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Abstract. Motivated by a recent refinement of the scalar Jensen inequality obtained via linear
interpolation, in this paper we develop a general method for improving two classes of Jensen-type
inequalities for bounded self-adjoint operators. The first class refers to a usual convexity, while
the second one deals with the operator convexity. The general results are then applied to quasi-
arithmetic and power operator means. As a consequence, we obtain strengthened forms of the
inequalities between arithmetic, geometric and harmonic operator means. We also obtain more
accurate Young-type inequalities for unitarily invariant norms as well as more precise relations
for some important jointly concave mappings.

1. Introduction

Throughout the paper, let H be a Hilbert space and let Bh(H) be the semi-space
of all bounded self-adjoint operators on H . Further, let B+(H) and B++(H) respec-
tively denote the sets of all positive and positive invertible operators in Bh(H) . The
weighted operator arithmetic mean ∇t , geometric mean �t , and harmonic mean !t , for
t ∈ [0,1] and A,B ∈ B++(H) , are defined as follows:

A∇tB =(1− t)A+ tB,

A�tB =A
1
2
(
A− 1

2 BA− 1
2
)t

A
1
2 ,

A!tB =
(
(1− t)A−1 + tB−1)−1

.

If t = 1
2 , we write A!B , A�B , A∇B for brevity.

Like in the real case, the arithmetic-geometric-harmonic operator mean inequality
asserts that

A∇tB � A�tB � A!tB, t ∈ [0,1], (1)

with respect to the operator order. Both real and operator mean inequalities lie in the
field of interest of numerous mathematicians. In the last ten years, a considerable atten-
tion has been given to developing methods for improving these inequalities. In 2011,

Mathematics subject classification (2010): 47A63, 26A51, 47A64.
Keywords and phrases: Jensen inequality, Young inequality, convexity, operator convexity, operator

mean, refinement.

c© � � , Zagreb
Paper MIA-21-22

301

http://dx.doi.org/10.7153/mia-2018-21-22


302 D. CHOI, M. KRNIĆ AND J. PEČARIĆ

Furuichi [8] (see also Kittaneh et.al. [15]), established the following refinement of the
operator arithmetic-geometric mean inequality in a difference form:

A∇tB−A�tB � 2r0(t)(A∇B−A�B), r0(t) = min{t,1− t}. (2)

Moreover, Zhao and Wu [25], derived a more accurate estimate for the inequality (2):
If 0 < t � 1

2 and r1(t) = min{2r0(t),1−2r0(t)} , then

A∇tB−A�tB � 2t (A∇B−A�B)+ r1(t)
(
A�B−2A� 1

4
B+A

)
, (3)

while for 1
2 < t < 1, one has

A∇tB−A�tB � 2(1− t)(A∇B−A�B)+ r1(t)
(
A�B−2A� 3

4
B+B

)
. (4)

For some related refinements of mean inequalities, the reader is also referred to recent
papers [3], [22], [23], and references therein.

Inequalities (1), (2), (3) and (4) are established via improved versions of the scalar
inequality

(1− t)a+ tb � a1−tbt , a,b > 0, 0 � t � 1, (5)

usually referred to as the Young inequality, and by virtue of monotonicity principle
for bounded self-adjoint operators on a Hilbert space: If X ∈ Bh(H) with a spectrum
Sp(X) , then f (t) � g(t), t ∈ Sp(X) =⇒ f (X) � g(X), provided that f and g are real
valued continuous functions (for more details, see [9]).

On the other hand, utilizing a suitable linear interpolation of a convex function,
Choi et.al. [4], obtained a general refinement of the scalar Jensen inequality. Recall
that a function f : I → R is said to be convex on interval I if for all x,y ∈ I and all
t ∈ [0,1]

(1− t) f (x)+ t f (y) � f ((1− t)x+ ty) (6)

holds. If the inequality in (6) is reversed, then f is said to be concave. In this article,
the inequality (6) will be referred to as the scalar Jensen inequality.

As we previously announced, we quote the refinement of the scalar Jensen in-
equality derived in [4]. If f : [0,1] → R is a convex function and N is a nonnegative
integer, then

(1− t) f (0)+ t f (1)− f (t) �
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(t), (7)

where

Δ f (n,k) = f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)
,

the functions rn(t) are defined recursively by

r0(t) =min{t,1− t}
rn(t) =min{2rn−1(t),1−2rn−1(t)},
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and where χ stands for a characteristic function of the corresponding interval. Any
summation having ∑N−1

n=0 is assumed to be zero for N = 0, therefore in this case
the inequality (7) coincides with (6). Moreover, since f is convex, it follows that
Δ f (n,k) � 0, therefore (7) represents the refinement of the inequality (6). In particular,
if N = 1, the right-hand side of the inequality (7) becomes r0(t)Δ f (0,1) providing the
well-known refinement of the Jensen inequality (for more details, see [11]):

(1− t) f (0)+ t f (1)− f (t) � r0(t)
(
f (0)+ f (1)−2 f

(
1
2

))
.

It has been shown in [4] that the functions rn can be rewritten in an explicit form

rn(t) =

{
2nt− k+1, k−1

2n � t � 2k−1
2n+1 ,

k−2nt, 2k−1
2n+1 < t � k

2n ,

for k = 1,2, . . . ,2n .
In particular, applying the inequality (7) to a convex function f (t) = a1−tbt , a,b >

0, t ∈ [0,1] , one obtains

(1− t)a+ tb

� a1−tbt +
N−1

∑
n=0

rn(t)
2n

∑
k=1

(
a

1
2− k−1

2n+1 b
k−1
2n+1 −a

1
2− k

2n+1 b
k

2n+1
)2χ( k−1

2n , k
2n )(t),

(8)

which represents a refinement of the Young inequality (5).
Motivated by the inequality (7), in this paper we develop a general method for

improving two classes of Jensen-type inequalities for bounded self-adjoint operators
on a Hilbert space. The first class refers to mere convexity, while the second one deals
with the operator convexity.

