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ON THE HARMONIC AND GEOMETRIC MAXIMAL OPERATORS

LINDEN ANNE DUFFEE AND KABE MOEN

(Communicated by J. Soria)

Abstract. We examine the harmonic and geometric maximal operators defined for a general
basis of open sets in R

n . We prove two weight norm inequalities for the harmonic maximal
operator assuming testing conditions over characteristic functions of unions of sets from the
basis. We also prove a that a bumped two weight Ap -like condition is sufficient for the two
weight boundedness of the harmonic maximal operator.

1. Introduction

We will study the harmonic maximal operator

M−1 f (x) = sup
Q�x

(
−
∫

Q
| f |−1

)−1

and the geometric maximal operator

M0 f (x) = sup
Q�x

exp

(
−
∫

Q
log | f |

)

where the notation −
∫
Q f denotes the average 1

|Q|
∫
Q f and the supremum is over all

cubes in R
n with sides parallel to the coordinate axes that contain the given point x .

Below we will be interested more general bases. In the definition of the harmonic max-
imal operator we will use the conventions that 1/0 = ∞ and 1/∞ = 0. The harmonic
and geometric maximal operators are related to the Hardy-Littlewood maximal opera-
tor in the same way that the harmonic, geometric, and arithmetic means are related: If
x1, . . . ,xn are positive numbers then

(
1
n

n

∑
k=1

x−1
k

)−1

� exp

(
1
n

n

∑
k=1

logxk

)
� 1

n

n

∑
k=1

xk.

The same inequalities hold for integral averages, and in particular, we have the point-
wise bound

M−1 f (x) � M0 f (x) � M f (x),

Mathematics subject classification (2010): 42B25, 42B35, 46E30.
Keywords and phrases: Maximal operators, weighted inequalities.

c© � � , Zagreb
Paper MIA-21-20

265

http://dx.doi.org/10.7153/mia-2018-21-20


266 L. A. DUFFEE AND K. MOEN

where M is the Hardy-Littlewood maximal operator

M f (x) = sup
Q�x

−
∫

Q
| f |.

A weight is a non-negative locally integrable function. Given p , 1 < p < ∞ , we
say that a weight belongs to the class Ap if

[w]Ap = sup
Q

(
−
∫

Q
w

)(
−
∫

Q
w− 1

p−1

)p−1

< ∞. (1)

The class A1 is the set of weights such that

Mw(x) � Cw(x) a.e. x.

Finally the class A∞ will be the union of all Ap class but can also be defined by the
constant

[w]A∞ = sup
Q

(
−
∫

Q
w

)
exp

(
−−
∫

Q
logw

)
< ∞. (2)

We will be interested in weighted estimates for the operators M−1 and M0 . The
study of such estimates was initiated by Shi [16] who proved that M0 was bounded on
Lp(w) for any p > 0 when w ∈ A∞ . Cruz-Uribe and Neugebauer [2] were the first to
study the harmonic maximal operator. Actually, they were interested in the minimal
operator:

m f (x) = inf
Q�x

−
∫

Q
| f | .

However, Cruz-Uribe [1] points out that the minimal operator is simply the harmonic
maximal operator in disguise:

M−1 f = m(| f |−1)−1.

We now state the results in [2] recast in terms of the harmonic maximal operator.

THEOREM 1. ([2]) Given a weight w and 0 < p < ∞ , the following are equiva-
lent:

(i) w ∈ A∞ ;

(ii) the operator is of weak-type (p, p)

w({x ∈ R
n : M−1 f (x) > λ}) � C

λ p

∫
Rn

| f |pw ;

(iii) the operator is of strong-type (p, p) ,∫
Rn

(M−1 f )pwdx � C
∫

Rn
| f |pw .
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Two weight norm inequalities are significantly more difficult to prove for the op-
erators M−1 and M0 . One reason is that the covering techniques break down for the
geometric and harmonic averages. Because of this, the best results are one dimensional
results. Working on the real line, Cruz-Uribe, Neugebauer, and Olesen [4] were able to
prove the following theorem.

THEOREM 2. ([4]) Given a pair of weights (u,v) and 0 < p < ∞ let σ = v
1

p+1 .
The following are equivalent

(i) the pair of weights satisfies

−
∫

I
u � C

(
−
∫

I
σ
)p+1

for all intervals I ;

(ii) the operator satisfies the weak-type inequality

u({x ∈ R : M−1 f (x) > λ}) � C
λ p

∫
R

| f |pv ;

(iii) the operator satisfies the strong-type inequality∫
R

(M−1 f )pu � C
∫

R

| f |pv ;

(iv) the operator satisfies the testing condition∫
I
(M−1(σ−1

�I))pu � C
∫

I
σ

for all intervals I .

A remarkable aspect of Theorem 2 is that the two weight Ap -like condition (for-
mally an A−p condition) is sufficient for the strong type boundedness. This is in stark
contrast to the two weight results for the geometric and Hardy-Littlewood maximal
functions.

