a fractional integration operator of infinitesimal order [16].

The operator

K∗
γ f (s) = u(s)sγ−1

∞∫
s

v(x) ln
x

x− s
f (x)dx, s > 0, (7)

is dual to the operator Kγ with respect to the scalar product
∞∫
0

f (x)g(x)dx .

The main purpose of this paper is to establish the boundedness and compactness
of the operator (6) and the dual operator (7) from Lp to Lq .

In the case u(x) ≡ 1 of boundedness and of compactness from Lp to Lq of the
operator (6) was studied in [1] and [2], respectively.

The main results (Theorems 1–4) are presented in Section 3. As corollaries some
corresponding new Hardy type inequalities (Corollaries 1–4) are pointed out. The de-
tailed proofs are given in Section 4 and in order not to disturb the argumentations in
these proofs some auxiliary results are collected in Section 2.

CONVENTIONS. Uncertainties of the type 0 ·∞ , 0
0 , ∞

∞ are assumed to be zero.
The inequality of the form A � βB is written in the form A � B, where the positive
constant β may be dependent on the parameters p, q , γ , and the relation A≈B means
that A � B � A. χ(a,b)(·) denotes a characteristic function of the interval (a,b) , Z is
the set of integer numbers. The notations ∑

k
, sup

k
mean ∑

k∈Z
, sup

k∈Z
, respectively.
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2. Auxiliary results

Since

ln
x

x− s
=

s∫
0

dt
x− t

for x > s � 0, (8)

the following inequalities

s
x− s

> ln
x

x− s
>

s
x
, x > s > 0 (9)

hold. The function ln x
x−s decreases with respect to x and increases with respects to

s when x > s � 0, and from the inequality (9) it follows that the functions x ln x
x−s ,

1
s ln x

x−s also decreases with respect to x and increases with respects to s when x > s >
0. Indeed,

∂
∂x

(
x ln

x
x− s

)
= ln

x
x− s

− s
x− s

< 0,

and
∂
∂ s

(
1
s

ln
x

x− s

)
=

1
s2

(
s

x− s
− ln

x
x− s

)
> 0

for x > s > 0.
From (8) we have

x∫
0

ln
x

x− s
f (s)ds =

x∫
0

s∫
0

dt
x− t

f (s)ds =
x∫

0

1
x− t

x∫
t

f (s)dsdt. (10)

In the case when the function u is positive a.e. in R+ we put u(s)sγ−1 f (s) = g′(s) .
Then from (10) and (6) it follows that the inequality (5) is equivalent to the inequality

⎛
⎝ ∞∫

0

∣∣∣∣∣∣v(x)
x∫

0

g(x)−g(s)
x− s

ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

0

|g′(x)u−1(x)x1−γ |pdx

⎞
⎠

1
p

(11)

for the differentiable functions g .
Similarly, if the function v is positive a.e. in R+ , then the inequality (5) for the

operator (7) is equivalent to the inequality

⎛
⎝ ∞∫

0

∣∣∣∣∣∣u(s)sγ
∞∫

s

f (x)− f (s)
x− s

dx
x

∣∣∣∣∣∣
q

ds

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

0

| f ′(x)v−1(x)|pdx

⎞
⎠

1
p

(12)

for any differentiable functions f . In this case we have that

∞∫
s

ln
x

x− s
f (x)dx =

∞∫
s

f (x)
∞∫

x

sdt
t(t− s)

dx = s

∞∫
s

1
t− s

x∫
t

f (s)ds
dt
t

.
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Along with the operator Kγ defined by (6) we consider the operator Hγ defined by

Hγ f (x) =
v(x)
x

x∫
0

u(s)sγ f (s)ds, x > 0.

It is easy to see that

Kγ f � Hγ f (13)

for f � 0. Let

A(x) =

⎛
⎝ x∫

0

up′(s)sγ p′ds

⎞
⎠

1
p′

⎛
⎝ ∞∫

x

vq(t)
tq

dt

⎞
⎠

1
q

, A = sup
x>0

A(x).