The paper is divided into five sections as follows: After this Introduction, in Sec-
tion 2 we obtain the improved class of Jensen-type inequalities for convex functions.
The main result is then applied to quasi-arithmetic and power operator means. As a
consequence, we obtain improved forms of inequalities between arithmetic, geometric
and harmonic operator means, presented in the Introduction. In Section 3 we derive a
similar refinement for a class of Jensen-type inequalities regarding operator convexity.
The main result is also applied to quasi-arithmetic and power operator means. In Sec-
tion 4 we consider some mappings possessing the so-called joint concavity property.
The most important are connections, the heart of the famous theory developed by Kubo
and Ando [18]. Namely, the operator means are defined via connections and there is an
one-to-one correspondence between connections and nonnegative operator monotone
functions on R+ . By virtue of the improved Jensen-type inequality from Section 3 we
obtain the strengthened form of the joint concavity property, and as an application, we
obtain refinements for the weighted operator versions of the Hölder and Minkowski in-
equalities. Based on the refined Young inequality (8), in the last section we give several
strengthened Young-type inequalities for unitarily invariant norms.
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2. A unified treatment of the improved Jensen operator inequality
for convex functions

Based on the inequality (7), in this section we provide a unified approach to the
operator Jensen-type inequality referring to a usual convexity. In this regard, our first
step is to extend relation (7) to hold for an arbitrary interval. We have the following
simple result.

LEMMA 1. Suppose f : [a,b] → R is a convex function and let N ba a nonnega-
tive integer. Then the inequality

(1− t) f (a)+ t f (b)− f ((1− t)a+ tb)

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (a,b,n,k)χ( k−1
2n , k

2n )(t)
(9)

holds for all t ∈ [0,1] , where

Δ f (a,b,n,k) = f

(
2n− k+1

2n a+
k−1
2n b

)
+ f

(
2n− k

2n a+
k
2n b

)

−2 f

(
2n+1−2k+1

2n+1 a+
2k−1
2n+1 b

)
.

If f : [a,b] → R is a concave function, then the sign of inequality (9) is reversed.

Proof. The inequality (9) follows directly from (7) by replacing f (t) with a func-
tion f ((1− t)a + tb) , which is obviously convex on [a,b] . The reversed inequality
for the case of a concave function f follows by using the fact that the function − f is
convex. �

REMARK 1. Due to the Jensen inequality, it follows that Δ f (a,b,n,k)� 0. There-
fore (9) represents the improvement of the Jensen scalar inequality (6).

REMARK 2. According to the inequality (9), in this paper we deal with Jensen-
type inequalities including two points (or two operators in the operator case). On the
other hand, it has been shown in [11] that if f : I →R is convex function and ∑k

i=1 wi =
1, wi � 0, then the relation

max
1�i�k

{wi} jk( f ,x) �
k

∑
i=1

wi f (xi)− f

( k

∑
i=1

wixi

)
� min

1�i�k
{wi} jk( f ,x), (10)

where jk( f ,x) = ∑k
i=1 f (xi)−k f

(
1
k ∑k

i=1 xi
)
, holds for all x = (x1,x2, . . . ,xk) ∈ Ik . The

first inequality in the above relation represents the converse while the second one pro-
vides the refinement of the Jensen inequality. It should be noticed here that the inequal-
ity (9) with N = 1 and the second inequality in (10) with k = 2 coincide.
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Now, by virtue of the functional calculus we obtain the following Jensen-type
inequality for bounded self-adjoint operators on a Hilbert space. Throughout, 1H stands
for an identity operator on a Hilbert space H .

THEOREM 1. Suppose I is an interval in R , let d ∈ I , and let N be a nonnegative
integer. If f : I →R is a continuous convex function and X ∈Bh(H) such that Sp(X)⊆
I , then the inequality

(1− t) f (d1H)+ t f (X)− f ((1− t)d1H + tX)

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (d1H ,X ,n,k)χ( k−1
2n , k

2n )(t),
(11)

where

Δ f (d1H ,X ,n,k) = f
(
d1H∇ k−1

2n
X

)
+ f

(
d1H∇ k

2n
X

)−2 f
(
d1H∇ 2k−1

2n+1
X

)
,

holds for all t ∈ [0,1] . If f : I → R is a concave function, then the sign of inequality
(11) is reversed.

Proof. Let x ∈ I . We will first show that the scalar inequality

(1− t) f (d)+ t f (x)− f ((1− t)d+ tx) �
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (d,x,n,k)χ( k−1
2n , k

2n )(t) (12)

holds for all x ∈ I and t ∈ [0,1] . If x � d , then the above inequality holds due to (9).
Otherwise, if x � d , then, employing (9) with a = x and b = d yields the relation

(1− t) f (x)+ t f (d)− f ((1− t)x+ td)�
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (x,d,n,k)χ( k−1
2n , k

2n )(t).

Now, let u = 1− t , t ∈ [0,1] . Then χ( k−1
2n , k

2n )(1−u) = χ( 2n−k
2n , 2n−k+1

2n )(u) holds for all

u∈ [0,1] . Moreover, since Δ f (x,d,n,k) = Δ f (d,x,n,2n−k+1) and rn(u) = rn(1−u) ,
due to symmetry, the previous inequality reduces to

(1−u) f (d)+u f (x)− f ((1−u)d+ux)

�
N−1

∑
n=0

rn(u)
2n

∑
k=1

Δ f (d,x,n,2n− k+1)χ(2n−k
2n , 2n−k+1

2n )(u),

which clearly coincides with (12). Hence the inequality (12) holds for all x ∈ I and
t ∈ [0,1] .

Now, continuous functional calculus provides for the function f , which is contin-
uous on I to act on the self-adjoint operator X . Order preserving property for operator
functions provides that (12) holds if we substitute x by X . Hence the statement of the
theorem is true. �

Our next step is to give a form of Theorem 1 which will be more suitable for our
applications.