Yin and Muckenhoupt [17] studied two weight norm inequalities for M0 proving
the following one dimensional results. Alternatively, Cruz-Uribe and Neugebauer [3]
were able to prove two weight norm inequalities for M0 on the real line by approximat-
ing M0 from below with the operators

M−r f (x) = sup
Q�x

(
−
∫

Q
| f |−r

)− 1
r

,

as r → 0+ . By taking a limiting argument in Theorem 2 they were able to obtain the
following results, again on the real line.
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THEOREM 3. ([3], [17]) Suppose (u,v) is a pair of weights defined on R and
0 < p < ∞ . Then the weak-type norm inequality

u({x ∈ R : M0 f (x) > λ}) � C
λ p

∫
R

| f |pv

holds for f ∈ Lp(v) if and only if the pair (u,v) satisfies the two weight A∞ condition

sup
I

(
−
∫

I
u

)
exp

(
−−
∫

I
logv

)
< ∞.

Moreover, the strong-type inequality∫
R

(M0 f )pu � C
∫

R

| f |pv

holds if and only if the testing condition∫
I
M0(v−1

�I)u � C|I|

holds for all intervals I .

We notice that the condition on the weights does not depend on p : this is to be
expected since M0( f )p = M0( f p) for f � 0.

When extending these results to higher dimensions or more general contexts one
has to overcome serious difficulties. One way to accomplish this is to assume doubling
conditions on the weights. A measure is doubling if

μ(2Q) � Cμ(Q)

for every cube Q (here 2Q is the concentric cube with twice the sidelength of Q).
The smallest such C will be called the doubling constant of μ and will be denoted
d(μ) . We can now state the higher dimensional results for M−1 and M0 both due to
Cruz-Uribe [1].

THEOREM 4. ([1]) Suppose 0 < p < ∞ and (u,v) is a pair of weights such that

either u or σ = v
1

p+1 is a doubling weight. The following four conditions are equivalent

(i) the pair of weights satisfies

−
∫

Q
u � C

(
−
∫

Q
σ
)p+1

for all cubes Q in R
n ;

(ii) the operator satisfies the weak-type inequality

u({x ∈ R
n : M−1 f (x) > λ}) � C

λ p

∫
Rn

| f |pv ;
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(iii) the operator satisfies the strong-type inequality∫
Rn

(M−1 f )pu � C
∫

Rn
| f |pv ;

(iv) the operator satisfies the testing condition∫
Q
(M−1(σ−1

�Q))pu � C
∫

Q
σ

for all cubes Q.

This situation is even worse for the geometric maximal operator. In this case the
weight σ which depends on p must have a bounded doubling constant as p → ∞ in
order for the strong two weight norm inequalities to hold.

THEOREM 5. ([1]) Suppose 0 < p < ∞ and (u,v) is a pair of weights such that

either the weight u is doubling or the weight σq = v
1

q+1 is a doubling weight for all
sufficiently large q and

limsup
q→∞

2−nqd(σq)p+1 < ∞.

Then the weak-type inequality

u({x ∈ R
n : M0 f (x) > λ}) � C

λ p

∫
Rn

| f |pv

holds for f ∈ Lp(v) if and only if the pair of weights satisfies the two weight A∞ con-
dition

sup
Q

(
−
∫

Q
udx

)
exp

(
−−
∫

Q
logv

)
< ∞

where the supremum is over all cubes in R
n .

THEOREM 6. ([1]) Suppose 0 < p < ∞ and (u,v) is a pair of weights such that

the weight σq = v
1

q+1 is a doubling weight for all sufficiently large q and

limsup
q→∞

d(σq) < ∞.

Then the strong-type inequality∫
Rn

M0 f pu � C
∫

Rn
| f |pv

holds for f ∈ Lp(v) if and only if the pair of weights satisfies the testing condition∫
Q
(M0(v−1

�Q))pu � C|Q|

holds for all cubes in R
n .
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2. Preliminaries and main results

We will study the harmonic and geometric operators with respect to a general basis
of open sets. By a basis we mean a collection B of bounded open sets in R

n . The most
well known bases are the following:

(i) B = Q , the basis of all cubes with sides parallel to the axes;

(ii) B = D , the basis of all dyadic cubes from a fixed dyadic grid;

(iii) B = R , the basis of all rectangles.

We define Hardy-Littlewood maximal operator with respect to a general basis as

MB f (x) = sup
B∈B
x∈B

−
∫

B
| f | .

The classes AB
p and AB

∞ will denote the Ap and A∞ classes with respect the basis B .
They are defined similarly to (1) and (2) except with the supremum over all sets from
the basis B instead of the Q . We say that a weight satisfies condition A if there exists
constants 0 < α < 1 and c = c(α) such that

w({x ∈ R
n : MB(�E)(x) > α}) � cw(E) (3)

for all measurable sets E . Condition A was introduced in [15] and can be thought of
as a restricted weak-type inequality. It was believed to be weaker than AB

∞ , however,
recently in [7] (see also [8] and [9]) it is shown that condition A is equivalent to AB

∞
for several bases such as R . We also refer readers to the manuscript [5] for other
equivalent definitions of AB

∞ . Finally, we say that B is a Muckenhoupt basis if for
each p , 1 < p < ∞ and every w ∈ AB

p , MB is bounded on Lp(w) . Pérez [15] proved
that B is a Muckenhoupt basis if and only if for each p , 1 < p < ∞ , and w ∈ AB

∞ the
weighted maximal operator

MB
w f (x) = sup

B∈B
x∈B

1
w(B)

∫
B
| f |w ,

is bounded on Lp(w) .
The study of MB goes back to Zygmund who proved bounds for the basis of

rectangles. Jawerth [12] gave a systematic study of the one weight and two weight
inequalities for the Hardy-Littlewood maximal operator with respect to a general basis.
We will use the convention to tuck the weight into the operator. Namely the inequality∫

Rn
(MB f )pu � C

∫
Rn

| f |pvdx

is equivalent to the inequality∫
Rn

MB( fσ)pu � C
∫

Rn
| f |pσ (4)
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where σ = v1−p′ . The advantage is that the latter inequality make sense for general
measures σ . Notice that inequality (4) is equivalent to the maximal operator MB(σ ·)
being bounded from Lp(σ) to Lp(u) .

