
Mathematical
Inequalities

& Applications

Volume 21, Number 1 (2018), 251–263 doi:10.7153/mia-2018-21-19

A COMPLEMENT TO DIANANDA’S INEQUALITY
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(Communicated by I. Perić)

Abstract. Let Mn,r = (∑n
i=1 qixr

i )
1
r , r �= 0 and Mn,0 = limr→0 Mn,r be the weighted power means

of n non-negative numbers xi with qi > 0 satisfying ∑n
i=1 qi = 1 . In particular, An = Mn,1 ,

Gn = Mn,0 are the arithmetic and geometric means of these numbers, respectively. A result of
Diananda shows that

Mn,1/2 −qAn − (1−q)Gn � 0,

Mn,1/2 − (1−q)An −qGn � 0,

where q = minqi . In this paper, we prove analogue inequalities in the reversed direction.

1. Introduction

Let Mn,r(x;q) be the weighted power means: Mn,r(x;q) = (∑n
i=1 qixr

i )
1
r , where

Mn,0(x;q) denotes the limit of Mn,r(x;q) as r → 0, x = (x1, . . . ,xn) , q = (q1, . . . ,qn)
with xi � 0, qi > 0 for all 1 � i � n and ∑n

i=1 qi = 1. In this paper, unless otherwise
specified, we let q = minqi and we assume that 0 � x1 < x2 < · · · < xn .

We define An(x;q) = Mn,1(x;q) , Gn(x;q) = Mn,0(x;q) , σn = ∑n
i=1 qi(xi −An)2 .

We shall write Mn,r for Mn,r(x;q) and similarly for other means when there is no risk
of confusion.

In [5], the following bounds of Mn,1/r in terms of An , Gn are given:

Mn, 1
r

� (1−q)r−1An +(1− (1−q)r−1)Gn, 1 < r � 2; (1)

Mn, 1
r

� qr−1An +(1−qr−1)Gn, r � 2. (2)

The reversed inequality of (1) is valid when 0 < r < 1 and the above inequalities are
generalizations of a result of Diananda ([2], [3]), which corresponds to case r = 2 of
the above inequalities. Note that except for the case r = 2, the above inequalities only
provide one-sided bound for any given Mn,1/r . It is therefore natural to seek for bounds
that are complementary to the above ones. In this paper, we consider one way to achieve
this by establishing the following
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THEOREM 1. For r � 2 , we have

Mn, 1
r
−qr−1An− (1−qr−1)Gn � 1/r−qr−1

2x1
σn, (3)

with equality holding if and only if x1 = x2 = · · · = xn or r = n = 2 , q = 1/2 .
For 1 < r � 2 , we have

Mn, 1
r
− (1−q)r−1An− (1− (1−q)r−1)Gn � 1/r− (1−q)r−1

2x1
σn, (4)

with equality holding if and only if x1 = x2 = · · · = xn or r = n = 2 , q = 1/2 . The
reversed inequality of (4) holds for 1/2 � r < 1 with equality holding if and only if
x1 = x2 = · · · = xn .

Our result in fact is motivated by the following bounds for the differences of
means:

r− s
2xn

σn � Mn,r −Mn,s � r− s
2x1

σn, r > s. (5)

The above inequalities are closely related to the Ky Fan inequalities and are not valid
for all r > s . When they are valid, then the constant (r− s)/2 is best possible (see [4])
and a necessary condition for inequalities (5) to be valid is that 0 � r + s � 3 (see [4,
Lemma 3.1]). Moreover, it is shown in [4, Theorem 3.2] that if r = 1, then inequalities
(5) hold if and only if −1 � s < 1. If s = 1, then inequalities (5) hold if and only if
1 < r � 2. In particular, the case r = 1, s = 0 of (5) yields a result of Cartwright and
Field [1]:

σn

2xn
� An −Gn � σn

2x1
. (6)

Using (6) while noting that the constant 1/2 is best possible, one sees easily that when
r = 2, the results given in Theorem 1 are not comparable to the bounds given by (1)–(2).