306 D. CHOI, M. KRNIĆ AND J. PEČARIĆ

COROLLARY 1. Let I be an interval in R and let d ∈ I . Suppose A ∈ B++(H)
and B ∈ Bh(H) are such that Sp

(
A− 1

2 BA− 1
2
) ⊆ I . If f : I → R is continuous convex

function, then the inequality

(1− t) f (d)A+ tA
1
2 f

(
A− 1

2 BA− 1
2
)
A

1
2 −A

1
2 f ((1− t)d1H + tA− 1

2 BA− 1
2 )A

1
2

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

A
1
2 Δ f (d,A− 1

2 BA− 1
2 ,n,k)A

1
2 χ( k−1

2n , k
2n )(t),

(13)

where

Δ f (d,A− 1
2 BA− 1

2 ,n,k) = f
(
A− 1

2

(
dA∇ k−1

2n
B
)

A− 1
2

)
+ f

(
A− 1

2

(
dA∇ k

2n
B
)

A− 1
2

)
−2 f

(
A− 1

2

(
dA∇ 2k−1

2n+1
B

)
A− 1

2

)
,

holds for all t ∈ [0,1] . If f : I → R is a concave function, then the sign of inequality
(13) is reversed.

Proof. We utilize relation (11) with X = A− 1
2 BA− 1

2 . In addition, multiplying the
inequality by A

1
2 both-sidedly, which preserves the operator order, we obtain (13). �

Our first application of Corollary 1 refers to quasi-arithmetic means. Let ϕ : I →R

be a continuous strictly monotone function. We define

Mϕ(A,B;t) = ϕ−1 ((1− t)ϕ(A)+ tϕ(B)), t ∈ [0,1],

where A,B ∈ Bh(H) are such that their spectra are contained in the interval I . In this
regard, Corollary 1 can be rewritten in the following form:

COROLLARY 2. Suppose ϕ ,ψ : I →R are continuous strictly monotone functions

and let 1∈ I . Further, let A∈B++(H) and B∈Bh(H) be such that Sp
(
A− 1

2 BA− 1
2
)⊆

I . If N is a nonnegative integer and ϕ ◦ψ−1 is well-defined and convex on ψ(I) , then
the inequality

A
1
2 ϕ

(
Mϕ (1H ,A− 1

2 BA− 1
2 ;t)

)
A

1
2 −A

1
2 ϕ

(
Mψ(1H ,A− 1

2 BA− 1
2 ; t)

)
A

1
2

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

A
1
2 Δϕ,ψ(A− 1

2 BA− 1
2 ,n,k)A

1
2 χ( k−1

2n , k
2n )(t),

(14)

where

Δϕ,ψ (X ,n,k) = ϕ
(
Mψ (1H ,X ; k−1

2n )
)
+ ϕ

(
Mψ (1H ,X ; k

2n )
)−2ϕ

(
Mψ(1H ,X ; 2k−1

2n+1 )
)

,

holds for all t ∈ [0,1] . If ϕ ◦ψ−1 is a concave function, then the sign of inequality (14)
is reversed.
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Proof. It follows from the inequality (13) with the function ϕ ◦ψ−1 : ψ(I) → R

and with ψ
(
A− 1

2 BA− 1
2
)

and ψ(1) instead of A− 1
2 BA− 1

2 and d respectively. �

The most common example of a quasi-arithmetic mean is a power operator mean
defined by

Mr (A,B;t) =

{
((1− t)Ar + tBr)

1
r , r �= 0

exp((1− t) logA+ t logB) , r = 0,
(15)

where A,B ∈ B++(H) .
Now, taking into account the Corollary 2 we obtain the improved series of inequal-

ities for power operator means.

COROLLARY 3. Let A,B ∈ B++(H) and let t ∈ [0,1] .

(i) If either s � 0 � r or r � 0 � s or 0 � r � s or s � r � 0 , then holds the
inequality

A
1
2 Ms

s

(
1H ,A− 1

2 BA− 1
2 ;t

)
A

1
2 −A

1
2 Ms

r

(
1H ,A− 1

2 BA− 1
2 ; t

)
A

1
2

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

A
1
2 Δs,r

(
A− 1

2 BA− 1
2 ,n,k

)
A

1
2 χ( k−1

2n , k
2n )(t),

(16)

where

Δs,r(X ,n,k) = Ms
r

(
1H ,X ; k−1

2n

)
+Ms

r

(
1H ,X ; k

2n

)−2Ms
r

(
1H ,X ; 2k−1

2n+1

)
.

Further, if 0 � s � r or r � s � 0 , then the sign of inequality in (16) is reversed.

(ii) If r < 0 , then

A
1
2 logM0

(
1H ,A− 1

2 BA− 1
2 ;t

)
A

1
2 −A

1
2 logMr

(
1H ,A− 1

2 BA− 1
2 ; t

)
A

1
2

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

A
1
2 Δr

(
A− 1

2 BA− 1
2 ,n,k

)
A

1
2 χ( k−1

2n , k
2n )(t),

(17)

where

Δr(X ,n,k) = logMr
(
1H ,X ; k−1

2n

)
+ logMr

(
1H ,X ; k

2n

)
−2logMr

(
1H ,X ; 2k−1

2n+1

)
,

while for r > 0 the sign of inequality is reversed.

Proof. The proof is a consequence of Corollary 2, accompanied with particular
choices of functions ϕ and ψ .
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First, set ϕ(t) = ts and ψ(t) = tr , where s and r are real parameters such that
r �= 0. The function

(
ϕ ◦ψ−1

)
(t) = t

s
r is convex on R+ if s

r � 0 or s
r � 1, which is

possible in each of the following four cases: s � 0 < r or r < 0 � s or 0 < r � s or
s � r < 0. Therefore we obtain (16).