THEOREM 7. ([12]) Suppose 1 < p < ∞ , B is a basis, and (u,σ) is a pair of
weights such that MB

σ : Lp(σ) → Lp(σ) . Then the following inequality∫
Rn

MB( fσ)pu � C
∫

Rn
| f |pσ dx

holds for all f ∈ Lp(σ) if and only if the testing condition∫
F

MB(�Fσ)p u � Cσ(F)

holds for all finite unions F of sets in B .

In general the two weight Ap condition

sup
B∈B

(
−
∫

B
u

)1/p(
−
∫

B
σ
)1/p′

< ∞,

is necessary but not sufficient for the boundedness MB : Lp(v)→ Lp(u) . Pérez showed
a stronger condition, one made by bumping up the average on σ , is sufficient for the
two weight boundedness of MB . Pérez [14] proved the following two weight bump
result in the vein of this paper.

THEOREM 8. ([14]) Suppose 1 < p < ∞ and B is a basis such that MB is
bounded on Ls(Rn) for all 1 < s < ∞ . If (u,σ) is a pair of weights such that u satisfies
condition A and there exists r > 1 such that the bumped Ap condition

sup
B∈B

(
−
∫

B
u

)1/p(
−
∫

B
σ r
)1/rp′

< ∞

holds, then the inequality ∫
Rn

MB( fσ)pudx � C
∫

Rn
| f |pσ

holds for all f ∈ Lp(σ) .

Given a basis B , define the harmonic and geometric maximal operators as

MB
−1 f (x) = sup

B∈B
x∈B

(
−
∫

B
| f |−1

)−1

and

MB
0 f (x) = sup

B∈B
x∈B

exp

(
−
∫

B
log | f |

)
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respectively. Again we use the convention that 1/0 = ∞ and we define MB
−1 f (x) =

MB
0 f (x) = 0 if x /∈⋃B∈B B . Given a weight, w , define the harmonic maximal operator

with respect to B and w by

MB
−1,w f (x) = sup

B∈B
x∈B

(
1

w(B)

∫
B
| f |−1w

)−1

.

We are now ready to state our main results. Again we notice that the inequality∫
Rn

(MB
−1 f )pu � C

∫
Rn

| f |pv

is equivalent to the inequality∫
Rn

MB
−1( fσ−1)(x)pu � C

∫
Rn

| f |pσ (5)

when σ = v
1

p+1 . Inequality (5) says that the operator MB
−1(σ−1 ·) is bounded from

Lp(σ) to Lp(u) . Our first result is a testing characterization that parallels earlier results
in [12].

THEOREM 9. Suppose (u,σ) is a pair of weights and p is an exponent with 0 <
p < ∞ . Suppose further that MB

−1,σ is bounded on Lp(σ) . Then

MB
−1(σ

−1 ·) : Lp(σ) → Lp(u)

if and only if there exists a constant C such that∫
F

MB
−1(σ

−1
�F)pu � Cσ(F),

for all F such that F is a finite union of sets in B .

The assumption MB
−1,σ be bounded on Lp(σ) is not a strong assumption. Indeed

MB
−1,σ f is bounded by MB

σ (| f |r)1/r for any r > 0. Thus the hypothesis of Theorem

9 will be satisfied if the maximal operator MB
σ is bounded on Lp(σ) for large p . In

particular if σ belongs to A∞ and B is a Muckenhoupt basis then the assumption is
satisfied (Pérez [15]).

Our next result is a sufficient bump condition for the harmonic maximal operator.

THEOREM 10. Suppose that 0 < p < ∞ , (u,σ) is a pair of weights, and B is a
basis such that MB is bounded on Ls(Rn) for 1 < s < ∞ . If u satisfies condition A
and there exists r , 0 < r < 1 such that (u,σ) satisfies

(
−
∫

B
u

)
� C

(
−
∫

B
σ r
) p+1

r



ON THE HARMONIC AND GEOMETRIC MAXIMAL OPERATORS 273

for all B ∈ B and some constant C , then
∫

Rn
MB

−1( fσ−1)pu � C
∫

Rn
| f |pσ

for all f ∈ Lp(σ) .

The bump condition for MB
−1 requires a power r < 1 instead of r > 1. This is due

to the nature of the weighted constant on (u,σ) with σ being on the right side of the
inequality.

It is unclear how to extend these results to the geometric maximal operator. One
obstacle of extending Theorem 9 is the fact that it uses the boundedness of the weighted
harmonic maximal operator MB

−1,σ . We remark that we do not know how to extend this
result to the geometric maximal operator because it is unclear how to take a limit of the
bump condition.

We do show MB
0 can be approximated from below with the operators

MB
−r f = MB

−1(| f |r)
1
r , r > 0.