We can recast inequality (3) as

Mn, 1
r
−Gn− 1/r

2x1
σn � qr−1

(
An−Gn− 1

2x1
σn

)
, (7)

from which we see that inequality (3) can be interpreted as a comparison between dif-
ferent inequalities in (5). We can deduce a similar inequality from (4). This combined
with our discussions above allows us to prove the right-hand side inequality of (5) for
s = 0, 0 < r � 1/2 and 1 < r � 2. It is then interesting to determine all the values of
r such that inequalities (5) hold for r and s = 0. We shall do this in Section 3 as we
prove the following

THEOREM 2. Let r �= 0 , x1 = min{xi} , xn = max{xi} , then the right-hand side
inequality of (5) holds with s = 0 if and only if 0 < r � 2 , the left-hand side inequality
of (5) holds with s = 0 if and only if 1 � r � 3 . Moreover, in all these cases we have
equality holding if and only if x1 = x2 = · · · = xn .
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We note that Theorem 2 implies that the reversed inequality of (4) does not hold
for 0 < r < 1/2 in general. For otherwise we can recast it in a form similar to inequality
(7) to deduce the validity of the right-hand side inequality of (5) for s = 0, r > 2.

We note that the following inequality

Mn, 1
r
−qr−1An− (1−qr−1)Gn � 1/r−qr−1

2xn
σn,

is not valid in general as one checks easily that when n = 2, q1 = 1−q , q2 = q , x1 = 0,
x2 = 1, the left-hand side expression above is 0 while the right-hand side expression
is not 0 in general. Therefore, it is not possible to have a similar lower bound for the
left-hand side expression in (3). Similar discussions apply to (4) as well.

2. Proof of Theorem 1

Throughout this section, we assume n � 2, x1 = 1 and 1 < x2 < .. . < xn . We
will omit the discussion on the conditions for equality in each inequality as one checks
easily that the desired conditions hold by going through our arguments in what follows.
We first prove inequality (3) and we define

fn(x;q,q) = Mn, 1
r
−qr−1An− (1−qr−1)Gn− 1/r−qr−1

2x1
σn.

It suffices to show fn(x;q,q) � 0 and we have

1
qn

· ∂ fn
∂xn

= M
1− 1

r

n, 1
r

x
1
r −1
n −qr−1− (1−qr−1)Gnx

−1
n −

(1
r
−qr−1

)
(xn−An) := gn(x;q,q).

It suffices to show gn(x;q,q) � 0 as it implies fn(x;q,q) � limxn→xn−1 fn(x;q,q) . By
adjusting the value of q in the expression of limxn→xn−1 fn(x;q,q) (note that it follows

from (6) that ∂ fn
∂q � 0) and repeating the process, it follows easily that fn(x;q,q) � 0.

Similarly, in order to show gn(x;q,q) � 0, it suffices to show ∂gn
∂xn

� 0. Calculation
shows that

1
1−qn

· ∂gn

∂xn
=

1−1/r
1−qn

M
1− 2

r

n, 1
r

x
1
r −2
n

(
qnx

1
r
n −M

1
r

n, 1
r

)
+(1−qr−1)Gnx

−2
n −

(1
r
−qr−1

)
.

We make a change of variable xi → yr
i to recast the right-hand side expression

above as

−
(
1− 1

r

)
(qnyn +(1−qn)A′

n−1)
r−2A′

n−1y
1−2r
n +(1−qr−1)G′(1−qn)r

n−1 yqnr−2r
n (8)

−
(1

r
−qr−1

)

�−
(
1− 1

r

)
(qnyn +(1−qn)A′

n−1)
r−2A′

n−1y
1−2r
n +(1−qr−1)A′(1−qn)r

n−1 yqnr−2r
n

−
(1

r
−qr−1

)
,
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where A′
n−1 = An−1(y′;q′),G′

n−1 = Gn−1(y′;q′) , and

y′ = (y1, . . . ,yn−1), q′ =
( q1

1−qn
, . . . ,

qn−1

1−qn

)
.

We further denote z = yn/A′
n−1 to see that the right-hand side expression of (8) is

�y−r
n

(
−

(
1− 1

r

)
(qnz+1−qn)r−2z1−r +(1−qr−1)zqnr−r −

(1
r
−qr−1

)
zrA′r

n−1

)

�y−r
n

(
−

(
1− 1

r

)
(qnz+1−qn)r−2z1−r +(1−qr−1)zqnr−r −

(1
r
−qr−1

)
zr

)
.