For the operator Hγ the following theorem holds [11, 12, 19]:

THEOREM A. Let 1 < p � q < ∞ . Then the operator Hγ is bounded from Lp to
Lq if and only if A < ∞ . Moreover, ‖Hγ‖ ≈ A.

REMARK 1. Here and below for any operator T the value ‖T‖ denotes the norm
of the operator T from Lp to Lq .

The corresponding result for the case q < p reads:

THEOREM B. Let 0 < q < p < ∞ , p > 1 . The operator Hγ is bounded from Lp

to Lq if and only if

B =

⎛
⎜⎜⎝

∞∫
0

⎛
⎝ ∞∫

x

vq(t)
tq

dt

⎞
⎠

p
p−q

⎛
⎝ x∫

0

up′(s)sp′γds

⎞
⎠

p(q−1)
p−q

up′(x)xp′γdx

⎞
⎟⎟⎠

p−q
pq

< ∞.

Moreover, ‖Hγ‖ ≈ B.

REMARK 2. In the case 1 < q < p < ∞ , the constant B is equivalent to the con-
stant

B̃ =

⎛
⎜⎜⎝

∞∫
0

⎛
⎝ ∞∫

x

vq(t)
tq

dt

⎞
⎠

q
p−q

⎛
⎝ x∫

0

up′(s)sp′γds

⎞
⎠

q(p−1)
p−q

vq(x)
xq dx

⎞
⎟⎟⎠

p−q
pq

.
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3. The main results

Our first main result reads:

THEOREM 1. Let 1 < p � q < ∞ , γ > 1
p , and u(x) be a non-increasing function.

Then the operator Kγ defined by (6)

i) is bounded from Lp to Lq if and only if A < ∞ and, moreover, ‖Kγ‖ ≈ A,

ii) is compact from Lp to Lq if and only if A < ∞ and lim
x→0+

A(x) = lim
x→∞

A(x) = 0 .

COROLLARY 1. Let the function u be positive a.e. on R+ and the conditions of
Theorem 1 be fulfilled. Then the Hardy type inequality (11) holds if and only if A < ∞ .
Moreover, A ≈C, where C is the best constant in (11).

The corresponding result for the case q < p reads:

THEOREM 2. Let p > 1 , 0 < q < p < ∞ and γ > 1
p . Let u be a non-increasing

function on R+ . Then the operator Kγ defined by (6)

i) is bounded from Lp to Lq if and only if B < ∞ and, moreover, ‖Kγ‖ ≈ B,

ii) is compact from Lp to Lq if and only if B < ∞ when ever q > 1 .

COROLLARY 2. Let 0 < q < p < ∞ . Let the function u be positive a.e. in R+
and the conditions of Theorem 2 be fulfilled. Then the Hardy type inequality (11) holds
if and only if B < ∞ . Moreover, B ≈C for the best constant C in (11).

We define

A∗(x) =

⎛
⎝ ∞∫

x

vp′(t)
t p′ dt

⎞
⎠

1
p′

⎛
⎝ x∫

o

sqγuq(s)ds

⎞
⎠

1
q

, A∗ = sup
x>0

A∗(x),

and

B∗ =

⎛
⎜⎜⎝

∞∫
0

⎛
⎝ ∞∫

x

vq(t)
t p′ dt

⎞
⎠

q(p−1)
p−q

⎛
⎝ x∫

0

sqγuq(s)ds

⎞
⎠

q
p−q

xqγuq(x)dx

⎞
⎟⎟⎠

p−q
pq

.

We consider the operator K∗
γ (defined by (7)) and its action from Lp to Lq . If

1 < p,q < ∞ , then the operator K∗
γ is bounded (compact) from Lp to Lq if and only

if the operator Kγ is bounded (compact) from Lq′ to Lp′ . In this case the conditions
1 < p � q < ∞ and 1 < q < p < ∞ are equivalent to the conditions 1 < q′ � p′ < ∞
and 1 < p′ < q′ < ∞ , respectively. Therefore from Theorems 1 and 2, we have the
following:
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THEOREM 3. Let 1 < p � q < ∞ and γ > 1
p . Then the operator K∗

γ defined by
(7)

i) is bounded from Lp to Lq if only if A∗ < ∞ and, moreover, ‖K∗
γ ‖ ≈ A∗ ,

ii) is compact from Lp to Lq if only if A∗ < ∞ and lim
x→0+

A∗(x) = lim
x→∞

A∗(x) = 0 .