In fact, if we define
MB

0− f = lim
r→0+

MB
−r f

then we have the following lemma.

LEMMA 1. Suppose f is a non-negative measurable function on a fixed cube Q0 ,
possibly of infinite measure, such that f−1 belongs to Lr

loc(Q0) for some r > 0 . Then
for all x ∈ R

n

MB
0−( f�Q0 )(x) = MB

0 ( f�Q0)(x).

The plan of the paper is as follows. In Section 3 we will prove the two weight test-
ing characterizations, Theorems 9 and Lemma 1. In Section 4 we will prove Theorem
10. We will end with Section 5 and some observations for the basis of dyadic cubes.

3. Two weight testing conditions

Our proof of Theorem 9 will follow the original proof of Jawerth for the maximal
operator associated to B , which uses a discretization of the operator MB

−1 .

Proof of Theorem 9. For the moment we will assume that f is a non-negative
function, supported on a fixed cube Q0 , and is bounded above on that cube. We will also
momentarily assume that σ is bounded below. These assumption ensure that averages
of the form

−
∫

B
f−1σ

are always non zero if B ∈ B and satisfies B ⊂ Q0 . We will remove these restrictions
at the end of the proof. First notice that if λ > 0 and MB

−1( fσ−1)(x) > λ then there
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exists B ∈ B such B ⊂ Q0 and (
−
∫

B
f−1σ

)−1

> λ . (6)

Indeed, by the definition of the MB
−1( fσ−1)(x) there exists B ∈ B that satisfies (6).

Moreover, B ⊂ Q0 because if not then(
−
∫

B
f−1σ

)−1

= |B|
(∫

B∩Q0

f−1σ +
∫
B\Q0

f−1σ
)−1

= 0.

Let
Ωk = {x ∈ Q0 : 2k < MB

−1( fσ−1)(x) � 2k+1}.
From the definition of MB

−1 we have that if Ωk �= ∅ then Ωk ⊂ ⋃ j B
k
j where Bk

j ∈ B ,

Bk
j ⊂ Q0 , and satisfying (

−
∫

Bk
j

f−1σ

)−1

> 2k.

Set Ek
1 = Bk

1∩Ωk and for j > 1 set

Ek
j =
(
Bk

j\
j−1⋃
i=1

Bk
i

)
∩Ωk.

Then the sets {Ek
j} j,k are pairwise disjoint and Ωk =

⋃
j E

k
j . We are now ready to

estimate ‖MB
−1( fσ−1)‖Lp(u) . We have∫

Rn
MB

−1( fσ−1)pu = ∑
k

∫
Ωk

MB
−1( fσ−1)pu

� 2p∑
j,k

2kpu(Ek
j )

� 2p∑
j,k

(
−
∫

Bk
j

f−1σ

)−p

u(Ek
j )

= 2p∑
j,k

(
1

σ(Bk
j)

∫
Bk

j

f−1σ

)−p

u(Ek
j )

(
|Bk

j|
σ(Bk

j)

)p

On the measure space X = N×Z define the function

F( j,k) =

(
1

σ(Bk
j)

∫
Bk

j

f−1σ

)−p

and the measure

μ( j,k) = u(Ek
j )

(
|Bk

j|
σ(Bk

j)

)p

.
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Then we have∫
Rn

MB
−1( fσ−1)pu � 2p

∫
X

F dμ = 2p
∫ ∞

0
μ({( j,k) ∈ X : F( j,k) > λ})dλ .

Given λ > 0 and N ∈ N set

ΓN(λ ) = {( j,k) ∈ X : j + |k|� N,F( j,k) > λ} and GN(λ ) =
⋃

( j,k)∈ΓN(λ )

Bk
j,

so that ΓN(λ ) is a finite union of sets in B . Then by the testing condition

μ(ΓN(λ )) = ∑
( j,k)∈ΓN(λ )

u(Ek
j )

(
|Bk

j|
σ(Bk

j)

)p

� ∑
( j,k)∈Γ(λ )

∫
Ek

j

MB
−1(�GN (λ )σ−1)pu

�
∫

G(λ )
MB

−1(�GN (λ )σ−1)pu

� Cσ(GN(λ )).

Moreover, if x ∈ GN(λ ) then x ∈ Bk
j for some j and k with

λ <

(
−
∫

Bk
j

f−1σ

)−p

� MB
−1,σ f (x)p,

which is to say that
GN(λ ) ⊂ {x : (MB

−1,σ f )p > λ}.
Letting N → ∞ we have

μ({( j,k) ∈ X : F( j,k) > λ}) � Cσ({x : (MB
−1,σ f )p > λ}).

Combining this calculation with the previous estimates we have∫
Rn

MB
−1( fσ−1)pu � C

∫ ∞

0
σ({x : MB

−1( fσ−1)p > λ})dλ

= C
∫

Rn
(MB

−1,σ f )pσ � C
∫

Rn
f pσ

where we used the assumption MB
−1,σ : Lp(σ) → Lp(σ) . To remove the assumptions

on f and σ assume that f ∈ Lp(σ) and f � 0. Notice that the inequality∫
Rn

MB
−1( fσ−1)pu � C

∫
Rn

f pσ , f � 0

is equivalent to ∫
Rn

(MB
−1 f )pu � C

∫
Rn

f pv, f � 0



276 L. A. DUFFEE AND K. MOEN

where v = σ p+1 . Since v > 0 and f is bounded and supported on a cube we have∫
Rn

(MB
−1 f )pu � C

∫
Rn

f pv.

