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Abstract. Let (X ,‖.‖) be a real normed space and let θ : (0,∞) → (0,∞) be an increasing
function such that t �→ t

θ (t) is non-decreasing on (0,∞) . For such function, we introduce the

notion of θ -angular distance αθ [x,y] , where x,y ∈X \{0} , and show that X is an inner product

space if and only if αθ [x,y] � 2 ‖x−y‖
θ‖x‖+θ‖y‖ for each x,y ∈ X \{0} . Then, in order to generalize

the Dunkl-Williams constant of X [10], we introduce a new geometric constant CF (X) for X
wrt F , where F : (0,∞)× (0,∞) → (0,∞) is a given function, and obtain some characterizations
of inner product spaces related to the constant CF (X) . Our results generalize and extend various
known results in the literature.

1. Introduction and preliminaries

In 1935, Jordan and von Neumann [11] characterized inner product spaces as
normed spaces satisfying the parallelogram law. In 1948, Lorch [13] presented sev-
eral characterizations of inner product spaces. Since then, the problem of finding nec-
essary and sufficient conditions for a normed space to be an inner product space has
been investigated by many mathematicians by considering some geometric aspects of
underlying spaces.

There are interesting norm inequalities connected with the characterizations of
inner product spaces [2]. One of celebrated characterizations of inner product spaces
has been based on the so-called Dunkl-Williams inequality.

In 1936, Clarkson [4] introduced the concept of angular distance between nonzero
elements x and y in a normed space (X ,‖.‖) as α[x,y] =

∥∥ x
‖x‖ − y

‖y‖
∥∥ . In 1964, Dunkl

and Williams [8] showed that for any nonzero elements x,y in a normed space (X ,‖.‖) ,∥∥ x
‖x‖ − y

‖y‖
∥∥ � 4 ‖x−y‖

‖x‖+‖y‖ . In the same paper, the authors proved that the constant 4 can
be replaced by 2 if X is an inner product space. Then Kirk and Smiley [12] completed
this result by showing that the above inequality with 2 in place of 4 in fact characterizes
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the inner product spaces. Motivated by this fact, Jiménez-Melado et al. [10] defined
the Dunkl-Williams constant DW (X) of a normed space X , that is,

DW (X) := sup

{‖x‖+‖y‖
‖x− y‖

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ : x,y ∈ X \ {0}, x �= y

}
.

By the above mentioned result of Kirk and Smiley, (X ,‖.‖) is an inner product space
if and only if DW (X) = 2. In 1993, Al-Rashed [1] generalized the work of Kirk and
Smiley. His result can be reformulated as follows: The normed space (X ,‖.‖) is an
inner product space if and only if

α[x,y] � 21/q ‖x− y‖
(‖x‖q +‖y‖q)1/q

, for each x,y ∈ X \ {0},

where q ∈ (0,1] . As a generalization of the concept of angular distance, Maligranda
[14] introduced the p -angular distance αp[x,y] as follows:

αp[x,y] =
∥∥∥∥ x
‖x‖1−p −

y
‖y‖1−p

∥∥∥∥, where p � 0 and x,y ∈ X \ {0}.

In 2010, Dadipour and Moslehian [5] presented a characterization of inner product
spaces related to the p -angular distance which is a generalization of the above men-
tioned results of Kirk and Smiley [12] and Al-Rashed [1]. In 2014, Tanaka, Ohwada
and Saito [16] obtained a new characterization of inner product spaces related to norm
inequalities.

Now, we recall some definitions and facts which will be needed in the next sec-
tions. For x,y ∈ X , x is said to be BJ-orthogonal to y , denoted by x⊥B y , if ‖x‖ �
‖x+ γy‖ for all γ ∈ R . The BJ-orthogonality is homogeneous, that is, x⊥B y implies
λx⊥B μy for all λ ,μ ∈ R . However, it is not symmetric in general, that is, x⊥B y does
not necessarily imply y⊥B x . It is known that if dim (X) � 3, then BJ-orthogonality is
symmetric if and only if X is an inner product space [3, 9].