COROLLARY 3. Let the function v be positive a.e. on R+ and the conditions of
Theorem 3 be fulfilled. Then the Hardy type inequality (12) holds if and only if A∗ < ∞ .
Moreover, A∗ ≈C, where C is the best constant in (12).

THEOREM 4. Let 1 < q < p < ∞ and γ > 1
p . Then the operator K∗

γ defined by (7)
is bounded and compact from Lp to Lq if only if B∗ < ∞ and, moreover, ‖K∗

γ ‖ ≈ B∗ .

COROLLARY 4. Let the function v be positive a.e. on R+ and the conditions of
Theorem 4 be fulfilled. Then the Hardy type inequality (12) holds if and only if B∗ < ∞ .
Moreover, B∗ ≈C for the best constant C in (12).

4. Proofs of the main results

Proof of Theorem 1. Proof of i) . Necessity. Let the operator (6) be bounded
from Lp to Lq . Then, in view of (13), the operator Hγ is bounded from Lp to Lq and
‖Kγ‖ � ‖Hγ‖ . Therefore, by Theorem A the value A < ∞ and

‖Kγ‖
 A. (14)

Sufficiency. Let A < ∞ . Since ln x
x−s � 0 when x > s � 0, then it is enough to

prove the inequality (5) for f � 0. Let 0 � f ∈ Lp . Then we have

‖Kγ f‖q
q = ∑

k

2k+1∫
2k

vq(x)

⎛
⎝ x∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds

⎞
⎠

q

dx

� ∑
k

2k+1∫
2k

vq(x)

⎛
⎝ 2k−1∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds

⎞
⎠

q

dx

+∑
k

2k+1∫
2k

vq(x)

⎛
⎝ x∫

2k−1

u(s)sγ−1 ln
x

x− s
f (s)ds

⎞
⎠

q

dx := I1 + I2. (15)

We estimate I1 and I2 separately. Using the monotonicity of the function 1
s ln x

x−s with
respect to the variables x and s , we obtain that for x > s � 0
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I1 � ∑
k

2k+1∫
2k

vq(x)

⎛
⎝ 2k−1∫

0

u(s)sγ 1
2k−1 ln

2k

2k −2k−1 f (s)ds

⎞
⎠

q

dx

� (ln2)q ∑
k

2k+1∫
2k

vq(x)
(2k−1)q

⎛
⎝ 2k−1∫

0

u(s)sγ f (s)ds

⎞
⎠

q

dx

�
∞∫

0

vq(x)
xq

⎛
⎝ x∫

0

u(s)sγ f (s)ds

⎞
⎠

q

dx = ‖Hγ f‖q
q. (16)

In view of Theorem A from (16) it follows that

I1 � Aq‖ f‖q
q . (17)

By now using the fact that the function u is increasing, applying Hölder’s and Jensen’s
inequalities and making the change of the variable s = xt in the integral below, we have

I2 � ∑
k

uq(2k−1)
2k+1∫
2k

vq(x)

⎛
⎝ x∫

0

sp′(γ−1) lnp′ x
x− s

ds

⎞
⎠

q
p′

dx

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

uq(2k−1)
2k+1∫
2k

vq(x)xq(γ−1)

⎛
⎝ x∫

0

lnp′ x
x− s

ds

⎞
⎠

q
p′

dx

= β
q
p′ ∑

k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

uq(2k−1)
2k+1∫
2k

vq(x)xq(γ−1)+ q
p′ dx

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

uq(2k−1)

⎡
⎢⎢⎣2

(k−1)(γ+ 1
p′ )

⎛
⎝ 2k+1∫

2k

vq(x)
xq dx

⎞
⎠

1
q

⎤
⎥⎥⎦

q

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

⎡
⎢⎢⎣u(2k−1)