Conversely, the function
(
ϕ ◦ψ−1

)
(t) = t

s
r is concave on R+ provided that 0 �

s
r � 1, therefore, if 0 � s � r �= 0 or 0 �= r � s � 0, we have (16) with reversed signs
of the inequality.

It remains to consider non-trivial cases when one of the parameters r and s is
equal to zero. If r = 0, then, setting ϕ(t) = ts and ψ(t) = logt , it follows that the
function

(
ϕ ◦ψ−1

)
(t) = exp(st) is convex for every s ∈ R , that is, we obtain that the

inequality (16) with r = 0 holds for all s ∈ R .
Finally, if s = 0, then, putting ϕ(t) = logt and ψ(t) = tr , it follows that(

ϕ ◦ψ−1
)
(t) = 1

r logt . Obviously, this function is convex (concave) for r < 0 (r > 0),
which yields (17) and the corresponding reversed inequality. �

By virtue of Corollary 3 we can improve the arithmetic-geometric harmonic oper-
ator mean inequality (1) as well as its refinements presented in the Introduction.

REMARK 3. Since

M1
(
1H ,A− 1

2 BA− 1
2 ;t

)
=(1− t)1H + tA− 1

2 BA− 1
2 ,

M−1
(
1H ,A− 1

2 BA− 1
2 ;t

)
=

(
(1− t)1H + tA

1
2 B−1A

1
2
)−1

,

and so,

A
1
2 M1

(
1H ,A− 1

2 BA− 1
2 ;t

)
A

1
2 =A∇tB,

A
1
2 M0

(
1H ,A− 1

2 BA− 1
2 ;t

)
A

1
2 =A!tB,

the inequality (16) with s = 1 and r = −1 reduces to

A∇tB−A!tB

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

(
A! k−1

2n
B+A! k

2n
B−2A! 2k−1

2n+1
B

)
χ( k−1

2n , k
2n )(t),

(18)

where 0 � t � 1. If N = 1, the inequality (18) reduces to the well-known relation in
which the difference between the weighted arithmetic and harmonic mean is bounded
by the difference of the corresponding nonweighted means (see [24]):

A∇tB−A!tB � 2r0(t)(A∇B−A!B).

REMARK 4. Since M0
(
1H ,A− 1

2 BA− 1
2 ;t

)
=

(
A− 1

2 BA− 1
2
)t

, it follows that

A
1
2 M0

(
1H ,A− 1

2 BA− 1
2 ;t

)
A

1
2 = A�tB.
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Therefore the inequality (16) with s = 1 and r = 0 reduces to

A∇tB−A�tB

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

(
A� k−1

2n
B+A� k

2n
B−2A� 2k−1

2n+1
B

)
χ( k−1

2n , k
2n )(t),

(19)

where 0 � t � 1. This inequality provides more accurate arithmetic-geometric mean
inequality than the refinements presented in the Introduction. Namely, if N = 1, the
inequality (19) reduces to (2), while for N = 2 we obtain inequalities (3) and (4) estab-
lished in [25].

REMARK 5. By virtue of Corollary 3, we can also improve the geometric-harmonic
mean inequality. Namely, since the function g(t) = − 1

t is operator monotone on R+

(see [9], p.9), it follows that
(
A�tB

)−1 �
(
A!tB

)−1
. Therefore, considering (16) with

s = −1, r = 0 and multiplying the inequality by A−1 both-sidedly, we obtain the cor-
responding refinement:

(
A!tB

)−1− (
A�tB

)−1

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

((
A� k−1

2n
B
)−1 +

(
A� k

2n
B
)−1 −2

(
A� 2k−1

2n+1
B
)−1

)
χ( k−1

2n , k
2n )(t).

3. Extension to operator convexity

The method for improving Jensen-type inequalities presented in the previous sec-
tion can also be applied to operator convex functions. Recall that a real valued contin-
uous function f on an interval I is said to be operator convex if

(1− t) f (A)+ t f (B) � f ((1− t)A+ tB) (20)

holds for all t ∈ [0,1] and for every pair of selfadjoint operators A and B on a Hilbert
space H whose spectra are contained in I . If the sign of inequality (20) is reversed then
f is an operator concave function.

It has been shown in [17] that for an operator convex function there is a more
accurate version of (20). More precisely, if f : I → R is operator convex function, then

(1− t) f (A)+ t f (B)− f ((1− t)A+ tB)

� r0(t)
(

f (A)+ f (B)−2 f

(
A+B

2

))
,

(21)

assuming that A and B are selfadjoint operators with spectra contained in the interval I .
It should be noticed here that the right-hand side of (21) represents the positive operator
due to operator convexity of f .

Now, motivated by the techniques presented in [4], we can obtain even more pre-
cise estimate than the relation (21).
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THEOREM 2. Let f : I → R be an operator convex function and let N ba a non-
negative integer. If A,B ∈ Bh(H) are such that their spectra are contained in I , then
the inequality

(1− t) f (A)+ t f (B)− f ((1− t)A+ tB)

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (A,B,n,k)χ( k−1
2n , k

2n )(t),
(22)

where

Δ f (A,B,n,k) = f
(
A∇ k−1

2n
B
)

+ f
(
A∇ k

2n
B
)
−2 f

(
A∇ 2k−1

2n+1
B

)
,

holds for all t ∈ [0,1] . If f : I → R is operator concave function, then the sign of
inequality (22) is reversed.

Proof. Let N be a nonnegative integer. Denote by ϕN(t) , t ∈ [0,1] , a parametric
function

ϕN(t) = (1− t) f (A)+ t f (B)−
N−1

∑
n=0

rn(t)
2n

∑
k=1

Δ f (A,B,n,k)χ( k−1
2n , k

2n )(t).