It suffices to show that the last expression above is non-positive for z � 1. Note first
that when qnr � 1, the last expression above equals

y−r
n z1−r

(
−

(
1− 1

r

)
(qnz+1−qn)r−2 +(1−qr−1)zqnr−1 −

(1
r
−qr−1

)
z2r−1

)

�y−r
n z1−r

(
−

(
1− 1

r

)
(qn +1−qn)r−2 +(1−qr−1)−

(1
r
−qr−1

))
= 0.

Thus we may assume qnr > 1 and in this case, it suffices to show that

u(z;qn,q) = −
(
1− 1

r

)
(qnz+1−qn)r−2z1−qnr +(1−qr−1)−

(1
r
−qr−1

)
z(2−qn)r � 0.

Now we have

z1−(2−qn)r ∂u
∂ z

=
(
1− 1

r

)
(qnz+1−qn)r−3z2−2r ((rqn−1)(1−qn)z−1 +(1− (1−qn)r)qn

)

− r(2−qn)
(1

r
−qr−1

)

�
(
1− 1

r

)
(qnz+1−qn)r−3z2−2r ((rqn−1)(1−qn)+ (1− (1−qn)r)qn)

− r(2−qn)
(1

r
−qr−1

)

=
(
1− 1

r

)
(qnz+1−qn)r−3z2−2r (2qn−1)− r(2−qn)

(1
r
−qr−1

)
.

If 2qn−1 � 0, then we have ∂u/∂ z � 0, as it follows from [5, (2.1)] that 1/r−qr−1 � 0
when r � 2. Otherwise, note that

(qnz+1−qn)r−3z2−2r � max{z2−2r,zr−3z2−2r} � 1.

Thus we have

z1−(2−qn)r ∂u
∂ z

�
(
1− 1

r

)
(2qn−1)− r(2−qn)

(1
r
−qr−1

)

�
(
1− 1

r

)
(2(1−q)−1)− r(2− (1−q))

(1
r
−qr−1

)

=
(
1− 1

r

)
(1−2q)− (qr+ r)

(
1
r
−qr−1

)
.
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It is easy to see that the last expression above is a convex function of q for fixed r and
it is � 0 when q = 0,1/2. Thus ∂u/∂ z � 0 so that u(z;qn,q) � u(1;qn,q) = 0. This
proves inequality (3).

Now, to prove inequality (4), we use the same notations as above to see that in this
case, it suffices to show fn(x;q,1−q) � 0. Again, this follows from ∂gn(x;q,1−q)

∂xn
� 0.

Similar to our arguments above, it is easy to see that in this case the left-hand side
expression of (8) becomes

−
(
1− 1

r

)
(qnyn +(1−qn)A′

n−1)
r−2A′

n−1y
1−2r
n +(1− (1−q)r−1)G′(1−qn)r

n−1 yqnr−2r
n

−
(1

r
− (1−q)r−1

)
:= h(yn).

It therefore remains to show that h(yn) � 0 for yn � A′
n−1 . Note first that

h(yn) � −
(
1− 1

r

)
A′r−1

n−1y
1−2r
n +(1− (1−q)r−1)G′(1−qn)r

n−1 yqnr−2r
n −

(1
r
− (1−q)r−1

)

:= y1−2rh̃(yn),

where

h̃(yn) = −
(
1− 1

r

)
A′r−1

n−1 +(1− (1−q)r−1)G′(1−qn)r
n−1 yqnr−1

n −
(1

r
− (1−q)r−1

)
y2r−1
n .

When qnr−1 � 0, one checks that h̃ is an increasing function of yn (note that in our
case (1− q)r−1 � 1/r ), hence is minimized at yn = A′

n−1 and it is easy to see that in
this case h(yn) � 0 is equivalent to h(A′

n−1) � 0.
We now consider the case 1− rqn > 0. Note first that limyn→∞ h(yn) � 0. If h(yn)

is minimized as some yn = y > A′
n−1 , then we must have h′(y) = 0, which yields

1− 1
r

(2−qn)r
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
1−2r ((r+1)qny+(2r−1)(1−qn)A′

n−1

)

=(1− (1−q)r−1)G′(1−qn)r
n−1 yqnr−2r.

