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HARDY TYPE INEQUALITIES AND COMPACTNESS OF A CLASS OF
INTEGRAL OPERATORS WITH LOGARITHMIC SINGULARITIES

AKBOTA M. ABYLAYEVA AND LARS-ERIK PERSSON

(Communicated by M. Praljak)

Abstract. We establish criteria for both boundedness and compactness for some classes of inte-
gral operators with logarithmic singularities in weighted Lebesgue spaces for cases 1 < p < g <
oo and 1 < g < p <eo. As corollaries some corresponding new Hardy inequalities are pointed
out.

1. Introduction

Let0<g<oo, 1 < p<oo, Il—,+1§: I, Ry = (0,). Moreover, let u: R — R
and v: Ry — R be weight functions, i.e. non-negative measurable functions on R .
Since the 70-s of the last century weighted estimates of the form

VK fllq < Cllufllp (1)

are intensively studied in the literature for different classes of the operators K, where
|| 1|, is the usual norm of the space L, = L,(R.). Review of research in the period
1970 — 1982, where estimates of the form (1) are given, can be found in [5]. Some
directions of research of the estimate (1) until 2009 for integral operators are summa-
rized in the books [6, 11, 12, 14]. Estimates of the form (1) are considered not only in
Lebesgue spaces but also in other function spaces (see. e.g. [4, 8, 17] and Chapter 11
of the book [11]). Moreover, in [18] a sequence of classes of non-negative functions
K(-,-) was considered and when the kernels K(x,s) of an integral operator

Kf@) = [ K@o)f(s)ds @
0

belong to these classes, a full description of weights v and u was given, so that, the
estimate (1) holds for the operator K defined by (2). However, these results do not
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include the operator in the form of (2), when the kernel K(-,-) have a singularity, for
example, the Riemann-Liouville operator

Raf () = [ % 3)
0

when 0 < oo < 1. The estimate of the form (1) remains open for the operator (3) in
the general case. However, the following cases are studied: v=u in [3], u =1 in
[15,20] and u is non-decreasing in [7] and when one of the weighted functions v,u is
non-increasing in [21].

The estimate (1) for a singular operator in a form

X

Kf(x)= /s’”l In ﬁf(s)ds, “4)
0
is equivalent to an estimate
1Ky fllqg < Clflp (5)
for the operator
x
Ky f(x) =v(x) /u(s)s”‘1 In ﬁf(s)ds. (6)
0

The estimate (5) is equivalent to the boundedness of the operator (6) from L, to L,
with the norm ||Ky|| = C, where C is the best constant in (5). The operator (4) in the
case ¥ =0 is called a fractional integration operator of infinitesimal order [16].

The operator

oo

Ky f(s) = u(s)s’! /v(x) In ﬁf(x)dx, s> 0, (7

N

is dual to the operator K, with respect to the scalar product [ f(x)g(x)dx.
0

The main purpose of this paper is to establish the boundedness and compactness
of the operator (6) and the dual operator (7) from L, to L.

In the case u(x) = 1 of boundedness and of compactness from L, to L, of the
operator (6) was studied in [1] and [2], respectively.

The main results (Theorems 1-4) are presented in Section 3. As corollaries some
corresponding new Hardy type inequalities (Corollaries 1-4) are pointed out. The de-
tailed proofs are given in Section 4 and in order not to disturb the argumentations in
these proofs some auxiliary results are collected in Section 2.

CONVENTIONS. Uncertainties of the type 0 - oo, %, = are assumed to be zero.
The inequality of the form A < BB is written in the form A < B, where the positive
constant B may be dependent on the parameters p, q, Y, and the relation A ~ B means
that A< B < A. X(up)(+) denotes a characteristic function of the interval (a,b), Z is

the set of integer numbers. The notations y,, sup mean Y, , sup, respectively.
ko ok keZ kez
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2. Auxiliary results

Since

——/— forx > s >0, (8)

X—S

the following inequalities

L>1ni>—, x>5>0 ©)
X—S X—S

hold. The function In ;= decreases with respect to x and increases with respects to
s when x> s >0, and from the inequality (9) it follows that the functions xIn =,
%ln = also decreases with respect to x and increases with respects to s when x > s >

0. Indeed,
—(xln—):ln——i<0,
ox xX—s X—S XxX—s§
and
Il N_ (s X\
ds\s x—s) s2\x—s xX—s
for x > s> 0.

From (8) we have

/ln =15 //%f(s)ds:j)%jf(s)dsdt. (10)

In the case when the function u is positive a.e. in R, we put u(s)s” 1 f(s) = ¢/(s).
Then from (10) and (6) it follows that the inequality (5) is equivalent to the inequality