Given N ∈ N let QN = [−N,N]n and let

fN =
(1

f
+

1
N

)−1
�QN

and
vN = σ p+1 +N−p−n−1.

Then, if σN = v1/(p+1)
N we have σN � σ and σN is bounded below. Given any finite

union of sets in our basis, F , we have∫
F

MB
−1(�Fσ−1

N )pu �
∫

F
MB

−1(�Fσ−1)pu � C
∫

F
σ � C

∫
F

σN .

In particular, σN satisfies the testing condition with the same constant as σ . We now
make some observations about fN . First, clearly fN is supported on the cube cube
QN . Second, fN � min( f ,N) so fN is bounded above. Finally, the sequence fN is
increasing since it is zero off QN , and on QN we have

1
fN+1

=
1
f

+
1

N +1
� 1

f
+

1
N

=
1
fN

.

Then fN and σN satisfies the restricted hypothesis at the beginning of the proof, so we
have for v = σ p+1

∫
Rn

MB
−1( fN)pu � C

∫
QN

f p
NvN � C

∫
Rn

f pv+C
∫
QN

NpN−p−n−1 � C
∫

Rn
f pv+

C
N

.

Since fN is an increasing sequence we also have that MB
−1( fN) is an increasing se-

quence and since fN � f we have

lim
N

MB
−1( fN) � MB

−1( f ).

On the other hand let ε > 0 and x ∈ R
n . Then there exists B ∈ B such that x ∈ B and

MB
−1 f (x)− ε <

(
−
∫

B
f−1
)−1

.

If −
∫
B f−1 = ∞ then

MB
−1( f )(x)− ε � 0 � MB

−1( fN)(x).

Otherwise, f > 0 on B and since B is bounded we have that B ⊂ QN for N large and

−
∫

B

1
f

= −
∫

B

1
fN

− 1
N

�
(

inf
B�x

−
∫

B

1
fN

)
− 1

N
= [MB

−1( fN)(x)]−1 − 1
N

.
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Letting N → ∞ we have

−
∫

B

1
f

� lim
N

[MB
−1( fN)(x)]−1.

Then
MB

−1 f (x)− ε � lim
N

MB
−1( fN)(x),

and since ε > 0 we have that the sequence MB
−1( fN) increases to MB

−1 f . By the mono-
tone convergence theorem ∫

Rn

(MB
−1 f )pu � C

∫
Rn

f pv

with v = σ p+1 , which is equivalent to the desired inequality. �

Proof of Lemma 1. By Jensen’s inequality we have

lim
r→0+

MB
−r( f�Q0)(x) � MB

0 ( f�Q0 )(x).

On the other hand if x /∈ Q0 then

lim
r→0+

MB
−r( f�Q0)(x) = MB

0 ( f�Q0)(x) = 0.

Let x ∈ Q0 and ε > 0, then we may assume that there exists B ∈ B with x ∈ B such
that B ⊂ Q0 and

M0( f�Q0)(x)− ε < exp

(
−
∫

B
log | f |

)
.

If no such B exists then again both MB
0 f (x) and limr→0+ MB−r f (x) are zero. Now we

have

M0( f�Q0)(x)− ε < exp

(
−
∫

B
log | f |

)
=
[
exp

(
−
∫

B
log | f |−1

)]−1

=

[
lim

r→0+

(
−
∫

B
| f |−r

) 1
r
]−1

= lim
r→0+

(
−
∫

B
| f |−r

)− 1
r

� lim
r→0+

MB
−r(�Q0 f )(x). �

4. Two weight bump conditions

We would like to use the same techniques in Theorem 9 to prove Theorem 10.
However, one of the main difficulties is that we have no control over the size of the
disjoint sets Ek

j . It is here that we use condition A on the weight u (see inequality (3)).
We begin with a lemma whose proof can be found in [6].
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LEMMA 2. Let B be a basis and w a weight associated to this basis. Suppose
further that w satisfies condition A with constants 0 < α < 1 and c = c(α) . Then given
any finite sequence {Ai}M

i=1 of sets B , we can find a subsequence {Ãi}i∈I of {Ai}M
i=1

such that the following hold: for each 1 � i < j � M we have

(i) for each i ∈ I ∣∣∣Ãi ∩
⋃
s∈I
s<i

Ãs

∣∣∣� α|Ãi|,

(ii) for each 1 � i < j � M +1

u
( ⋃

1�s< j

As

)
� c

⎡
⎢⎣u
( ⋃

1�s<i

Ai

)
+u
( ⋃

s∈I
i�s< j

Ãs

)⎤⎥⎦

We are now ready to prove Theorem 10.

Proof of Theorem 10. We will assume again that f is supported on a cube and
that f is a bounded function on that cube and that σ is bounded below. The limiting
argument presented in the proof of Theorem 9 will allow us to pass to general f ∈
Lp(σ) . Since f is a bounded function with compact support we have that MB

−1( fσ−1)
is bounded and hence finite a.e. Fix N ∈ N , we shall estimate∫

{x:2−N<MB−1 f (x)�2N+1}
MB

−1( fσ−1)pu.