This allows us to rewrite the expression for h(y) as

h(y) =−
(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−2A′

n−1y
1−2r (9)

+(1− (1−q)r−1)G′(1−qn)r
n−1 yqnr−2r −

(1
r
− (1−q)r−1

)

=−
(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−2A′

n−1y
1−2r

+
1

(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
1−2r

× (
(r+1)qny+(2r−1)(1−qn)A′

n−1

)−(1
r
− (1−q)r−1

)
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=
1

(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
1−2r

× (
(1− r+ rqn)qny− (1− rqn) (1−qn)A′

n−1

)−(1
r
− (1−q)r−1

)
.

We have

h(y) � 1
(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
1−2r

× ((1− r+ rqn)qny− (1− rqn) (1−qn)y)−
(1

r
− (1−q)r−1

)

=− 1−2qn

(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
2−2r −

(1
r
− (1−q)r−1

)
.

If 1−2qn � 0, then h(y) � 0. When 1−2qn > 0, we see that

h(y) �− 1−2qn

(2−qn)r

(
1− 1

r

)
A′r−3

n−1 ·A′
n−1 ·A′2−2r

n−1 −
(1

r
− (1−q)r−1

)

=− 1−2qn

(2−qn)r

(
1− 1

r

)
A′−r

n−1−
(1

r
− (1−q)r−1

)

�− 1−2qn

(2−qn)r

(
1− 1

r

)
−

(1
r
− (1−q)r−1

)

�− 1−2q
(2−q)r

(
1− 1

r

)
−

(1
r
− (1−q)r−1

)
.

We want to show the last expression above is non-negative. By setting x = 1− q , we
see that this is equivalent to showing that for 1/2 � x � 1,

m(x) := xr + xr−1−
(

3
r
− 2

r2

)
x− 1

r2 � 0. (10)

We have

m′(x) = rxr−1 +(r−1)xr−2−
(

3
r
− 2

r2

)
,

m′′(x) = (r−1)xr−3(rx+ r−2).

It is easy to see that m′(x) � 0 for 1/2 � x � 1 when r = 2. For 1 < r < 2, we see that

m′
(

2− r
r

)
=

(
2− r

r

)r−2

−
(

3
r
− 2

r2

)
.

We want to show the above expression is non-negative and we recast it as

(
2− r

r

) 2−r
3−r

(
3
r
− 2

r2

) 1
3−r

� 1.
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Applying the arithmetic-geometric mean inequality, we see that

(
2− r

r

) 2−r
3−r

(
3
r
− 2

r2

) 1
3−r

�
(

2− r
r

)
· 2− r
3− r

+
(

3
r
− 2

r2

)
· 1
3− r

.

It therefore suffices to show the right-hand side expression above is � 1, which is
equivalent to

(r−1)(2r−1)(r−2) � 0.

As 1 < r < 2, we see that the above inequality holds, hence it follows that m′((2−
r)/r) � 0. As it is also easy to see that m′(1) � 0, m′(1/2) � 0, we see that m′(x) � 0
for 1/2 � x � 1 when 1 < r < 2. Thus, we conclude that when 1 < r � 2, m(x) �
m(1/2) � 0.

We then conclude that when 1−rqn > 0, it also suffices to show that h(A′
n−1) � 0,

which is

−
(
1− 1

r

)
A′−r

n−1 +(1− (1−q)r−1)G′(1−qn)r
n−1 A′qnr−2r

n−1 −
(1

r
− (1−q)r−1

)
� 0.

We recast the above inequality as

1− (1−q)r−1

1−1/r

(
G′

n−1

A′
n−1

)(1−qn)r

+
(1−q)r−1− 1

r

1−1/r
A′r

n−1 � 1. (11)

Applying the arithmetic-geometric mean inequality, we see that

1− (1−q)r−1

1−1/r

(
G′

n−1

A′
n−1

)(1−qn)r

+
(1−q)r−1− 1

r

1−1/r
A′r

n−1

�
(

G′
n−1

A′
n−1

)(1−qn)r2(1−(1−q)r−1)/(r−1)

·A′r2((1−q)r−1−1/r)/(r−1)
n−1 .