1
oo X 4q P

8(x) —g(s)
8§\
/v(x)/ ds| dx /| x! 77 |Pdx (11)

X—S
0 0

for the differentiable functions g.
Similarly, if the function v is positive a.e. in R, then the inequality (5) for the
operator (7) is equivalent to the inequality

==

oo

. q i .
/ u(s)sy/M% ds| <C /|f’(x)v71(x)|pdx (12)
K 0

X—S
0

for any differentiable functions f. In this case we have that

R Y I

=
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Along with the operator K, defined by (6) we consider the operator Hy defined by

X

Hyf(x) = vgc—x)/u(s)syf(s)ds, x>0.
0
It is easy to see that
Kyf = Hyf 13)
for f > 0. Let
’ / / 7 T Vq(t) ’
A(x) = /up (5)s™ ds /t—’idt , A=supA(x).
x>0
0 X

For the operator Hy the following theorem holds [11, 12, 19]:

THEOREM A. Let 1 < p < q < o. Then the operator Hy is bounded from L, to
Ly if and only if A < eo. Moreover, |Hy|| =~ A.

REMARK 1. Here and below for any operator T the value ||T|| denotes the norm
of the operator T from L, to L.

The corresponding result for the case g < p reads:

THEOREM B. Let 0 < g < p <o, p> 1. The operator Hy is bounded from L,
to Ly if and only if

L
=

Vq(l) ! ’ / / / /
B= / / dt /up (s)s? Vds u? (x)xP Vdx < oo,
0

14

Moreover, ||Hy|| ~ B.

REMARK 2. Inthe case 1 < g < p < oo, the constant B is equivalent to the con-

stant

P=q
9 q(p=1) Iz

q
o pP—q X pP—q

B= /w /vq(t)dt /up,(s)splyds v(x) dx

x4
0 X 0
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3. The main results
Our first main result reads:

THEOREM 1. Let | <p<g<eo, > 11—7, and u(x) be a non-increasing function.
Then the operator Ky defined by (6)

i) is bounded from L, to Ly if and only if A < e and, moreover, ||Ky| ~A,

it) is compact from Ly, to Ly if and only if A < e and lim A(x) = lim A(x) = 0.

x—0t X—>00

COROLLARY 1. Let the function u be positive a.e. on Ry and the conditions of
Theorem 1 be fulfilled. Then the Hardy type inequality (11) holds if and only if A < eo.
Moreover, A = C, where C is the best constant in (11).

The corresponding result for the case g < p reads:
THEOREM 2. Let p>1, 0< g < p <eooand y> . Let u be a non-increasing

1
function on R . Then the operator Ky defined by (6) g

i) is bounded from L, to Ly if and only if B < e and, moreover, ||Ky| ~ B,

ii) is compact from Ly to Ly if and only if B < oo when ever g > 1.

COROLLARY 2. Let 0 < g < p < oo. Let the function u be positive a.e. in R,
and the conditions of Theorem 2 be fulfilled. Then the Hardy type inequality (11) holds
if and only if B < eo. Moreover, B =~ C for the best constant C in (11).

We define
1 1
. i)\ o .
A (x) = / —dt /quuq(s)ds , A®=supA*(x),
1P x>0
X o
and
M
q(p—1) g9 Pd
ot b P—q X P—q
* v (1)
B = / / vy dt /s‘”’uq(s)ds x?ud (x)dx
0 X 0

We consider the operator K; (defined by (7)) and its action from L, to L,. If
1 < p,gq < e, then the operator K} is bounded (compact) from L, to L, if and only
if the operator Ky is bounded (compact) from Ly to L. In this case the conditions
l<p<g<eand 1 < g < p < oo are equivalent to the conditions 1 < ¢’ < p’ < o
and 1 < p’ < ¢’ < oo, respectively. Therefore from Theorems 1 and 2, we have the
following:
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THEOREM 3. Let 1 < p < g <eooand y> % Then the operator K; defined by
(7)

i) is bounded from Ly to Ly if only if A* < e and, moreover, ||Ky|| ~ A",

it) is compact from Ly, to Ly if only if A* < oo and 1im+A*(x) = lim A*(x) =0.
x—0

X—>00

COROLLARY 3. Let the function v be positive a.e. on Ry and the conditions of
Theorem 3 be fulfilled. Then the Hardy type inequality (12) holds if and only if A* < .
Moreover, A* =~ C, where C is the best constant in (12).