The starting point in our proof is to find a more suitable form of the above function. We
will show that the relation

ϕN(t) =
(
k−2Nt

)
f

(
2N − k+1

2N A+
k−1
2N B

)

+
(
2Nt− k+1

)
f

(
2N − k

2N A+
k
2N B

) (23)

holds for k−1
2N � t � k

2N and k = 1,2, . . . ,2N . In order to prove our assertion, we use
induction on N . Obviously, if N = 0, then ϕ0(t) = (1− t) f (A)+ t f (B) so that (23)
holds.

Further, suppose that (23) holds for N and let m−1
2N+1 � t � m

2N+1 , m = 1,2, . . . ,2N+1 .
We consider two cases depending on whether m is an odd or an even integer. If m =
2l−1, l ∈ N , then l−1

2N � t � 2l−1
2N+1 < l

2N and therefore

ϕN+1(t) = ϕN(t)− rN(t)
2N

∑
k=1

Δ f (A,B,N,k)χ(
k−1
2N , k

2N

)(t)

= ϕN(t)− rN(t)Δ f (A,B,N, l).

Clearly, since l−1
2N � t � 2l−1

2N+1 , it follows that rN(t) = 2Nt − l + 1. Finally, rewriting
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expressions for ϕN(t) and Δ f (A,B,N, l) , we have

ϕN+1(t) =
(
2l−2N+1t−1

)
f

(
2N − l +1

2N A+
l−1
2N B

)

+
(
2N+1t−2l +2

)
f

(
2N+1−2l +1

2N+1 A+
2l−1
2N+1 B

)

=
(
m−2N+1t

)
f

(
2N+1−m+1

2N+1 A+
m−1
2N+1 B

)

+
(
2N+1t−m+1

)
f

(
2N+1−m

2N+1 A+
m

2N+1 B

)
.

The case of an even integer is treated in the similar way. Namely, if m = 2l , then
l−1
2N < 2l−1

2N+1 � t � l
2N , which implies that rN(t) = l−2Nt . Therefore, as in the previous

case, we have

ϕN+1(t) = ϕN(t)− rN(t)Δ f (A,B,N, l)

=
(
2N+1t−2l +1

)
f

(
2N − l

2N A+
l

2N B

)

+
(
2l−2N+1t

)
f

(
2N+1−2l +1

2N+1 A+
2l−1
2N+1 B

)

=
(
2N+1t−m+1

)
f

(
2N+1−m

2N+1 A+
m

2N+1 B

)

+
(
m−2N+1t

)
f

(
2N+1−m+1

2N+1 A+
m−1
2N+1 B

)
,

so the relation (23) holds for all nonnegative integers N .
Now, let t ∈ [0,1] and let k ∈ {

1,2, . . . ,2N
}

be such that k−1
2N � t � k

2N . A straight-
forward computation shows that the convex combination of operators A and B , that is,
(1− t)A+ tB , can be rewritten as a convex combination of operators 2N−k+1

2N A+ k−1
2N B

and 2N−k
2N A+ k

2N B in the following way:

(1− t)A+ tB =
(
k−2Nt

)(
2N − k+1

2N A+
k−1
2N B

)

+
(
2Nt− k+1

)(
2N − k

2N A+
k
2N B

)
.

Finally, applying the operator convexity of the function f to the above convex combi-
nation and taking into account relation (23), it follows that

f ((1− t)A+ tB) � ϕN(t),

which yields the inequality (22).
The reversed inequality for the case of operator concave function f follows by

using the fact that − f is an operator convex function. �
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REMARK 6. Since Δ f (A,B,n,k) � 0 for an operator convex function f , the in-
equality (22) provides the refinement of (20). Moreover, if N = 0, the inequality
(22) coincides with (20), while for N = 1, the right-hand side of (22) becomes
r0(t)Δ f (A,B,0,1), that is, we obtain the inequality (21).

Similarly to the previous section, we first give a variant of Theorem 2 which refers
to quasi-arithmetic means.

COROLLARY 4. Suppose ϕ ,ψ : I → R are continuous strictly monotone func-
tions and let A,B ∈ Bh(H) be such that their spectra are contained in I . If N is a
nonnegative integer and ϕ ◦ψ−1 is well-defined and operator convex on ψ(I) , then
the inequality

ϕ
(
Mϕ(A,B;t)

)−ϕ
(
Mψ(A,B;t)

)
�

N−1

∑
n=0

rn(t)
2n

∑
k=1

Δϕ,ψ(A,B,n,k)χ( k−1
2n , k

2n )(t),
(24)

where

Δϕ,ψ(A,B,n,k) = ϕ
(
Mψ (A,B; k−1

2n )
)
+ ϕ

(
Mψ (A,B; k

2n )
)−2ϕ

(
Mψ(A,B; 2k−1

2n+1 )
)

,

holds for all t ∈ [0,1] . If ϕ ◦ψ−1 is operator concave, then the sign of inequality (24)
is reversed.

Proof. It follows from the inequality (22) accompanied with the function ϕ ◦ψ−1 :
ψ(I) → R and with operators ψ(A) , ψ(B) instead of A , B respectively. �

In addition, the Corollary 4 can also be rewritten in terms of power operator means.

COROLLARY 5. Let A,B ∈ B++(H) and let t ∈ [0,1] .

(i) If either 0 < r � s � 2r or 2r � s � r < 0 or 0 � s+ r � r or r � r + s � 0 , then
holds the inequality

Ms
s

(
A,B;t

)−Ms
r

(
A,B;t

)
�

N−1

∑
n=0

rn(t)
2n

∑
k=1

Δs,r
(
A,B,n,k

)
χ( k−1

2n , k
2n )(t),

(25)

where

Δs,r(A,B,n,k) = Ms
r

(
A,B; k−1

2n

)
+Ms

r

(
A,B; k

2n

)−2Ms
r

(
A,B; 2k−1

2n+1

)
.