Our estimates will not depend on N so a limiting argument will allow us to obtain all
of R

n .
For each k ∈ Z with |k| � N , we can find a compact

Kk ⊆ {x ∈ R
n : MB

−1( fσ−1)(x) > 2k}
and

u({x ∈ R
n : MB

−1( fσ−1)(x) > 2k}) � 2u(Kk).

We will now use a selection process from [6] (see also [12] and [13]). In [6] the
selection process was carried out for the basis R but the same procedure works for a
general basis. We repeat the details here for the convenience of the the reader. For each
|k| � N there exists a finite collection of sets in B , {Bk

j} j that cover Kk and satisfy

(
1

|Bk
j|
∫

Bk
j

f−1σ

)−1

> 2k.

For convenience, we set bk = {Bk
j} j if |k| � N and bk = ∅ if |k| > N . Also set and

Ωk =

{⋃
s�k
⋃

j B
s
j when |k| � N

∅ when |k| > N.
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Observe that these sets are decreasing in k , i.e., Ωk+1 ⊂ Ωk . We will now rearrange
the sets in the bk ’s into a double indexed sequence {Ai(l)}i�1,1�l�μ where μ is a
large number to be chosen later. Set i0(0) = 1. Let i1(0)−1 be the number of sets in
bN = {BN

j } j and define

Ai(0) = BN
i , i0(0) = 1 � i < i1(0).

Next, let i2(0)− i1(0) be the number of sets in bN−μ = {BN−μ
j } j and set

Ai(0) = BN−μ
i , i1(0) = 1 � i < i2(0).

Continue this process we reach the first integer m0 such that N− (m0 +1)μ < −N . At
this point we let

Ai(0) = BN−m0μ
i , im0 � i < im0+1(0).

Define the sequence {Ai(1)}i to be first the sets of bN−1 = {BN−1
j } j followed by the

sets of bN−1−μ and continue until the first integer m1 such that N − 1− (m1 + 1)μ <
−N. Finally, continue this process until the sets of all of the bk ’s are exhausted.

Since u satisfies condition A we can apply Lemma 2 to each {Ai(l)}i�1 for a fixed
α to obtain sequences

{Ãi(l)}i�1 ⊂ {Ai(l)}i�1, 0 � l � μ −1,

From the definition of the set Ωk and the construction of the families {Ai(l)}i�1 , we
can use Lemma 2 to obtain

u(Ωk) � c

⎡
⎣u(Ωk+μ)+u

⎛
⎝ ⋃

iml (l)�i<iml+1(l)

Ãi(l)

⎞
⎠
⎤
⎦� cu(Ωk+μ)+c

iml+1(l)−1

∑
i=iml (l)

u(Ãi(l))

if k = N − l −mμ . It suffices to consider these indices k because the sets Ωk are
decreasing.

The sets {Ãi(l)}iml+1(l)−1

i=iml (l)
belong to bk with k = N− l−mμ and therefore

(
−
∫

Ãi(l)
f−1σ

)−1

> 2k.

By Lemma 2 we have

∫
{2−N<MB−1 f�2N+1}

MB
−1( fσ−1)pu � ∑

k

2kpu(Ωk)

� ∑
k

2kpu(Ωk+μ)+
μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

u(Ãi(l))
(
−
∫

Ãi(l)
f−1σ

)−p

.
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Since the sum ∑k 2kpu(Ωk) is finite and ∑k 2kpu(Ωk+μ) � 2−pμ ∑k 2kpu(Ωk) we may
choose μ large enough to ignore the first summation. For the other term we have

μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

u(Ãi(l))
(

1

|Ãi(l)|
∫

Ãi(l)
f−1σ

)−p

� ∑
l,i

(
−
∫

Ãi(l)
f−1σ

)−p

|Ãi(l)|
(
−
∫

Ãi(l)
σ r
) p+1

r

.

Consider (−
∫
B σ r)

p+1
r for a general B ∈ B . Using Holder’s inequality with

s =
p+1
rp

and s′ =
p+1

p+1− rp

we find that

(
1
|B|
∫

B
σ r
) p+1

r

=
(

1
|B|
∫

B
σ r( fσ−1)

1
s ( fσ−1)−

1
s

) p+1
r

�
(

1
|B|
∫

B

(
σ r( fσ−1)

1
s

)s′
) p+1

rs′
(

1
|B|
∫

B
( fσ−1)−

s
s

) p+1
rs

=
(

1
|B|
∫

B
( f

s′
s σ rs′− s′

s )
) p+1

rs′
(

1
|B|
∫

B
f−1σ

)p

=
(
−
∫

B
( f pσ)

rs′
p+1

) p+1
rs′
(

1
|B|
∫

B
f−1σ

)p

(7)

where we have used the calculations

s′

s
= s′

rp
p+1

= p
rs′

p+1
, and rs′ − s′

s
= s′

(
r− 1

s

)
=

rs′

p+1
.

Letting

t =
p+1
rs′

=
p+1− rp

r
> 1

and using inequality (7) we obtain

∫
{2−N<MB−1 f�2N+1}

MB
−1( fσ−1)pu �

μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

(
−
∫

Ãi(l)
f−1σ

)−p

|Ãi(l)|
(
−
∫

Ãi(l)
σ r
) p+1

r

�
μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

(
−
∫

Ãi(l)
( f pσ)

1
t

)t

|Ãi(l)|.