THEOREM 4. Let 1 <g < p <eoandy> % Then the operator K; defined by (7)
~ B*.

is bounded and compact from L, to L, if only if B* < e and, moreover,

COROLLARY 4. Let the function v be positive a.e. on Ry and the conditions of
Theorem 4 be fulfilled. Then the Hardy type inequality (12) holds if and only if B* < eo.
Moreover, B* = C for the best constant C in (12).

4. Proofs of the main results
Proof of Theorem 1. Proof of i). Necessity. Let the operator (6) be bounded
from L, to Ly. Then, in view of (13), the operator Hy is bounded from L, to L, and
|Ky|| = ||Hyl|| . Therefore, by Theorem A the value A < e and
1Kyl > A. (14)

Sufficiency. Let A < eo. Since In*~ > 0 when x > s > 0, then it is enough to
prove the inequality (5) for f > 0. Let 0 < f € L,. Then we have

Skt . q
Il = 3 / V) | [ uls)s™ M p(s)ds | dx
0
2k+l 2/(71 q
q S P d d
<<2k:/v (x) u(s)s nx_sf(s) s | dx
3 0
2k+1 x q
+2/v‘1(x) /u(s)sY*Hnif(s)ds dx:=L+L. (15)
- x—s
2k 2k—1

We estimate I; and I, separately. Using the monotonicity of the function %ln = Wwith
respect to the variables x and s, we obtain that for x > s >0
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2k+l 2k71 q
g - 2k
L < zk‘, / v (x) /u(s)s Flnmf(s)ds dx
2k

ok+1 q

2k71
(In2) ‘12 u(s)s’f(s)ds | dx
/ 2I< 1 b/
q

q X
<<0/ Vx(qx> 0/ u(s)s”f(s)ds | dx=|[Hyfll3.

In view of Theorem A from (16) it follows that

L <A1 f1[7-

207

(16)

7)

By now using the fact that the function u is increasing, applying Holder’s and Jensen’s
inequalities and making the change of the variable s = x¢ in the integral below, we have

2k+1 x 2k+1
L < Zuq(z"*) / v(x) /sp (r=1) 1’ x—ds /f”
k S 0
k41 % 2k+1 /

k

2k—1 2k
okt Z okt
q ST
=By, /fp(t)dt ud (21 / vq(x)xqw D*3 dx
ko \oiz1 ok
ok+1 P ok+1 é !
q
<Y /fp(t)dt w241y [0 D) vx(qx)dx
k 2k—1 2k
ok+1 P k=1 ,,L/ 2k+1 é
, q
<Y / fP@yde | {u@Y / sP'7ds / 4 (qx)dx
k 2k—1 0 2k .
2k+1 P k=1 I% 2k+1 q
/ / 4q
<Y / fP()de / sPYuP (s)ds / v—(qx)dx
L W 0 ok *

q
P

2A+l
< A1 (E/f” dr| < a9|f119,

2k—1

<Y /fp(t)dt u? (21 / VA (x)x9 1) /lnp —ds dx

(18)
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1 / /
where B = [¢7'(*=1n? ﬁdr. The finiteness of 3 follows from the estimate
0

I—

2
1n172/51?7 Dds+max{1,277 (- 1}/#’
0 In2

and from the condition y > % .
From (15), (17) and (18) it follows that

1Ky fllg < Al

Hence, ||Ky|| < A. This relation together with (14) gives ||Ky|| = A. The statement i)
of Theorem 1 is proved.

Proof of ii). Necessity. Let the operator K, be compact from L, to L,. Then
the operator is bounded and therefore, by assertion i), A < eo. First, we prove that
lim A(z) =0.
z—0F

Consider the family of functions {f; };s, where

==

t

£i0) = o @ (V7| [ ()57 vas | (19)
0
Then
o ; -1,
/\f,(x)|pdx: /u”,(s)sp/yds /u”,(x)xp/ydxz 1. (20)
0 0 0

Next we show that the family of functions {f;} converges weakly to zero in L,.
Letge Ly =(Ly)".
Applying the Holder inequality and using (20) we have that

v

=

[ £i0gwax < / ) / swras) = / [8(x)1""dx
0 0 0

0

Since g € Ly, then the last integral converges to zero as ¢t — 0", which means the
weak convergence to zero for the family of functions {f;}. Then, by the compactness
of the operator Ky from L, to L,

tim 1Ky i = 0. @1)
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Since lnﬁ > % for x > s > 0 we find that

1Kl = / V() / u(s)s" " In = fi(s)ds qu
g
(i My ")
0/ u” (s)s”7ds 0/ uP (s)s” Vds / qux dx=(A(0)?.  (22)

By combining (21) and (22) we obtain that lim+ A(r)=0.
t—0
Now we prove that tlim A(r)=0.
The compactness of the operator Ky : L, — L, implies the compactness of the dual

operator (7) from Ly to L.
We introduce the family of functions {g; };cs, where

[ Md)c L_l () .