The rest of the paper is organized as follows: In section 2, for an increasing
function θ : (0,∞) → (0,∞) for which t �→ t

θ(t) is non-decreasing on (0,∞) , we in-

troduce the notion of θ -angular distance αθ [x,y] =
∥∥ x

θ‖x‖ − y
θ‖y‖

∥∥ between nonzero
elements x and y in X and show that (X ,‖.‖) is an inner product space if and only

if αθ [x,y] � 2 ‖x−y‖
θ‖x‖+θ‖y‖ for each x,y ∈ X \ {0} . In section 3, in order to generalize

the Dunkl-Williams constant of a normed space [10], we introduce a new geometric
constant CF(X) of the normed space X wrt F , where F : (0,∞)× (0,∞) → (0,∞) is
a given function satisfying F−1{1} �= /0 and σF = infr,s>0: F(r,s)=1

(
r+ s

) ∈ (0,∞) . We
show that if X is an inner product space then CF(X) = 2

σF
, and by giving an example

we prove the converse implication does not hold in general. We also study some con-
ditions on F under which, the equality CF(X) = 2

σF
characterize inner product spaces

among all normed spaces. Our results generalize some well known characterizations of
inner product spaces due to Lorch [13], Kirk and Smiley [12], Al-Rashed [1], Dadipour
and Moslehian [5], Dehghan [7], and Tanaka, Ohwada and Saito [16].
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2. θ -angular distance

Throughout the paper, let (X ,‖.‖) be a real normed space and let SX denote the
unit sphere of X . Let Θ denote the set of all increasing functions θ : (0,∞) → (0,∞)
such that t �→ t

θ(t) is non-decreasing on (0,∞) . For a given θ ∈ Θ , the θ -angular

distance between nonzero elements x,y ∈ X is denoted by αθ [x,y] and defined as
αθ [x,y] =

∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥ .

Note that if we take θ (t) = t1−p for each t > 0, where p ∈ [0,1) , then αθ [x,y]
reduces to the concept of p -angular distance between x and y which was introduced
and studied by Maligranda [14].

Here is our first result in this section.

THEOREM 1. Let (X ,‖.‖) be an inner product space and let θ ∈ Θ . Then the
following inequality holds

αθ [x,y] � 2
‖x− y‖

θ‖x‖+ θ‖y‖, for each x,y ∈ X \ {0}. (2.1)

Proof. Notice first that since θ is non-decreasing then θ‖y‖
θ‖x‖+θ‖y‖ � 1

2 provided
that ‖y‖ � ‖x‖ . Then, we have

sup
x,y∈X\{0}

x�=y

αθ [x,y]2( ‖x−y‖
θ‖x‖+θ‖y‖

)2 = sup
x,y∈X\{0}

x�=y, ‖y‖�‖x‖

∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥2

∥∥ θ‖x‖
θ‖x‖+θ‖y‖

x
θ‖x‖ − θ‖y‖

θ‖x‖+θ‖y‖
y

θ‖y‖
∥∥2

� sup
x,y∈X\{0}

x�=y

sup
t∈[0, 1

2 ]

∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥2

∥∥(1− t) x
θ‖x‖ − t y

θ‖y‖
∥∥2

= sup
x,y∈X\{0}

x�=y

∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥2

inft∈[0, 1
2 ]

∥∥(1− t) x
θ‖x‖ − t y

θ‖y‖
∥∥2 .

Then

sup
x,y∈X\{0}

x�=y

αθ [x,y]2( ‖x−y‖
θ‖x‖+θ‖y‖

)2 � sup
x,y∈X\{0}

x�=y

∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥2

inft∈[0, 1
2 ]

∥∥(1− t) x
θ‖x‖ − t y

θ‖y‖
∥∥2 . (2.2)

Let f : [0,1] → R be defined by

f (t) =
∥∥∥∥(1− t)

x
θ‖x‖ − t

y
θ‖y‖

∥∥∥∥
2

=
{( ‖x‖

θ‖x‖
)2

+
( ‖y‖

θ‖y‖
)2

+2

〈
x

θ‖x‖ ,
y

θ‖y‖
〉}

t2

−2

{( ‖x‖
θ‖x‖

)2

+
〈

x
θ‖x‖ ,

y
θ‖y‖

〉}
t +

( ‖x‖
θ‖x‖

)2

.
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Since

f ′′(t) = 2

{( ‖x‖
θ‖x‖

)2

+
( ‖y‖

θ‖y‖
)2

+2

〈
x

θ‖x‖ ,
y

θ‖y‖
〉}

= 2

〈
x

θ‖x‖ +
y

θ‖y‖ ,
x

θ‖x‖ +
y

θ‖y‖
〉

� 0,

for each t ∈ [0,1] , then f ′(t) is non-decreasing on [0,1] . Since the function t �→ t
θ(t) is