⎛
⎝ 2k−1∫

0

sp′γds

⎞
⎠

1
p′ ⎛

⎝ 2k+1∫
2k

vq(x)
xq dx

⎞
⎠

1
q

⎤
⎥⎥⎦

q

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

⎡
⎢⎢⎣
⎛
⎝ 2k−1∫

0

sp′γup′(s)ds

⎞
⎠

1
p′ ⎛

⎝ 2k+1∫
2k

vq(x)
xq dx

⎞
⎠

1
q

⎤
⎥⎥⎦

q

� Aq

⎛
⎝∑

k

2k+1∫
2k−1

f p(t)dt

⎞
⎠

q
p

� Aq‖ f‖q
p, (18)
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where β =
1∫
0

t p′(γ−1) lnp′ 1
1−t dt . The finiteness of β follows from the estimate

β � lnp′ 2

1
2∫

0

sp′(γ−1)ds+max{1,2−p′(γ−1)}
∞∫

ln2

t p′e−t dt

and from the condition γ > 1
p .

From (15), (17) and (18) it follows that

‖Kγ f‖q � A‖ f‖p.

Hence, ‖Kγ‖ � A . This relation together with (14) gives ‖Kγ‖ ≈ A . The statement i)
of Theorem 1 is proved.

Proof of ii) . Necessity. Let the operator Kγ be compact from Lp to Lq . Then
the operator is bounded and therefore, by assertion i) , A < ∞ . First, we prove that
lim

z→0+
A(z) = 0.

Consider the family of functions { ft}t∈I , where

ft (x) = χ(0,t)(x)u
p′−1(x)x(p′−1)γ

⎛
⎝ t∫

0

up′(s)sp′γds

⎞
⎠

− 1
p

. (19)

Then

∞∫
0

| ft(x)|pdx =

⎛
⎝ t∫

0

up′(s)sp′γds

⎞
⎠

−1 t∫
0

up′(x)xp′γdx ≡ 1. (20)

Next we show that the family of functions { ft} converges weakly to zero in Lp .
Let g ∈ Lp′ = (Lp)∗ .

Applying the Hölder inequality and using (20) we have that

∞∫
0

ft (x)g(x)dx �

⎛
⎝ t∫

0

| ft(x)|pdx

⎞
⎠

1
p
⎛
⎝ t∫

0

|g(x)|p′dx

⎞
⎠

1
p′

=

⎛
⎝ t∫

0

|g(x)|p′dx

⎞
⎠

1
p′

.

Since g∈ Lp′ , then the last integral converges to zero as t → 0+ , which means the
weak convergence to zero for the family of functions { ft} . Then, by the compactness
of the operator Kγ from Lp to Lq

lim
t→0+

‖Kγ ft‖q = 0. (21)
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Since ln x
x−s � s

x for x > s > 0 we find that

‖Kγ ft‖q
q =

∞∫
0

vq(x)

⎛
⎝ x∫

0

u(s)sγ−1 ln
x

x− s
ft(s)ds

⎞
⎠

q

dx

�
∞∫

t

vq(x)
xq

⎛
⎝ t∫

0

u(s)sγ ft (s)ds

⎞
⎠

q

dx

=

⎛
⎝ t∫

0

up′(s)sp′γds

⎞
⎠

− q
p
⎛
⎝ t∫

0

up′(s)sp′γds

⎞
⎠

q ∞∫
t

vq(x)
xq dx = (A(t))q . (22)

By combining (21) and (22) we obtain that lim
t→0+

A(t) = 0.

Now we prove that lim
t→∞

A(t) = 0.

The compactness of the operator Kγ : Lp → Lq implies the compactness of the dual
operator (7) from Lq′ to Lp′ .

We introduce the family of functions {gt}t∈I , where

gt(x) = χ(t,∞)(x)

⎛
⎝ ∞∫

t

vq(x)
xq dx

⎞
⎠

− 1
q′

vq−1(x)
xq−1 .