Further, if r � s � 0 or 0 � s � r , then the sign of inequality (25) is reversed.
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(ii) If r < 0 , then

logM0
(
A,B;t

)− logMr
(
A,B;t

)
�

N−1

∑
n=0

rn(t)
2n

∑
k=1

Δr
(
A,B,n,k

)
χ( k−1

2n , k
2n )(t),

(26)

where

Δr(A,B,n,k) = logMr
(
A,B; k−1

2n

)
+ logMr

(
A,B; k

2n

)
−2logMr

(
A,B; 2k−1

2n+1

)
,

while for r > 0 the sign of inequality is reversed.

Proof. We follow the same procedure as in the proof of Corollary 3 except that we
utilize operator convexity instead of mere convexity.

Setting ϕ(t) = ts and ψ(t)= tr , where s and r are real parameters such that r �= 0,
it follows that

(
ϕ ◦ψ−1

)
(t) = t

s
r . Now, the inequality (25) follows due to the fact that

the function ϕ ◦ψ−1 is operator convex on R+ if either 1 � s
r � 2 or −1 � s

r � 0 and
is operator concave if 0 � s

r � 1 (see [9], p.17).
The inequality (26) follows by substituting ϕ(t) = log t and ψ(t) = tr in (24)

and by noting that the function
(
ϕ ◦ψ−1

)
(t) = 1

r logt is operator convex (operator
concave) for r < 0 (r > 0). �

REMARK 7. Contrary to (16), the inequality (25) does not hold in general if r = 0.
The reason for this lies in the fact that the function f (x) = expx is not operator convex
(see [9], p.17).

Corollaries 4 and 5 provide inequalities for quasi-arithmetic and power means of
two operators. The quasi-arithmetic mean of k self-adjoint operators is defined analo-
gously. Let ϕ : I → R be a continuous strictly monotone function. We define

Mϕ (A;w) = ϕ−1
( k

∑
i=1

wiϕ(Ak)
)

,

where ∑k
i=1 wi = 1, wi � 0, and A = (A1,A2, . . . ,Ak) is a k -tuple of bounded self-

adjoint operators whose spectra are contained in I . The corresponding power mean is
defined as

Mr (A;w) =

{(
∑k

i=1 wiAr
i

) 1
r , r �= 0

exp
(
∑k

i=1 wi logAi
)
, r = 0.

In the following remark we show that corollaries 4 and 5 can be extended to a k -tuple of
positive invertible operators for the case when N = 1. If w = ( 1

k , 1
k , . . . , 1

k ) , we denote
Mϕ(A;w) , Mr (A;w) respectively by Mϕ(A) , Mr (A) , for brevity.
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REMARK 8. It has been shown in [17] that if f : I → R is an operator convex
function and ∑k

i=1 wi = 1, wi � 0, then the relation

max
1�i�k

{wi}Jk( f ,A) �
k

∑
i=1

wi f (Ai)− f

( k

∑
i=1

wiAi

)
� min

1�i�k
{wi}Jk( f ,A), (27)

where Jk( f ,A) = ∑k
i=1 f (Ai)−k f

(
1
k ∑k

i=1 Ai
)
, holds for all operators Ai ∈Bh(H) , i =

1,2, . . . ,k , whose spectra are contained in I . The first inequality in the above relation
provides the converse while the second one represents the refinement of the Jensen
inequality for operator convex functions. Similarly to the real case, the inequality (22)
with N = 1 and the second inequality in (27) with k = 2 coincide.

Now, with the assumptions as in Corollary 4, the series of inequalities in (27)
reduces to

k max
1�i�k

{wi}
(
ϕ

(
Mϕ (A)

)−ϕ
(
Mψ(A)

))
�ϕ

(
Mϕ(A;w)

)−ϕ
(
Mψ(A;w)

)
�k min

1�i�k
{wi}

(
ϕ

(
Mϕ (A)

)−ϕ
(
Mψ(A)

))
.

In addition, substituting the same power functions ϕ and ψ as in the proof of Corollary
5, we obtain the corresponding relations for the power operator means. More precisely,
the series of inequalities

k max
1�i�k

{wi}
(
Ms

s (A)−Ms
r(A)

)
�Ms

s (A;w)−Ms
r(A;w)

�k min
1�i�k

{wi}
(
Ms

s(A)−Ms
r(A)

)
holds if either 0 < r � s � 2r or 2r � s � r < 0 or 0 � s+ r � r or r � r+ s � 0, while
for r � s � 0 or 0 � s � r , the signs of inequalities are reversed. In addition, if r < 0,
then

k max
1�i�k

{wi}
(
logM0(A)− logMr(A)

)
� logM0(A;w)− logMr(A;w)

�k min
1�i�k

{wi}
(
logM0(A)− logMr(A)

)
,

while for r > 0 the signs of inequalities are reversed. These series of inequalities
provide more accurate relations between power operator means than the corresponding
ones in [9] (see Chapter 4.).

Theorem 2 can naturally be extended to the case of an operator convex function in
m variables. Let H,Hi , i = 1,2, . . . ,m , be Hilbert spaces and let X ⊆ ∏m

i=1 Bh(Hi) be
a convex set. A function F : X → Bh(H) is operator convex in m variables if for all
A = (A1,A2, . . . ,Am) , B = (B1,B2, . . . ,Bm) ∈ X and for 0 � t � 1 is

(1− t)F(A)+ tF(B) � F ((1− t)A+ tB). (28)

If the reverse inequality holds in (28), then the function F is operator concave in m
variables. With the above definition, it is obvious that the proof of Theorem 2 can be
extended to the just described multidimensional setting.
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COROLLARY 6. Let H,Hi , i = 1,2, . . . ,m, be Hilbert spaces, let X ⊆∏m
i=1 Bh(Hi)

be a convex set and let F : X → Bh(H) be an operator convex function. If A =
(A1,A2, . . . ,Am) , B = (B1,B2, . . . ,Bm) ∈ X , then the inequality

(1− t)F(A)+ tF(B)−F((1− t)A+ tB)

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

ΔF(A,B,n,k)χ( k−1
2n , k

2n )(t),
(29)

where

ΔF(A,B,n,k) =F

(
2n− k+1

2n A+
k−1
2n B

)
+F

(
2n− k

2n A+
k
2n B

)

−2F

(
2n+1−2k+1

2n+1 A+
2k−1
2n+1 B

)
,

holds for all t ∈ [0,1] . If F : X → Bh(H) is an operator concave function, then the
sign of inequality (29) is reversed.