x4 xq-1

8

81 (X) = X(1,0)(X)

t

Since A < oo, then the function g; is well defined.
In view of the equality

O/mgt(x)qldxz t/wvi(qx)dx

for f €Ly = (Ly)" we see that

/ Fixlax / el / 81| dx " / ()|

Consequently, tlim J f(x)g:(x)dx =0 forany f € L,, which means the weak con-
al(

1
q

vergence to zero of the family of functions {g;}. Then, by the compactness of the
operator K from L to L, it follows that

lim || g, ] = 0. (23)

Again using that In % > % for x > s > 0, we obtain that
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t oo p
/ - / X
1Ky > [luts)s™ 1 [viin——g (x| s
0

t

) ’
t oo q t p

/ / ‘f(x) v‘f(x) /
> [ uP (s)s" Vds VY gx —dx | =A"(r). (24)
/ /% /=

By combining (23) and (24) it follows that tlimA(t) = 0. The necessity of state-

ment if) is proved.
Sufficiency. Let A < o and lim A(z) = limA(z) =0.

7—0t 7—00
For 0 < ¢ < d < o0 we define

Pef = X(O,C]f7 Peaf = X(c,d]f7 Quf = X(d7°<>)f'

Then f = P.f + P.qf + Quf and since P.K,Py =0, P.K,0; =0, P.qKy0q =0, we
have that
Kyf = PeaKyPeaf + PeKyPef + PeaKyPe f + QuKy f . (25)
We show that the operator P.;KyP,, is compact from L, to L. Since P.qKyP.qf(x)
=0 for x € I'\ (c,d), then it is enough to show that the operator P.;KyP.q is compact
from L,(c,d) to Ly(c,d). This, in turn, is equivalent to compactness of the operator

d
Tf(x) :/K(x,s)f(s)ds

from Lp(c7d) to Lq(c,d) with the kernel
K X —_— ')/—1 X . X — 1 —x .
( ,S) M(S)S V( )X(c,d)( S) n s

Next we note that there are the points 2/,2", n > i such that 2/ < ¢ < 2/*! 271 <
d < 2". We assume that the numbers ¢ and d are chosen so that 2it! < 27=1 Then
arguing as in the estimates of /; and I, in Theorem I, we find that

d [ d 4 d x » o
/ K(x,s)|"'ds | dx = /vq(x) /u”,(s)spl(yfl) (ln ﬁ) ds | dx
g
. k1 k-1 » o
<3 [ | [ e (mﬁ) ds|
= )
oy 2 - / N ' ﬁ
+ / v (x) / u? (s)s? =) (ln T) ds | dx
k=i ok k-1 S

< un—i+1)A < eo,
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where the constant y does not depend on i and n. Therefore, on the basis of Kan-

torovich condition [9] (page 589), the operator T is compact from L,(c,d) to Ly(c,d),

which is equivalent to the compactness of the operator P.qKy P,y from L, to L, .
From (25) it follows that

1Ky — PeaKyPeal| < [|PeKyPel| + || PeaKyPel| + | QaKy - (26)

We show that the right side of (26) tends to zero at ¢ — 0" and d — oo. Then it
follows that the operator Ky as the uniform limit of compact operators is compact from
Lyto L.

By statement i) we have that

1
C X 4q E
1P Peflly = | [160)] [uls)s™ 10— pls)as| dx

0 0

1 1
z 4 c
< sup /up,(s)splyds /vq(x)x_qu £l p
0<z<c

Z

< sup A(Z)[|f]lp-

0<z<c

Consequently, |P.KyP.|| < sup A(z). Hence,

0<z<c

lim [[P-KyP.|| < lim sup A(z) = lim A(c) =0. 27)

=0T g<z<e c—0F

Let vy = Qgv. Then, by using statement i), we find that

1
o x a g
- X
1QiKeflly = | [¥)| [u)s" 0= p(s)ds| ax
0 0
1 1
z J oo
< %lip /u”,(s)splyds /VZ(X)qudx 11
Z

Z

< supA(2)[|flp-
d<z

Therefore,
[}im 104Ky | < dlim A(d)=0. (28)

Now we will prove that

fim, | PeaKyPe|| = 0. (29)