non-decreasing and ‖y‖ � ‖x‖ then f ′( 1
2 ) =

( ‖y‖
θ‖y‖

)2 − ( ‖x‖
θ‖x‖

)2 � 0. Hence f ′(t) � 0

for each t ∈ [0, 1
2 ] and so f is non-increasing on [0, 1

2 ] . Thus

inf
t∈[0, 1

2 ]

∥∥∥∥(1− t)
x

θ‖x‖ − t
y

θ‖y‖
∥∥∥∥

2

=
1
4

∥∥∥∥ x
θ‖x‖ − y

θ‖y‖
∥∥∥∥

2

, (2.3)

from (2.2) and (2.3), we get that

sup
x,y∈X\{0}

x�=y

αθ [x,y]
‖x−y‖

θ‖x‖+θ‖y‖
� 2,

and the proof is complete. �

The next result provides a reverse of Theorem 1.

THEOREM 2. Let (X ,‖.‖) be a normed space with dim(X) � 3 and θ ∈ Θ . If for
some q > 0

αθ [x,y] � 2
1
q

‖x− y‖(
(θ‖x‖)q +(θ‖y‖)q

) 1
q

, for each x,y ∈ X \ {0}. (2.4)

Then X is an inner product space.

Proof. We will show that the BJ−orthognality is symmetric. Let x,y ∈ X \ {0}
be such that x ⊥B y . Then

‖αx‖ � ‖αx+ βy‖, for any real numbers α,β . (2.5)

To show that y ⊥B x , on the contrary assume that

‖γx+ y‖< ‖y‖, for some γ ∈ R. (2.6)

From (2.5), we obtain (note that from (2.5) and (2.6) we have that ‖γx+ y‖> 0)∥∥∥∥ γx+ y
θ‖γx+ y‖ −

y
θ‖y‖

∥∥∥∥ =
∥∥∥∥ γx

θ‖γx+ y‖ +
(

1
θ‖γx+ y‖ −

1
θ‖y‖

)
y

∥∥∥∥ � ‖γx‖
θ‖γx+ y‖ . (2.7)
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Then from (2.4) and (2.7), we obtain

2
1
q �

(
(θ‖γx+ y‖)q +(θ‖y‖)q

) 1
q

‖γx‖
∥∥∥∥ γx+ y

θ‖γx+ y‖ −
y

θ‖y‖
∥∥∥∥

�
(
(θ‖γx+ y‖)q +(θ‖y‖)q

) 1
q

‖γx‖
‖γx‖

θ‖γx+ y‖

�
(

1+
(

θ‖y‖
θ‖γx+ y‖

)q) 1
q

.

From the above inequality, we get that θ‖y‖ � θ‖γx+ y‖ . Since θ is increasing, we
deduce ‖y‖ � ‖γx+ y‖ , which contradicts (2.6). �

Now we are ready to state our characterization of inner product spaces related to
the θ -angular distance.

THEOREM 3. Let (X ,‖.‖) be a normed space with dim(X) � 3 and let θ ∈ Θ .
Then the following statements are equivalent:

(i) For all q ∈ (0,1], αθ [x,y] � 2
1
q ‖x−y‖(

(θ‖x‖)q+(θ‖y‖)q
) 1

q
, for each x,y ∈ X \ {0} .

(ii) For some q > 0, αθ [x,y] � 2
1
q ‖x−y‖(

(θ‖x‖)q+(θ‖y‖)q
) 1

q
, for each x,y ∈ X \ {0} .

(iii) X is an inner product space.

