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NORM INEQUALITIES AND CHARACTERIZATIONS

OF INNER PRODUCT SPACES

A. AMINI-HARANDI, M. RAHIMI AND M. REZAIE

Abstract. Let (X ,‖.‖) be a real normed space and let θ : (0,∞) → (0,∞) be an increasing
function such that t �→ t

θ (t) is non-decreasing on (0,∞) . For such function, we introduce the

notion of θ -angular distance αθ [x,y] , where x,y ∈X \{0} , and show that X is an inner product

space if and only if αθ [x,y] � 2 ‖x−y‖
θ‖x‖+θ‖y‖ for each x,y ∈ X \{0} . Then, in order to generalize

the Dunkl-Williams constant of X [10], we introduce a new geometric constant CF (X) for X
wrt F , where F : (0,∞)× (0,∞) → (0,∞) is a given function, and obtain some characterizations
of inner product spaces related to the constant CF (X) . Our results generalize and extend various
known results in the literature.Mathematics subject classification (2010): 46C15, 46B20.
Keywords and phrases: Inner product space, characterizations of inner product spaces, Dunkl-Williams

inequality.
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