Since A < ∞ , then the function gt is well defined.
In view of the equality

∞∫
0

|gt(x)|q′dx =

⎛
⎝ ∞∫

t

vq(x)
xq dx

⎞
⎠

−1 ⎛
⎝ ∞∫

t

vq(x)
xq dx

⎞
⎠ = 1

for f ∈ Lq = (Lq′)∗ we see that

∞∫
0

f (x)gt (x)dx �

⎛
⎝ ∞∫

t

| f (x)|qdx

⎞
⎠

1
q
⎛
⎝ ∞∫

t

|gt(x)|q′dx

⎞
⎠

1
q′

=

⎛
⎝ ∞∫

t

| f (x)|qdx

⎞
⎠

1
q

.

Consequently, lim
t→∞

∞∫
0

f (x)gt (x)dx = 0 for any f ∈ Lq , which means the weak con-

vergence to zero of the family of functions {gt} . Then, by the compactness of the
operator K∗

γ from Lq′ to Lp′ , it follows that

lim
t→∞

‖K∗
γ gt‖p′ = 0. (23)

Again using that ln x
x−s � s

x for x > s > 0, we obtain that
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‖K∗
γ gt‖p′

p′ �
t∫

0

|u(s)sγ−1|p′
⎛
⎝ ∞∫

t

v(x) ln
x

x− s
gt(x)dx

⎞
⎠

p′

ds

�
t∫

0

up′(s)sp′γds

⎛
⎝ ∞∫

t

vq(x)
xq dx

⎞
⎠

− p′
q′

⎛
⎝ t∫

a

vq(x)
xq dx

⎞
⎠

p′

= Ap′(t). (24)

By combining (23) and (24) it follows that lim
t→∞

A(t) = 0. The necessity of state-

ment ii) is proved.
Sufficiency. Let A < ∞ and lim

z→0+
A(z) = lim

z→∞
A(z) = 0.

For 0 < c < d < ∞ we define

Pc f = χ(0,c] f , Pcd f = χ(c,d] f , Qd f = χ(d,∞) f .

Then f = Pc f +Pcd f +Qd f and since PcKγPcd ≡ 0, PcKγQd ≡ 0, PcdKγQd ≡ 0, we
have that

Kγ f = PcdKγPcd f +PcKγPc f +PcdKγPc f +QdKγ f . (25)

We show that the operator PcdKγPcd is compact from Lp to Lq . Since PcdKγPcd f (x)
= 0 for x ∈ I \ (c,d) , then it is enough to show that the operator PcdKγPcd is compact
from Lp(c,d) to Lq(c,d) . This, in turn, is equivalent to compactness of the operator

T f (x) =
d∫

c

K(x,s) f (s)ds

from Lp(c,d) to Lq(c,d) with the kernel

K(x,s) = u(s)sγ−1v(x)χ(c,d)(x− s) ln
x

x− s
.

Next we note that there are the points 2i,2n , n > i such that 2i � c < 2i+1 , 2n−1 <
d � 2n . We assume that the numbers c and d are chosen so that 2i+1 < 2n−1 . Then
arguing as in the estimates of I1 and I2 in Theorem 1, we find that

d∫
c

⎛
⎝ d∫

c

|K(x,s)|p′ds

⎞
⎠

q
p′

dx =
d∫

c

vq(x)

⎛
⎝ x∫

c

up′(s)sp′(γ−1)
(

ln
x

x− s

)p′

ds

⎞
⎠

q
p′

dx

�
n−1

∑
k=i

2k+1∫
2k

vq(x)

⎛
⎝ 2k−1∫

0

up′(s)sp′(γ−1)
(

ln
x

x− s

)p′

ds

⎞
⎠

q
p′

dx

+
n−1

∑
k=i

2k+1∫
2k

vq(x)

⎛
⎝ x∫

2k−1

up′(s)sp′(γ−1)
(

ln
x

x−s

)p′

ds

⎞
⎠

q
p′

dx

� μ(n− i+1)A < ∞,
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where the constant μ does not depend on i and n . Therefore, on the basis of Kan-
torovich condition [9] (page 589), the operator T is compact from Lp(c,d) to Lq(c,d) ,
which is equivalent to the compactness of the operator PcdKγPcd from Lp to Lq .

From (25) it follows that

‖Kγ −PcdKγPcd‖ � ‖PcKγPc‖+‖PcdKγPc‖+‖QdKγ‖. (26)

We show that the right side of (26) tends to zero at c → 0+ and d → ∞ . Then it
follows that the operator Kγ as the uniform limit of compact operators is compact from
Lp to Lq .