Proof. (i)⇒ (ii) is trivial.
(ii) ⇒ (iii) is the same as Theorem 2.
(iii)⇒ (i) Let q∈ (0,1] , a := θ‖x‖ , b := θ‖y‖ and t := q in the known inequality

at +bt � 21−t(a+b)t, for a,b � 0, 0 < t � 1,

we get

(θ‖x‖)q +(θ‖y‖)q � 21−q(θ‖x‖+ θ‖y‖)q,

and so

2
‖x− y‖

θ‖x‖+ θ‖y‖ � 2
1
q

‖x− y‖(
(θ‖x‖)q +(θ‖y‖)q

) 1
q

, for each x,y ∈ X \ {0}. (2.8)

Since X is an inner product space then by Theorem 1 we have

αθ [x,y] � 2
‖x− y‖

θ‖x‖+ θ‖y‖, for each x,y ∈ X \ {0}. (2.9)

From (2.8) and (2.9), we get the conclusion. �
If we put θ (t) = t1−p , p ∈ [0,1) , then the above theorem reduces to the following

characterization of inner product spaces due to Dadipour and Moslehian [5].
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COROLLARY 1. Let (X ,‖.‖) be a normed space and let p ∈ [0,1) . Then the
following statements are equivalent:

(i) For all q ∈ (0,1], αp[x,y] � 2
1
q ‖x−y‖(

‖x‖(1−p)q+‖y‖(1−p)q
) 1

q
, for each x,y ∈ X \ {0} .

(ii) For some q > 0, αp[x,y] � 2
1
q ‖x−y‖(

‖x‖(1−p)q+‖y‖(1−p)q
) 1

q
, for each x,y ∈ X \ {0} .

(iii) X is an inner product space.

3. A new geometric constant of a normed space

We begin with the following definition.

DEFINITION 1. Let (X ,‖.‖) be a normed space. Let F : (0,∞)× (0,∞) → (0,∞)
be a function satisfying F−1{1} �= /0 and σF = infr,s>0:F(r,s)=1

(
r + s

) ∈ (0,∞) . We
introduce a new geometric constant CF(X) of X wrt F as follows:

CF(X) := sup

{ ‖u+ v‖
‖ru+ sv‖ : u,v ∈ SX , u �= −v, r,s ∈ (0,∞) with F(r,s) = 1

}
.

Note that by using the Dunkl-Williams inequality [15, Proposition 2.1], we have

‖u+ v‖
‖ru+ sv‖ � 1

r+ s
‖u+ v‖

‖ r
r+s u+ s

r+s v‖
� DW (X)

σF
,

for each u,v ∈ SX , u �= −v , r,s ∈ (0,∞) with F(r,s) = 1, and so CF(X) � DW (X)
σF

< ∞ .
If we take FS(r,s) = r + s for each r,s ∈ (0,∞) , then CFS(X) = DW (X) , where

DW (X) denotes the Dunkl-Williams constant of X which was introduced by Jiménez-
Melado et al. [10].

The following lemma is useful for calculating CF(X) , in the case of F is a homo-
geneous function of degree 1.

LEMMA 1. Let (X ,‖.‖) be a normed space and let F : (0,∞)×(0,∞)→ (0,∞) be
a function satisfying F−1{1} �= /0 and σF ∈ (0,∞) . Assume that F(λx,λy) = λF(x,y) ,
for each λ ,x,y ∈ (0,∞) . Then

CF(X) = sup

{
F(‖x‖,‖y‖)

∥∥ x
‖x‖ − y

‖y‖
∥∥

‖x− y‖ : x,y ∈ X \ {0}, x �= y

}
.

Proof. Since F(λx,λy) = λF(x,y) , for each λ ,x,y ∈ (0,∞) , then

{
(r,s) : r,s ∈ (0,∞) and F(r,s) = 1

}
=

{(
r

F(r,s)
,

s
F(r,s)

)
: r,s ∈ (0,∞)

}
,
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and so

CF(X) = sup

{ ‖u+ v‖
‖ru+ sv‖ : u,v ∈ SX , u �= −v, r,s ∈ (0,∞) with F(r,s) = 1

}

= sup

{ ‖u+ v‖
‖ r

F(r,s)u+ s
F(r,s)v‖

: u,v ∈ SX , u �= −v, r,s ∈ (0,∞)
}

= sup

{ ∥∥ x
‖x‖ − y

‖y‖
∥∥

‖ ‖x‖
F(‖x‖,‖y‖)

x
‖x‖ − ‖y‖

F(‖x‖,‖y‖)
y

‖y‖‖
: x,y ∈ X \ {0}, x �= y

}

= sup

{ ∥∥ x
‖x‖ − y

‖y‖
∥∥

‖ x
F(‖x‖,‖y‖) − y

F(‖x‖,‖y‖)‖
: x,y ∈ X \ {0}, x �= y

}

= sup

{
F(‖x‖,‖y‖)

∥∥ x
‖x‖ − y

‖y‖
∥∥

‖x− y‖ : x,y ∈ X \ {0}, x �= y

}
. �

Now, we calculate the geometric constant CF(X) of an inner product space X .