It follows that in order for (11) to be valid, it suffices to show that

G′
n−1 � A′1−((1−q)r−1−1/r)/((1−qn)(1−(1−q)r−1))

n−1 . (12)

Note first that the above inequality holds trivially when

1− (1−q)r−1−1/r
(1−qn)(1− (1−q)r−1)

� 0.

Thus, we may assume the left-hand side expression above is > 0. For any given qi ,
1 � i � n (and hence q ), we recast inequality (12) as

F(y1,y2, . . . ,yn−1) := G′
1−qn

2−qn−(1−1/r)/(1−(1−q)r−1)
n−1 −A′

n−1 � 0. (13)
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Inequality (13) holds trivially when n = 2. Assuming n � 3 and let a= (a1, . . . ,an−1)∈
[1,∞)n−1 be the point in which the absolute minimum of F is reached. We may assume
that 1 = a1 < a2 < .. . < an−1 . As the function x− xr is decreasing for 1/2 � x � 1, it
follows easily that

2(1−q)(1− (1−q)r−1) � 1−21−r � 1− 1
r
.

We then deduce that

qn−1

2−qn− (1−1/r)/(1− (1−q)r−1)
� 1. (14)

It follows that

lim
yn−1→∞

F = ∞.

Thus, a2, . . . ,an−1 must solve the equation

∇F = 0.

As it is easy to see that the above equation has only one root, it is enough to prove the
case n = 3. We write y = y2 � y1 = 1 to recast inequality (13) in this case as

v(y) := y
q2

2−q3−(1−1/r)/(1−(1−q)r−1) − q2

1−q3
y− q1

1−q3
� 0.

Again, by (14), we see that for y � 1,

v′(y) � q2

2−q3− (1−1/r)/(1− (1−q)r−1)
− q2

1−q3
� 0.

Thus, we have for y � 1,

v(y) � v(1) = 0.

This completes the proof of inequality (4).
Lastly, for the reversed inequality of (4) for 1/2 � r < 1, the proof is similar to

that of (4). Here it suffices to show that h(yn) � 0 for yn � A′
n−1 . Note first that in

this case we always have 1− rqn > 0. As limyn→∞ h(yn) � 0, we see that if h(yn) is
minimized at some yn = y > A′

n−1 , then we must have h′(y) = 0, which again allows
us to recast h(y) as the last expression in (9). As 1− r+ rqn � 0, we see that

h(y) � 1
(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′

n−1y
1−2r

× (
(1− r+ rqn)qnA

′
n−1− (1− rqn) (1−qn)A′

n−1

)−(1
r
− (1−q)r−1

)

= − 1−2qn

(2−qn)r

(
1− 1

r

)
(qny+(1−qn)A′

n−1)
r−3A′2

n−1y
1−2r −

(1
r
− (1−q)r−1

)
.
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It follows that h(y) � 0 when 1−2qn � 0. When 1−2qn > 0, we have (note that
r � 1/2)

h(y) �− 1−2qn

(2−qn)r

(
1− 1

r

)
A′r−3

n−1 ·A′2
n−1 ·A′1−2r

n−1 −
(1

r
− (1−q)r−1

)

=− 1−2qn

(2−qn)r

(
1− 1

r

)
A′−r

n−1−
(1

r
− (1−q)r−1

)

�− 1−2qn

(2−qn)r

(
1− 1

r

)
−

(1
r
− (1−q)r−1

)

�− 1−2q
(2−q)r

(
1− 1

r

)
−

(1
r
− (1−q)r−1

)
.

It is easy to show that the last expression above is � 0 as the function m(x) defined
in (10) is convex for 1/2 � x � 1 and m(1/2) � 0, m(1) � 0. Thus, it remains to
prove h(A′

n−1) � 0 and we omit the argument here as it is analogue to that of the case
1 < r � 2.