This corollary will be exploited in the next section where we are going to establish
more precise relations for some significant jointly concave mappings.

4. Applications to some jointly concave mappings

Our aim now is to apply just presented concept of operator convexity of several
variables to some interesting mappings.

The theory of operator means for positive operators on a Hilbert space was estab-
lished and for most part developed by Kubo and Ando [18]. Operator means are defined
via connections. A binary operation (A,B) ∈ B+(H)×B+(H) → AσB ∈ B+(H) in
the cone of positive operators on a Hilbert space H is called a connection if the follow-
ing conditions are satisfied:

(i) monotonicity: A � C and B � D =⇒ AσB � CσD ,

(ii) upper continuity: An ↓ A and Bn ↓ B =⇒ AnσBn ↓ AσB ,

(iii) transformer inequality: T ∗(AσB)T � (T ∗AT )σ(T ∗BT ) for every T .

An operator mean is a connection with

(iv) normalized condition: 1Hσ1H = 1H .

In condition (ii) symbol ↓ denotes the convergence in the strong operator topology.
The key of Kubo-Ando theory is the one-to-one correspondence between connec-

tions and nonnegative operator monotone functions on R+ . Following the Kubo-Ando
theory, Fujii et.al. [6], gave extension of connections to solidarities establishing the
one-to-one correspondence between solidarities and operator monotone functions on
R+ . A binary operation (A,B) ∈ Ds ⊆ B+(H)×B+(H) → AsB ∈ Bh(H) is called a
solidarity if it has the following properties:
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(i) B � C =⇒ AsB � AsC ,

(ii) Bn ↓ B =⇒ AsBn ↓ AsB ,

(iii) An → A strongly =⇒ Ans1H → As1H strongly,

(iv) T ∗(AsB)T � (T ∗AT )s(T ∗BT ) for every T .

Although the solidarity s is defined for every ordered pair of positive invertible opera-
tors, it is not defined for every pair of positive operators. Hence, Ds denotes the max-
imal subset of B+(H)×B+(H) on which solidarity exists as a bounded self-adjoint
operator.

Both connections and solidarities posses numerous common properties, one of
them is the so called joint concavity. More precisely, the following relations hold:

((1− t)A1 + tB1)σ ((1− t)A2 + tB2) � (1− t)A1σA2 + tB1σB2, (30)

((1− t)A1 + tB1)s((1− t)A2 + tB2) � (1− t)A1sA2 + tB1sB2, (31)

where 0 � t � 1 and A1,A2,B1,B2 are positive operators provided that all the expre-
ssions with solidarities exist as bounded operators. In particular, if t = 1

2 , the joint
concavity property reduces to the so-called subadditivity property of connections and
solidarities, e.g.

(A1 +B1)σ(A2 +B2) � A1σA2 +B1σB2

in the case of connections. It should be noticed here that the joint concavity property
of connections and solidarities corresponds to operator concavity in two variables, in
the sense of definition from the previous section. Therefore, utilizing Corollary 6 we
obtain relations which are more accurate than (30) and (31).

COROLLARY 7. Let σ be connection and let N ba a nonnegative integer. If A1 ,
A2 , B1 , B2 ∈ B+(H) , then the inequality

(1− t)A1σA2 + tB1σB2 − ((1− t)A1 + tB1)σ((1− t)A2 + tB2)

�
N−1

∑
n=0

rn(t)
2n

2n

∑
k=1

δσ (A,B,n,k)χ( k−1
2n , k

2n )(t),
(32)

where

δσ (A,B,n,k)
= ((2n− k+1)A1 +(k−1)B1)σ ((2n− k+1)A2 +(k−1)B2)

+ ((2n− k)A1 + kB1)σ ((2n− k)A2 + kB2)

− (
(2n+1−2k+1)A1 +(2k−1)B1

)
σ

(
(2n+1−2k+1)A2 +(2k−1)B2

)
,

holds for all t ∈ [0,1] . In addition, the relation (32) also holds when connection σ
is replaced by a solidarity s, provided that all expressions with solidarities exist as
bounded operators.
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Proof. We utilize Corollary 6 with m = 2 and with connection σ instead of F .
Moreover, taking into account homogeneity property of a connection (solidarity) i.e.
α (XσY ) = (αX)σ (αY ) , X ,Y ∈ B+(H) , α > 0 (see [9], p.140), it follows that

Δσ (A,B,n,k) =
1
2n δσ (A,B,n,k), A = (A1,A2),B = (B1,B2),

so (32) holds. �

REMARK 9. The inequality (32) provides better estimate than the joint concavity
relation (30). Note also that the inequality δσ (A,B,n,k) � 0 represents the subadditiv-
ity property of connection σ . If N = 1, the right-hand side of (32) reduces to

r0(t)δσ (A,B,0,1) = r0(t)(A1σA2 +B1σB2 − (A1 +B1)σ(A2 +B2)) ,

providing the relation derived in [17].