THEOREM 4. Let (X ,‖.‖) be an inner product space and let F : (0,∞)×(0,∞)→
(0,∞) be a function satisfying F−1{1} �= /0 and σF ∈ (0,∞) . Then

CF(X) =
2

σF
.

Proof. Since X is an inner product space then, we have

[CF(X)]2 = sup

{ ‖u+ v‖2

‖ru+ sv‖2 : u,v ∈ SX , u �= −v, r,s ∈ (0,∞) with F(r,s) = 1

}

= sup
r,s∈(0,∞)
F(r,s)=1

sup

{ ‖u+ v‖2

‖ru+ sv‖2 : u,v ∈ SX , u �= −v

}

= sup
r,s∈(0,∞)
F(r,s)=1

sup

{
2+2〈u,v〉

r2 + s2 +2rs〈u,v〉 : u,v ∈ SX , u �= −v

}
.

Since the function t �→ 2+2t
r2+s2+2rst

is non-decreasing on (−1,1] for each r,s ∈ (0,∞)
then, we have (note that by the Cauchy-Schwartz inequality |〈u,v〉| � ‖u‖‖v‖= 1)

sup

{
2+2〈u,v〉

r2 + s2 +2rs〈u,v〉 : u,v ∈ SX , u �= −v

}
=

4
(r+ s)2 .

Therefore

CF(X) = sup
r,s∈(0,∞)
F(r,s)=1

{
2

r+ s

}
=

2
σF

. �

The following example shows that the converse of Theorem 4 does not hold, in
general.
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EXAMPLE 1. Let (X ,‖.‖) be a normed space and let FM : (0,∞)×(0,∞)→ (0,∞)
be defined by FM(r,s) = max(r,s) . Then

CFM(X) = sup

{ ‖u+ v‖
‖ru+ sv‖ : u,v ∈ SX ,u �= −v, r,s ∈ (0,∞), max(r,s) = 1

}
= 2

=
2

inf
{
r+ s : r,s ∈ (0,∞), max(r,s) = 1

} .

To show the claim, note that for each r ∈ [0,1] and u,v ∈ SX with u �= −v ,

‖u+ v‖� ‖u− ru‖+‖ru+ v‖= (1− r)+‖ru+ v‖,
and

‖ru+ v‖� ‖v‖−‖ru‖= (1− r).

Then ‖u+ v‖
‖ru+ v‖ � 2, for each r ∈ [0,1] and u,v ∈ SX with u �= −v.

Thus

2 � sup

{ ‖u+ v‖
‖ru+ sv‖ : u,v ∈ SX ,u �= −v, r > 0, s > 0 , max(r,s) = 1

}

= sup

{ ‖u+ v‖
‖ru+ v‖ : u,v ∈ SX ,u �= −v, 0 < r � 1

}
� ‖u+u‖

‖u‖ = 2,

and the proof is complete.

Now the following problem naturally arise:

PROBLEM 1. Find necessary and sufficient conditions on F such that the equality
CF(X) = 2

σF
characterize inner product spaces among all normed spaces.

Here is our first partial answer to this problem.