For each l let E1(l) = Ã1(l) and Ei(l) = Ãi(l)\⋃s<i Ãs(l) for i > 1. Then the sets
{Ei(l)} are pairwise disjoint and using property (i) of Lemma 2 we have that |Ai(l)| �
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c|Ei(l)| . Continuing with the estimates we have

μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

(
−
∫

Ãi(l)
( f pσ)

1
t

)t

|Ãi(l)| �
μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

(
−
∫

Ãi(l)
( f pσ)

1
t

)t

|Ei(l)|

�
μ−1

∑
l=0

im+1(l)−1

∑
i=im(l)

∫
Ei(l)

MB
(
( f pσ)

1
t
)t

�
∫

Rn
MB

(
( f pσ)

1
t
)t �

∫
Rn

f pσ

where we used that the sets {Ei(l)} are pairwise disjoint and the maximal function MB

is bounded on Lt for t > 1. This completes the proof of Theorem 10. �

5. Dyadic grids

We consider the specific case of our maximal operators working over a general
dyadic grid D . A dyadic grid is a collection of cubes that satisfy the following proper-
ties:

• if Q ∈ D then �(Q) = 2k for some k ∈ Z ;

• if Q,P ∈ D , then Q∩P ∈ {∅,Q,P} ;

• for each fixed k ∈ Z the set Dk = {Q ∈ D : �(Q) = 2k} is a partition of R
n .

The standard dyadic grid consists of cubes Q , open on the right, whose vertices are
adjacent points of the lattice (2−k

Z)n . Technically, a dyadic grid is not a basis since
its members are not open sets. However, we will treat the dyadic grid D as a basis,
since the boundary of a cube has measure zero. Given a dyadic grid D we define our
respective operators accordingly:

MD
−1 f (x) = sup

Q∈D
x∈Q

(
−
∫

Q
| f |−1

)−1

and

MD
0 f (x) = sup

Q∈D
x∈Q

exp

(
−
∫

Q
log | f |

)
.

It was stated in [1, Section 1.4] that the doubling assumptions may be removed
in higher dimensions if the harmonic and geometric maximal operators are changed to
dyadic versions. In [1] it is left to the reader to complete the details. We now provide the
details for the results in [1] for the dyadic harmonic and geometric maximal operators
in higher dimensions without doubling assumptions on the weights. Previously, the
only known higher dimensional results that did not require doubling assumptions on
the weights were for the centered harmonic operator [1, Theorem 1.7].
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THEOREM 11. Let p be an exponent satisfying 0 < p < ∞ and (u,σ) be a pair
of weights. Then the following are equivalent

(i) the pair of weights (u,σ) satisfies

−
∫

Q
u � C

(
−
∫

Q
σ
)p+1

for all cubes Q ∈ D;

(ii) the operator MD
−1 satisfies the weak-type inequality

u({x ∈ R
n : MD

−1( fσ−1)(x) > λ}) � C
λ p

∫
Rn

| f |pσ ;

(iii) the operator MD
−1 satisfies the strong-type inequality∫

Rn
MD

−1( fσ−1)pu � C
∫

Rn
| f |pσ ;

(iv) the operator MD
−1 satisfies the testing condition∫

Q
(MD

−1(�Qσ−1))pu � C
∫

Q
σ

for all cubes Q ∈ D .

The removal of the doubling condition relies wholly on a specific geometric prop-
erty of the cubes in D . The property is that any two cubes in D are either nested or
disjoint. This well-known property allows us to use the universal maximal operators
with respect to a weight σ :

MD
−1,σ f (x) = sup

Q∈D
x∈Q

(
1

σ(Q)

∫
Q
| f |−1σ

)−1

and

MD
0,σ f (x) = sup

Q∈D
x∈Q

exp

(
1

σ(Q)

∫
Q
(log | f |)σ

)
.

Finally we introduce one more limiting operator:

MD
0+,σ f = lim

r→0+
MD

r,σ f = lim
r→0

MD
σ (| f |r) 1

r .

It is clear that for any power r > 0 we have

MD
−r,σ f � MD

0−,σ f � MD
0,σ f � MD

0+,σ f � MD
r,σ .

We will make use of the following lemma from Hytönen and Pérez [10, Lemma 2.1].
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LEMMA 3. Let σ be a weight and 0 < p < ∞ . Then MD
0+,σ is bounded on Lp(σ)

and

‖MD
0+,σ‖Lp(σ)→Lp(σ) � e

1
p .

Proof of Theorem 11. We will prove that (iv) implies (iii) and (i) implies (iv), the
other implications follow from standard arguments (see [1]). First we will prove (iv)
implies (iii). Again we will suppose that f is supported on a fixed cube and f > 0 on
that cube Q0 . For each integer k , let Ak = {x ∈ R

n : 2k < MD
−1 f (x) � 2k+1} . Let Sk

be the set of cubes Q ∈ D that are maximal with respect to inclusion and satisfy

2k <

(
−
∫

Q
f−1
)−1

.