3. Proof of Theorem 2

We consider inequalities (5) with s = 0 being fixed throughout this section. Once
again we omit the discussions on the conditions for equality in each inequality we shall
prove. First note that as the right-hand side inequality of (5) for 0 < r � 1/2 and
1 � r � 2 follows from Theorem 1 and (6), we only need to prove it for 1/2 < r < 1.
We may assume that x1 = 1 < x2 < · · · < xn , qi > 0, 1 � i � n . Let

D(x1, · · · ,xn,q1, · · · ,qn) = Mn,r −Gn− r
2

σn.

To show D � 0, it suffices to show that

D1(x1, · · · ,xn,q1, · · · ,qn) :=
∂D

qn∂xn
= M1−r

n,r xr−1
n − Gn

xn
− r(xn−An) � 0.

When n � 3, we regard x1 = 1, xn as fixed and assume that D1 is maximized at some
point (x′;q′) = (x′1, · · · ,x′n,q′1, · · · ,q′n) with x′1 = x1 , x′n = xn . Then at this point we
must have

∂D1

∂xi

∣∣∣
(x′;q′)

= 0, 2 � i � n−1.

Thus, the x′i , 2 � i � n−1 are solutions of the equation:

d1(x) := (1− r)(Mn,r(x′;q′))1−2rxr−1
n xr−1− Gn(x′;q′)

xnx
+ r = 0.

As d′
1(x) = 0 has only one positive root, it follows from the mean value theorem that

the above equation can have at most two different positive solutions.
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On the other hand, by applying the method of Lagrange multipliers, we let

D̃1(x1, · · · ,xn,q1, · · · ,qn) = D1(x1, · · · ,xn,q1, · · · ,qn)−λ (
n

∑
i=1

qi−1),

where λ is a constant. Then at (x′;q′) we must have

∂ D̃1

∂qi

∣∣∣
(x′;q′)

= 0, 1 � i � n.

Thus, the x′i , 1 � i � n are solutions of the equation:

d2(x) :=
1− r

r
(Mn,r(x′;q′))1−2rxr−1

n xr − Gn(x′;q′)
xn

lnx+ rx−λ = 0.

As d′
2(x) = d1(x) , it follows from the mean value theorem that there is a solution of

d1(x) = 0 between any two adjacent x′i , x′i+1 , 1 � i � n− 1, as they are solutions of
d2(x) = 0. But when n � 3, we have at least x′2 as a solution of d1(x) = 0. This would
imply that d1(x) = 0 has at least three different positive solutions (for example, one in
between x′1 and x′2 , one in between x′2 and x′3 , and x′2 itself), a contradiction.

Thus, it suffices to show D1 � 0 for n = 2. In this case, we let 0 < q1 = q < 1,
q2 = 1−q , x1 = x > x2 = 1 (note that we no longer assume q = min{q1,q2} from now
on) to recast D1 as

D1(x,q) = (qxr +1−q)(1−r)/rxr−1 − xq−1− r(1−q)(x−1).

Note that

D2(x,q) := (1−q)−1D′
1(x,q) = (r−1)(q+(1−q)x−r)(1−2r)/rx−r−1 + xq−2− r.

As r − 1 < 0, it follows from the arithmetic-geometric mean inequality with non-
positive weights that

r−1
r

(q+(1−q)x−r)(1−2r)/rx−r−1 +
1
r
xq−2

�(q+(1−q)x−r)(1−2r)(r−1)/r2x(q−1−r2)/r

�1.

This implies that D′
1(x,q) � 0 and hence D1(x,q) � 0 for x � 1 and this completes the

proof for the right-hand side inequality of (5) for 1/2 < r < 1.
Next, note that

lim
q→0+

D(x,1,q,1−q)
q

=
xr −1

r
− lnx− r

2
(x−1)2.

As the right-hand side expression above is positive when r > 2 and x → +∞ , we then
conclude that in order for the right-hand side inequality of (5) for s = 0 to hold, it is
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necessary to have r � 2 and this completes the proof for the assertion on the right-hand
side inequality of (5) for s = 0.

Note we also have

lim
q→1−

D(x,1,q,1−q)
1−q

= x lnx− x− x1−r

r
− r

2
(x−1)2.