212 A.M. ABYLAYEVA AND L.-E. PERSSON

We put v.g = P,qv and u, = P.u. It is obvious that the function u, is non-increasing.
Therefore, according to statement i), we get that

oo X q q
. x
PPty = | [ 72400 | [uel)s" ' in = p(s)ds| dx
0 0
1 1
z r oo q
< sup /uf,(s)splyds /de(x)x_qu 171
0<z p
< A lp-

and we conclude that equality (29) holds.
From (27), (28) and (29) it follows that the right side of (26) tends to zero at ¢ —
0" and d — <. Hence, also the sufficiency of ii) is proved. The proof is complete. [

Proof of Theorem 2. Proof of statement i). Necessity. Let the operator (6) be
bounded from L, to L,. Then, in view of (13), the operator Hy is bounded from L, to
L, and ||Ky|| > ||Hy||. Therefore, by Theorem B the value B < e and

Kyl > B. (30)

Sufficiency. Let B < . We have the estimate (15) for 0 < f € L,,. In view of
Theorem B and from (16) we have that

I < BI| |2 (31)

Moreover, from the estimate I, in the proof of i) of Theorem 1 it follows that

k1 g k1
q (. q
heX | [ o) wongdery [ X0,
k 2k—1 2k
k1 » k-1 7kt
/ / q
<Y / fPae | | w2 / 7'V dr / v—(qx)dx
k k—1 2k=2 2k .
2k+1 P k=1 I% 2k+1
/ / q
<y / fP(r)dt / uP (1P Vds Vx(qx)dx. 32)
ko \gim1 k2 ok

By now using the Holder inequality with exponents ;—’ , ﬁ and the estimate

q(p—1) plg—1)
k=1 r=q k=1 sy P=d

/upl(t)tw,dt <</ /up,(s)syplds u” (x)x" dx

k-2 \pk—2




HARDY TYPE INEQUALITIES OF INTEGRAL OPERATORS 213

in (32) we find that
q(p—1) r % q
k=1 P—q 2k+1 P—q 2k+1 P
L< Y / P (1) di vq(x)d Z/fp(t)dt
h u —=dx
k x4 k
2k=2 2k k-1
p(g—1) L
2k 1 X ’quq oo q(t) ﬁ g
< Z/ / 5)s" ds /Vt—th u? (x)x" dx
2" 2 X
q
2k+1 P
(= [ ro
2A 1
< B £13. (33)

From (16), (31) and (33) we obtain the estimate

1Ky llg < BIflp:

which together with (30) gives ||Ky|| = B. The statement i) is proved.
Proof of ii). Necessity. Let the operator Ky be compact from L, to L,. Then the
operator is bounded and therefore, by assertion i), B < oo.
Sufficiency. Let A < . Here we have K,f = P;KyP;f + P;KyQuf + QuKyf .
Therefore
Ky — PaKyFul| < [|PaKyQul| + | QuKy |- (34)

Since d < oo, then from the Ando theorem and its generalizations (see e.g. [10]) the
operator P;KyP; is compact from L, (0,d) to L,(0,d), which is equivalent to the com-
pactness of it from L, to L,. We show that the right-hand side (34) tends to zero
as d — oo. Then the operator K, is compact from L, to L, as the uniform limit of
compact operators. Similarly as in the proof of ii) of Theorem 1 we find that

1

oo x q g

1Qus = | [ [u(s)s"in——r(s)ds| ax

0 0

Then, in view of the statement i),

q(p—1) Pa
oo [ oo P—q q

04Ky | < d/ /up, (s)splyds (/dz v (x)x_qu> n vi(z)z dz

Z

From this estimate and the fact that B < oo it follows that

lim [|Q4Ky| = 0. (35)
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Let vyq = Pyv and uy = Qqu. Then, using again statement i), we obtain that

1
q

1
» 1

d
u” (s)s”Vds (/ vq(x)x_qu) ! 171
0

= A (36)

o q
|PaKyQafllg = (/v / s”_lln f(s)ds dx
0 0

S~

We also note that, by Remark 2, B ~ B. Since

A(d) < B(d, )

q(p—1) Pq
X P—aq

o 4(x)
— / /V_dt /upl(s)sl’,yds YWY
td x4

d X 0

then from (36) we have that C}im |PiKyQq4|| = 0. From this and from (35) it follows

that the right-hand side of (34) tends to zero at d — oo. Therefore also the sufficiency
part of ii) is proved. The proof is complete. [J

Finally, we remark that as mentioned before the proofs of Theorem 3 and 4 follows
by using Theorems | and 2, respectively, and a standard duality argument.

REMARK 3. The current status of the mentioned open question to characterize the
Hardy type inequality (1) - (2) without restriction on the kernel ¢ (x,s) was recently
described in [13]. However, the cases considered in this paper are new and can not be
found there.

Acknowledgement. The authors thank Professor Ryskul Oinarov for several gen-
erous advices, which have improved the final version of this paper.
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