Then each Q in Sk is contained in Q0 and we also have Ak ⊂ ⋃
Q∈Sk

Q . Define
S =

⋃
k Sk . Moreover, given Q ∈Sk define E(Q) = Q∩Ak . Since the cubes Q ∈ Sk

are disjoint for each k and the families Ak are disjoint in k , the family {E(Q)}Q∈S

will be pairwise disjoint and satisfy Ak =
⋃

Q∈S k E(Q).
Then we have

∫
Rn

(
MD

−1( fσ−1)
)p

udx = ∑
k

∫
Ak

(
MD

−1 f
)p

udx

� ∑
k

u(Ak)2p(k+1) � ∑
Q∈S

(
−
∫

Q
f−1σ

)−p

u(E(Q))

= ∑
Q∈S

(
1

σ(Q)

∫
Q

f−1σ
)−p( |Q|

σ(Q)

)p

u(E(Q))

=
∫ ∞

0
μ({Q ∈ S : F(Q) > λ})dλ

where for Q ∈ S ,

μ(Q) =
( |Q|

σ(Q)

)p

u(E(Q)), and F(Q) =
(

1
σ(Q)

∫
Q

f−1σ
)−p

.

We have ⋃
Q∈S

F(Q)>λ

Q ⊂ {x : MD
−1,σ f (x) > λ}.

Moreover, if we let {Qi} be the set of maximally dyadic cubes in the set {Q ∈ S :
F(Q) > λ} then this will for a pairwise disjoint set. Using the testing condition (iv) we
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see that∫ ∞

0
μ({Q ∈ S : F(Q) > λ})dλ

=
∫ ∞

0
∑

Q∈S
F(Q)>λ

μ(Q)dλ =
∫ ∞

0
∑

Q∈S
F(Q)>λ

( |Q|
σ(Q)

)p

u(E(Q))dλ

=
∫ ∞

0
∑
i

∑
Q∈S
Q⊆Qi

( |Q|
σ(Q)

)p

u(E(Q))dλ �
∫ ∞

0
∑
i

∑
Q∈S
Q⊆Qi

(∫
E(Q)

MD
−1(�Qiσ

−1)pu

)
dλ

�
∫ ∞

0
∑
i

σ(Qi)dλ =
∫ ∞

0
σ({x : MD

−1,σ f (x) > λ})dλ

=
∫

Rn
(MD

−1,σ f )p σ �
∫

Rn
f pσ .

The limiting argument to remove the support condition finishes the proof of (iv) implies
(iii). We have also used the fact that MD

−1,σ is bounded on Lp(σ) (see Lemma 3). We
now prove that (i) implies (iv). Let Q ∈ D , we may assume σ(Q) > 0, since otherwise
by (i) we have u(Q) = 0. For each λ > 0 let

Eλ = {x ∈ Q : MD
−1(�Qσ−1)(x) > λ}.

Furthermore, let R = |Q|
σ(Q) . Then

∫
Q

MD
−1(�Qσ−1)pu = p

∫ R

0
λ p−1u(Eλ )dλ + p

∫ ∞

R
λ p−1u(Eλ )dλ

= I + II

The first term is easy to estimate:

I = p
∫ R

0
λ p−1u(Eλ )dλ � u(Q)

( |Q|
σ(Q)

)p

� Cσ(Q).

For the second term let {Qλ
i } be the collection of maximal dyadic cubes such that(

−
∫

Qi

σ
)−1

> λ

so that Eλ =
⋃

i Q
λ
i . Then

II = p
∫ ∞

R
λ p−1u(Eλ )dλ = p

∫ ∞

R
λ p−1∑

i

u(Qλ
i )dλ

� p
∫ ∞

R
λ p−1∑

i

|Qλ
i |
(
−
∫

Qλ
i

σ
)p+1

dλ

� p
∫ ∞

R
λ−2∑

i
|Qλ

i |dλ � p|Q|R−1 = pσ(Q).



ON THE HARMONIC AND GEOMETRIC MAXIMAL OPERATORS 285

This finishes the proof. �

Finally we end our discussion with the statement of specific results for the dyadic
geometric maximal operator. These results were alluded to in [1]. Using Lemma 1 for
nice functions we have

MD
0− f (x) = MD

0 f (x)

where MD
0− f (x) = limr→0+ MD−r f (x) . We can extend our results to the geometric maxi-

mal operator for both the weak and the strong inequalities. We do not include the proofs
as they are similar to that found in [3].

THEOREM 12. Suppose (u,v) is a pair of weights defined on R
n . Then the fol-

lowing are equivalent:

(i) The weak (p, p) inequalities

u({x ∈ R
n : MD

0 f (x) > λ}) � C
λ p

∫
Rn

| f |pv

hold for all 0 < p < ∞ and f ∈ Lp(v) ,

(ii) The weak (1,1) inequality

u({x ∈ R
n : MD

0 (v−1 f )(x) > λ}) � C
λ

∫
Rn

| f |

holds for all f ∈ L1(Rn) ,

(iii) the pair (u,v) satisfies the two weight A∞ condition

sup
Q∈D

(
−
∫

Q
u

)
exp

(
−−
∫

Q
logv

)
< ∞.

THEOREM 13. Suppose (u,v) is a pair of weights defined on R
n . Then the fol-

lowing are equivalent:

(i) the inequalities ∫
Rn

(MD
0 f )pu � C

∫
Rn

| f |pv
hold for all 0 < p < ∞ and f ∈ Lp(v) ,

(ii) the inequality ∫
Rn

MD
0 (v−1 f )u � C

∫
Rn

| f |

holds for all f ∈ L1(Rn) ,

(iii) the testing condition ∫
Q

MD
0 (v−1

�Q)u � C|Q|

holds for all cubes Q ∈ D .
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