THEOREM 5. Let (X ,‖.‖) be a normed space with dim (X) � 3 . Let F : (0,∞)×
(0,∞) → (0,∞) be a continuous function which is increasing in each variable and F
satisfying the conditions F−1{1} �= /0 and σF ∈ (0,∞) . Assume that

lim
t→∞

F(tx, ty) > 1 and lim
t→0+

F(tx,ty) < 1, for each x,y ∈ (0,∞), (3.1)

and

F

(
σF

2
,

σF

2

)
� 1. (3.2)

Then, X is an inner product space if and only if

CF(X) =
2

σF
.
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Proof. If X is an inner product space then by Theorem 4, CF(X) = 2
σF

. Now,

assume that CF(X) = 2
σF

and will show that X is an inner product space. Since F is
continuous, then by (3.1) there exists a function ϕ : (0,∞)× (0,∞) → (0,∞) satisfying

F

(
r

ϕ(r,s)
,

s
ϕ(r,s)

)
= 1, for each r,s ∈ (0,∞). (3.3)

Assume that x ⊥B y , where x,y �= 0 are elements in X . Then,

‖αx‖ � ‖αx+ βy‖, for each α,β ∈ R. (3.4)

To prove that X is an inner product space it is necessary and sufficient to show that
y ⊥B x , that is for any β ∈ R , ‖y‖ � ‖βx+ y‖ . On the contrary assume that

‖γx+ y‖< ‖y‖, for some γ ∈ R. (3.5)

By the assumption

‖u+v‖� 2
σF

‖ru+sv‖, for each u,v∈ SX and r,s∈ (0,+∞) with F(r,s) = 1. (3.6)

From (3.3) and (3.6), we obtain (note that from (3.4) and (3.5) we have that ‖γx+y‖>
0) ∥∥∥∥ γx+ y

‖γx+ y‖ −
y

‖y‖
∥∥∥∥ � 2

σF

∥∥∥∥ ‖γx+ y‖
ϕ(‖γx+ y‖,‖y‖)

γx+ y
‖γx+ y‖ −

‖y‖
ϕ(‖γx+ y‖,‖y‖)

y
‖y‖

∥∥∥∥,

for each x,y ∈ X \ {0} . Since x ⊥B y , from (2.7) and the above inequality, we get

2
σF

� ϕ(‖γx+ y‖,‖y‖)
‖γx‖

∥∥∥∥ γx+ y
‖γx+ y‖ −

y
‖y‖

∥∥∥∥
� ϕ(‖γx+ y‖,‖y‖)

‖γx‖
‖γx‖

‖γx+ y‖ .

and so
2

σF
� ϕ(‖γx+ y‖,‖y‖)

‖γx+ y‖ . (3.7)

From (3.5) and (3.7), we obtain

‖y‖
ϕ(‖γx+ y‖,‖y‖) >

‖γx+ y‖
ϕ(‖γx+ y‖,‖y‖) � σF

2
. (3.8)

Since F is increasing in each variable then from (3.7) and (3.8), we get

1 = F

( ‖γx+ y‖
ϕ(‖γx+ y‖,‖y‖),

‖y‖
ϕ(‖γx+ y‖,‖y‖)

)
> F

(
σF

2
,

σF

2

)
,

a contradiction. �
Now, we get the following characterizations of inner product spaces due to Al-

Rashed [1, Theorem 2.3 and Corollary 2.4] (the case of p = 1 was obtained by Kirk
and Smiley [12]).
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COROLLARY 2. Let (X ,‖.‖) be a normed space with dim (X) � 3 and let p ∈
(0,1] . Then X is an inner product space if and only if

sup

{ (‖x‖p +‖y‖p)
1
p
∥∥ x
‖x‖ − y

‖y‖
∥∥

‖x− y‖ : x,y ∈ X \ {0}, x �= y

}
= 21/p. (3.9)

Proof. Let F(r,s) := (rp + sp)
1
p , for each r,s ∈ (0,∞) . Then F is continuous and

increasing in each variable. It is easy to see that σF = 21− 1
p and so F(σF

2 , σF
2 ) = 1.

Then all the assumptions of Theorem 5 are satisfied. Then we get the conclusion if we

show that CF(X) = 2
σF

= 2
1
p . From Lemma 1 and (3.9), we deduce that

CF(X) = sup

{ (‖x‖p +‖y‖p)
1
p
∥∥ x
‖x‖ − y

‖y‖
∥∥

‖x− y‖ : x,y ∈ X \ {0}, x �= y

}
= 21/p,

and the proof is complete. �

Now we get the following characterization of inner product spaces due to Lorch
[13].

COROLLARY 3. Let (X ,‖.‖) be a normed space with dim (X) � 3 . Then (X ,‖.‖)
is an inner product space if and only if for all x,y∈X satisfying ‖x‖= ‖y‖ the inequal-
ity ‖x+ y‖� ‖γx+ γ−1y‖ holds for all real γ �= 0 .