As the right-hand side expression above is negative when 0 < r < 1 and x → 0+ , we
conclude that in order for the left-hand side inequality of (5) for s = 0 to hold, we must
have r � 1. As [4, Lemma 3.1] implies that we also need to have r � 3 in this case, this
shows that it is necessary to have 1 � r � 3 in order for the left-hand side inequality of
(5) for s = 0 to hold.

It remains to prove the left-hand side inequality of (5) for s = 0, 1 � r � 3. Note
that the case 1 � r � 2 is a consequence of the left-hand side inequality of (6) and the
left-hand side inequality of (5) for s = 1, 1 < r � 2, valid according to [4, Theorem
3.2]. Thus, we may assume that 2 < r � 3. In this case, it suffices to show D � 0
provided that we assume 0 < x1 < x2 < · · · < xn = 1. Similar to our discussions above,
one shows easily that this follows from ∂D/∂x1 � 0 for n = 2, which is equivalent to
D1(x,q) � 0 for 0 < x � 1. As D1(1,q) = 0, it suffices to show that D2(x,q) � 0 for
0 < x � 1. As limx→0+ D2(x,q) > 0, D2(1,q) = 0, we only need to show the values of
D2 at points satisfying:

∂D2

∂x
= 0,

are non-negative.
Calculation shows that at these points, we have

(r−1)(qxr +1−q)(1−2r)/rxr−2 =
(qxr +1−q)(2−q)xq−2

−q(r+1)xr +(r−2)(1−q)
.

We may assume the denominator of the right-hand side expression above is positive.
Substituting this back to the expression for D2(x,q) , we see that it remains to show that
for 0 < x � 1,

(qxr +1−q)(2−q)xq−2

−q(r+1)xr +(r−2)(1−q)
+ xq−2− r � 0.

As xq−2 � 1 for 0 < x � 1, it suffices to show for 0 < x � 1,

(qxr +1−q)(2−q)xq−2

−q(r+1)xr +(r−2)(1−q)
� r−1.

We recast the above inequality as

j(x,q) := q(2−q)xr+q−2 +(1−q)(2−q)xq−2+q(r2−1)xr − (1−q)(r−1)(r−2)
� 0.
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Again as limx→0+ j(x,q) > 0, j(1,q) � 0 when 2 < r � 3, we only need to show the
values of j(x,q) at points satisfying:

∂ j
∂x

= 0,

are non-negative.
Calculation shows that at these points, we have

q(r2−1)xr =
(1−q)(2−q)2xq−2

r
− q(2−q)(r+q−2)xr+q−2

r
.

Substituting this back to the expression for j(x,q) , we see that it suffices to show that

j1(x,q) := (1−q)(2−q)(r+2−q)xq−2+q(2−q)2xr+q−2− (1−q)r(r−1)(r−2)
� 0.

One checks easily that limx→0+ j1(x,q) � 0 and that on setting y = 1−q , we have

j1(1,q) = (1−q)(2−q)(r+2−q)+q(2−q)2− (1−q)r(r−1)(r−2)

= 1+(r+2− r(r−1)(r−2))y+(r+1)y2 � 1− y+(r+1)y2 � 0,

as one checks that r +2− r(r−1)(r−2) is a decreasing function of 2 < r � 3, hence
is minimized at r = 3.

Thus, we only need to show the values of j1(x,q) at points satisfying:

∂ j1
∂x

= 0,

are non-negative.
Calculation shows that at these points, we have

q(2−q)2xr+q−2 =
(1−q)(2−q)2(r+2−q)xq−2

r+q−2
.

Substituting this back to the expression for j1(x,q) , we see that it suffices to show that
for 0 < x � 1,

(2−q)(r+2−q)xq−2

r+q−2
� (r−1)(r−2).

The above inequality is valid as one checks easily that when 2 < r � 3,

(2−q)(r+2−q)xq−2

r+q−2
� (2−q)(r+2−q)

r+q−2
� r+1

r−1
� (r−1)(r−2).

We now conclude that the left-hand side inequality of (5) is valid for s = 0, 2 < r � 3
and this completes the proof of the theorem.
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