By statement i) we have that

‖PcKγPc f‖q =

⎛
⎝ c∫

0

vq(x)

∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� sup
0<z<c

⎛
⎝ z∫

0

up′(s)sp′γds

⎞
⎠

1
p′

⎛
⎝ c∫

z

vq(x)x−qdx

⎞
⎠

1
q

‖ f‖p

� sup
0<z<c

A(z)‖ f‖p.

Consequently, ‖PcKγPc‖� sup
0<z<c

A(z) . Hence,

lim
c→0+

‖PcKγPc‖� lim
c→0+

sup
0<z<c

A(z) = lim
c→0+

A(c) = 0. (27)

Let vd = Qdv . Then, by using statement i) , we find that

‖QdKγ f‖q =

⎛
⎝ ∞∫

0

vq
d(x)

∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� sup
0<z

⎛
⎝ z∫

0

up′(s)sp′γds

⎞
⎠

1
p′

⎛
⎝ ∞∫

z

vq
d(x)x

−qdx

⎞
⎠

1
q

‖ f‖p

� sup
d<z

A(z)‖ f‖p.

Therefore,

lim
d→∞

‖QdKγ‖� lim
d→∞

A(d) = 0. (28)

Now we will prove that

lim
c→0+

‖PcdKγPc‖ = 0. (29)
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We put vcd = Pcdv and uc = Pcu . It is obvious that the function uc is non-increasing.
Therefore, according to statement i) , we get that

‖PcdKγPc f‖q =

⎛
⎝ ∞∫

0

vq
cd(x)

∣∣∣∣∣∣
x∫

0

uc(s)sγ−1 ln
x

x− s
f (s)ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� sup
0<z

⎛
⎝ z∫

0

up′
c (s)sp′γds

⎞
⎠

1
p′

⎛
⎝ ∞∫

z

vq
cd(x)x

−qdx

⎞
⎠

1
q

‖ f‖p

� A(c)‖ f‖p.

and we conclude that equality (29) holds.
From (27), (28) and (29) it follows that the right side of (26) tends to zero at c →

0+ and d →∞ . Hence, also the sufficiency of ii) is proved. The proof is complete. �

Proof of Theorem 2. Proof of statement i) . Necessity. Let the operator (6) be
bounded from Lp to Lq . Then, in view of (13), the operator Hγ is bounded from Lp to
Lq and ‖Kγ‖ � ‖Hγ‖ . Therefore, by Theorem B the value B < ∞ and

‖Kγ‖
 B. (30)

Sufficiency. Let B < ∞ . We have the estimate (15) for 0 � f ∈ Lp . In view of
Theorem B and from (16) we have that

I1 � Bq‖ f‖q
q. (31)

Moreover, from the estimate I2 in the proof of i) of Theorem 1 it follows that

I2 � ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p

uq(2k−1)2k q
p′ (p

′γ+1)
2k+1∫
2k

vq(x)
xq dx

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p ⎛
⎝up′(2k−1)

2k−1∫
2k−2

t p′γdt

⎞
⎠

q
p′ 2k+1∫

2k

vq(x)
xq dx

� ∑
k

⎛
⎝ 2k+1∫

2k−1

f p(t)dt

⎞
⎠

q
p ⎛
⎝ 2k−1∫

2k−2

up′(t)t p′γdt

⎞
⎠

q
p′ 2k+1∫

2k

vq(x)
xq dx. (32)

By now using the Hölder inequality with exponents p
q , p

p−q and the estimate

⎛
⎝ 2k−1∫

2k−2

up′(t)tγ p′dt

⎞
⎠

q(p−1)
p−q

�
2k−1∫

2k−2

⎛
⎝ x∫

2k−2

up′(s)sγ p′ds

⎞
⎠

p(q−1)
p−q

up′(x)xγ p′dx
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in (32) we find that