Proof. Let FP(r,s) =
√

rs for each r,s ∈ (0,∞) . Then F is continuous, increasing
in each variable, and σFP = 2. So FP(

σFP
2 ,

σFP
2 ) = 1. Then from Theorem 5, X is an

inner product space if and only if CFP(X) = 2
σFP

= 1. Now the assumption holds if and

only if

CFP(X) = sup

{ ‖u+ v‖
‖γu+ γ−1v‖ : u,v ∈ SX , u �= −v, γ ∈ (0,∞)

}

= sup

{ ‖x+ y‖
‖γx+ γ−1y‖ : x,y ∈ X , ‖x‖ = ‖y‖, x �= −y, γ ∈ (0,∞)

}
= 1. �

Here is a characterization of inner product spaces due to Dehghan [7, Theorem
3.2].

COROLLARY 4. Let (X ,‖.‖) be a normed space with dim (X) � 3 . Then (X ,‖.‖)
is an inner product space if and only if∥∥∥∥ x

‖x‖ − y
‖y‖

∥∥∥∥ �
∥∥∥∥ x
‖y‖ −

y
‖x‖

∥∥∥∥, for each x,y ∈ X \ {0}. (3.10)
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Proof. Let FP(r,s) :=
√

rs , for each r,s ∈ (0,∞) . Then (3.10) holds if and only if

CFP(X) = sup

{ ‖u+ v‖
‖ru+ sv‖ : u,v ∈ SX , u �= −v, r,s ∈ (0,∞) with rs = 1

}

= sup

{ ∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ ‖x‖

‖y‖
x

‖x‖ − ‖y‖
‖x‖

y
‖y‖

∥∥ : x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖
}

= sup

{∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ x

‖y‖ − y
‖x‖

∥∥ : x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖
}

= 1 =
2

σFP

.

Now the conclusion follows from Theorem 5. �

Now we give lower and upper bounds for the Dunkl-Williams constant of X wrt
F .

THEOREM 6. Let (X ,‖.‖) be a normed space and let F : (0,∞)× (0,∞)→ (0,∞)
be a function such that F(λx,λy) = λF(x,y) for any λ > 0 . Then

2 sup
t∈(0,1)

F(1− t,t) � CF(X) � DW (X) sup
t∈(0,1)

F(1− t,t). (3.11)

In particular, if X is an inner product space then CF(X) = 2supt∈(0,1) F(1− t,t) .

Proof. For each t ∈ (0,1) we have

CF(X) �

∥∥ x
‖x‖ +

t
1−t x
t

1−t ‖x‖
∥∥

∥∥ ‖x‖
F(‖x‖, t

1−t ‖x‖)
x
‖x‖ +

t
1−t ‖x‖

F(‖x‖, t
1−t ‖x‖)

t
1−t x
t

1−t ‖x‖
∥∥

= 2
F(‖x‖, t

1−t ‖x‖)
‖x+ t

1−t x‖
= 2F(1− t, t),

and so
CF(X) � sup

t∈(0,1)
2F(1− t,t).

On the other hand

CF(X) = sup

{ ∥∥ x
‖x‖− y

‖y‖
∥∥∥∥r x

‖x‖−s y
‖y‖

∥∥ : x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖ ,r,s ∈ (0,∞) with F(r,s) = 1

}

= sup

{ ∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ r

F(r,s)
x
‖x‖ − s

F(r,s)
y
‖y‖

∥∥ : x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖ ,r,s ∈ (0,∞)
}

= sup

{ ∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ r

r+s
x

‖x‖ − s
r+s

y
‖y‖

∥∥ F(r,s)
r+ s

: x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖ ,r,s ∈ (0,∞)
}
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= sup

{ ∥∥ x
‖x‖− y

‖y‖
∥∥∥∥ r

r+s
x

‖x‖− s
r+s

y
‖y‖

∥∥F

(
r

r+s
,

s
r+s

)
:

x,y ∈ X \ {0}, x
‖x‖ �= y

‖y‖ ,r,s ∈ (0,∞)
}

� DW (X) sup
t∈(0,1)

F(1− t,t). �

Here is our second partial answer to the Problem 1, which gives another charac-
terization of inner product spaces.

THEOREM 7. Let (X ,‖.‖) be a normed space with dim (X) � 3 and let F :
(0,∞)×(0,∞)→ (0,∞) be a function with σF ∈ (0,∞) such that F(λx,λy) = λF(x,y)
for any λ ,x,y ∈ (0,∞) . Moreover, assume that

2
σF

= F(1,1) and F(1− t,1− t) < F(1− t,t), f or each t ∈
(1

2
,1

)
. (3.12)

Then X is an inner product space if (and only if) CF(X) = 2
σF

.

Proof. Let x,y ∈ X \{0} such that x⊥B y . Hence ‖αx+βy‖ � ‖αx‖ for any real
numbers α,β and so for each real number γ∥∥∥∥ γx+ y

‖γx+ y‖ −
y
‖y‖

∥∥∥∥ � ‖γx‖
‖γx+ y‖ . (3.13)

Since

F

( ‖γx+ y‖
F(‖γx+ y‖,‖y‖),

‖y‖
F(‖γx+ y‖,‖y‖)

)
=

F(‖γx+ y‖,‖y‖)
F(‖γx+ y‖,‖y‖) = 1,

from (3.12),

F(1,1) =
2

σF

= CF(X)

�
∥∥ γx+y
‖γx+y‖ − y

‖y‖
∥∥∥∥ ‖γx+y‖

F(‖γx+y‖,‖y‖)
γx+y

‖γx+y‖ − ‖y‖
F(‖γx+y‖,‖y‖)

y
‖y‖

∥∥
� F(‖γx+ y‖,‖y‖)

‖γx‖
∥∥∥∥ γx+ y
‖γx+ y‖ −

y
‖y‖

∥∥∥∥
� F(‖γx+ y‖,‖y‖)

‖γx+ y‖

=
F

( ‖γx+y‖
‖γx+y‖+‖y‖ ,

‖y‖
‖γx+y‖+‖y‖

)
‖γx+y‖

‖γx+y‖+‖y‖
,
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and so we have ‖y‖
‖γx+y‖+‖y‖ � 1

2 . Thus ‖y‖ � ‖γx + y‖ holds for all γ ∈ R , and so
y⊥B x . �

Let Φ2 denote the family of all continuous concave function ψ : [0,1] → R such
that ψ(0) = ψ(1) = 1. For each ψ ∈ Φ2 , define the function ‖.‖ψ on R

2 by

‖(x,y)‖ψ =

{
(|x|+ |y|)ψ( |y|

|x|+|y| ) (x,y) �= (0,0),
0 (x,y) = (0,0).

For each x,y ∈ X , define ‖(x,y)‖ψ = ‖(‖x‖,‖y‖)‖ψ . Let X be a real Banach space and
let ψ ∈ Φ2 . Defined [16]

Cψ(X) := sup

{‖(x,y)‖ψ

‖x− y‖
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ : x,y ∈ X \ {0} , x �= y

}
.

The following is a characterization of inner product spaces due to Tanaka et al [16].

COROLLARY 5. Let (X ,‖.‖) be normed space with dim (X) � 3 . Let ψ ∈ Φ2

such that maxt∈[0,1] ψ(t) = ψ( 1
2 ) . Then (X ,‖.‖) is an inner product space if and only

if Cψ (X) = 2ψ( 1
2) .

Proof. Let F(r,s) = ‖(r,s)‖ψ for each r,s∈ (0,∞) . Then from Lemma 1, we have

CF(X) = sup

{‖(x,y)‖ψ

‖x− y‖
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ : x,y ∈ X \ {0} , x �= y

}
= Cψ (X).

We show that all the assumptions of Theorem 7 and then the conclusion follows.

2
σF

=
2

inf
{
r+ s : r,s > 0 ,‖(r,s)‖ψ = (r+ s)ψ( s

r+s ) = 1
}

= 2sup

{
ψ

( s
r+ s

)
: r,s > 0

}
= 2ψ

(1
2

)
.

Then

F(1,1) = 2ψ
(1

2

)
=

2
σF

.

From Lemma 2 in [16], we also have the function t �→ F(1−t,t)
1−t = ψ(t)

1−t is increasing on
[0,1) . �
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