I2 �

⎛
⎜⎜⎝∑

k

⎛
⎝ 2k−1∫

2k−2

up′(t)tγ p′dt

⎞
⎠

q(p−1)
p−q ⎛

⎝ 2k+1∫
2k

vq(x)
xq dx

⎞
⎠

p
p−q

⎞
⎟⎟⎠

p−q
q ⎛

⎝∑
k

2k+1∫
2k−1

f p(t)dt

⎞
⎠

q
p

�

⎛
⎜⎜⎝∑

k

2k−1∫
2k−2

⎛
⎝ x∫

0

up′(s)sγ p′ds

⎞
⎠

p(q−1)
p−q

⎛
⎝ ∞∫

x

vq(t)
tq

dt

⎞
⎠

p
p−q

up′(x)xγ p′dx

⎞
⎟⎟⎠

p−q
q

×
⎛
⎝∑

k

2k+1∫
2k−1

f p(t)dt

⎞
⎠

q
p

� Bq‖ f‖q
p. (33)

From (16), (31) and (33) we obtain the estimate

‖Kγ f‖q � B‖ f‖p ,

which together with (30) gives ‖Kγ‖ ≈ B . The statement i) is proved.
Proof of ii) . Necessity. Let the operator Kγ be compact from Lp to Lq . Then the

operator is bounded and therefore, by assertion i) , B < ∞ .
Sufficiency. Let A < ∞ . Here we have Kγ f = PdKγPd f + PdKγQd f + QdKγ f .

Therefore
‖Kγ −PdKγPd‖ � ‖PdKγQd‖+‖QdKγ‖. (34)

Since d < ∞ , then from the Ando theorem and its generalizations (see e.g. [10]) the
operator PdKγPd is compact from Lp(0,d) to Lq(0,d) , which is equivalent to the com-
pactness of it from Lp to Lq . We show that the right-hand side (34) tends to zero
as d → ∞ . Then the operator Kγ is compact from Lp to Lq as the uniform limit of
compact operators. Similarly as in the proof of ii) of Theorem 1 we find that

‖QdKγ f‖q =

⎛
⎝ ∞∫

0

vq
d(x)

∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x− s
f (s)ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

.

Then, in view of the statement i) ,

‖QdKγ‖ �

⎛
⎜⎜⎝

∞∫
d

⎛
⎝ ∞∫

z

up′(s)sp′γds

⎞
⎠

q(p−1)
p−q (∫ z

d
vq(x)x−qdx

) q
p−q

vq(z)z−qdz

⎞
⎟⎟⎠

(p−q)
pq

.

From this estimate and the fact that B < ∞ it follows that

lim
d→∞

‖QdKγ‖ = 0. (35)
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Let vdd = Pdv and ud = Qdu . Then, using again statement i) , we obtain that

‖PdKγQd f‖q =

⎛
⎝ ∞∫

0

vq
dd(x)

∣∣∣∣∣∣
x∫

0

ud(s)sγ−1 ln
x

x− s
f (s)ds

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

�
⎛
⎝ ∞∫

d

up′(s)sp′γds

⎞
⎠

1
p′ (∫ d

0
vq(x)x−qdx

) 1
q

‖ f‖p

= A(d)‖ f‖p. (36)

We also note that, by Remark 2, B ≈ B̃ . Since

A(d) � B̃(d,∞)

=

⎛
⎜⎜⎝

∞∫
d

⎛
⎝ ∞∫

x

vq(t)
tq

dt

⎞
⎠

q
p−q

⎛
⎝ x∫

0

up′(s)sp′γds

⎞
⎠

q(p−1)
p−q

vq(x)
xq dx

⎞
⎟⎟⎠

p−q
pq

then from (36) we have that lim
d→∞

‖PdKγQd‖ = 0. From this and from (35) it follows

that the right-hand side of (34) tends to zero at d → ∞ . Therefore also the sufficiency
part of ii) is proved. The proof is complete. �

Finally, we remark that as mentioned before the proofs of Theorem 3 and 4 follows
by using Theorems 1 and 2, respectively, and a standard duality argument.

REMARK 3. The current status of the mentioned open question to characterize the
Hardy type inequality (1) - (2) without restriction on the kernel K (x,s) was recently
described in [13]. However, the cases considered in this paper are new and can not be
found there.
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