REMARK 10. Our first application of Corollary 7 refers to a geometric mean. Let
p and q be conjugate exponents, i.e. 1

p + 1
q = 1, p > 1. By letting σ to be geometric

mean � 1
p

and replacing A1 , A2 , B1 , B2 ∈ B++(H) respectively by Ap
1 , Aq

2 , Bp
1 , Bq

2 ,

the inequality (32) reads

(1− t)Ap
1� 1

p
Aq

2 + tBp
1� 1

p
Bq

2−
(
(1− t)Ap

1 + tBp
1

)
� 1

p

(
(1− t)Aq

2 + tBq
2

)
�

N−1

∑
n=0

rn(t)
2n

2n

∑
k=1

δ� 1
p
(Ap,q,Bp,q,n,k)χ( k−1

2n , k
2n )(t),

where Ap,q =
(
Ap

1 ,A
q
2

)
and Bp,q =

(
Bp

1 ,B
q
2

)
. This relation represents a refinement of

the weighted operator Hölder’s inequality in two dimensional case.
Another example of connection is a parallel sum. Recall that for X ,Y ∈ B++(H)

the parallel sum : is defined by X : Y =
(
X−1 +Y−1

)−1
. Now, considering (32) with

A−1
1 , A−1

2 , B−1
1 , B−1

2 instead of A1 , A2 , B1 , B2 ∈ B++(H) , we obtain the inequality

(1− t)(A1 +A2)
−1 + t (B1 +B2)

−1

− (
(1− t)A−1

1 + tB−1
1

)−1− (
(1− t)A−1

2 + tB−1
2

)−1

�
N−1

∑
n=0

rn(t)
2n

2n

∑
k=1

δ:(A−1,B−1,n,k)χ( k−1
2n , k

2n )(t),

where A−1 =
(
A−1

1 ,A−1
2

)
and B−1 =

(
B−1

1 ,B−1
2

)
. This inequality yields a refinement

of the weighted form of Minkowski’s inequality in two dimensional case. Note also that
nonweighted versions of operator Hölder’s and Minkowski’s inequalities were estab-
lished in [20], so our relations may be regarded as more accurate weighted extensions
in two dimensional case. Furthermore, scalar forms of these relations were obtained in
[21] (see also [19], p.718).
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REMARK 11. A common example of a solidarity is relative operator entropy de-
fined by S(X |Y ) = X

1
2
(
logX− 1

2YX− 1
2
)
X

1
2 , where X ,Y ∈ B++(H) . In this setting, the

inequality (32) becomes

(1− t)S(A1|A2)+ tS(B1|B2)−S ((1− t)A1 + tB1|(1− t)A2 + tB2)

�
N−1

∑
n=0

rn(t)
2n

2n

∑
k=1

δS(A,B,n,k)χ( k−1
2n , k

2n )(t),

providing a more accurate joint concavity relation for relative operator entropy. The
previous relation can also be extended to hold for a parametric extension of the relative
operator entropy known as the Tsallis relative operator entropy Tλ (X |Y ) =
X

1
2
(
logλ X− 1

2YX− 1
2
)
X

1
2 , 0 < λ � 1, X ,Y ∈ B++(H) (see [7]).

REMARK 12. It is interesting that the weighted geometric mean can be conside-
red as a jointly concave mapping. Fujii et.al. [5], introduced the weighted geometric
mean G[m,μ ] , 0 � μ � 1, for an m-tuple of positive invertible operators A1,A2, . . . ,Am

as follows: Let G[2,μ ](A1,A2) = A1�μA2 = A
1
2
1 (A− 1

2
1 A2A

− 1
2

1 )μA
1
2
1 . For m � 3, G[m,μ ]

is defined inductively: Put A(1)
i = Ai , i = 1,2, . . . ,m , and

A(r)
i = G[n−1,μ ]

(
A(r−1)

1 , . . . ,A(r−1)
i−1 ,A(r−1)

i+1 , . . . ,A(r−1)
n

)
.

Then, there exist limr→∞ A(r)
i in the Thompson metric which does not depend on i and

the weighted geometric mean is defined as G[m,μ ](A1,A2, . . . ,Am) = limr→∞ A(r)
i . It

has been shown in [5] that the geometric mean G[m,μ ] is jointly concave mapping
acting on m-tuple of positive invertible operators. Consequently, Corollary 6 yields
more accurate joint concavity relation, i.e.

(1− t)G[m,μ ](A)+ tG[m,μ ](B)−G[m,μ ]((1− t)A+ tB)

�
N−1

∑
n=0

rn(t)
2n

∑
k=1

ΔG[m,μ](A,B,n,k)χ( k−1
2n , k

2n )(t),

where A = (A1,A2, . . . ,Am) , B = (B1,B2, . . . ,Bm) , and ΔG[m,μ] is defined in Corollary
6.

5. Some strengthened Young-type inequalities for unitarily invariant norms

Finally, in the last section we will improve some important Young-type inequalities
for unitarily invariant norms. For that sake, we are going to exploit the scalar inequality
(8) presented in the Introduction.

In this section, Mm(C) is the algebra of all m×m complex matrices and ||| · |||
stands for any unitarily invariant norm on Mm(C) . So, |||UAV ||| = |||A||| for all A ∈
Mm(C) and for all unitary matrices U,V ∈ Mm(C) . The Hilbert-Schmidt norm, the

trace norm, and the spectral norm of A∈Mn(C) are defined by ‖A‖2 = (∑m
j=1 s2

j (A))
1
2 ,
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‖A‖1 = ∑m
j=1 s j(A) , and ‖A‖= s1(A) , respectively, where s1(A) � s2(A) � · · ·� sm(A)

are the singular values of A , i.e. the eigenvalues of the positive semidefinite matrix
|A| = (A∗A)

1
2 . Clearly, these norms are unitarily invariant.

The Hilbert-Schmidt norm plays an important role in matrix analysis since ‖A‖2 =
(∑m

i, j=1 |ai j|2) 1
2 for A = [ai j] ∈ Mm(C) . This fact makes this norm easily computable

and geometrically tractable.

Bhatia and Parthasarathy [2] and Kosaki [16], proved the so-called X -version of
the Young inequality for the case of the Hilbert-Schmidt norm: if A,B,X ∈ Mm(C) are
such that A and B are positive semidefinite and 0 � t � 1, then

‖(1− t)AX + tXB‖2 � ‖A1−tXBt‖2. (33)

Now, the scalar Young inequality (8) yields the improved form of (33).

THEOREM 3. Let A,B,X ∈ Mm(C) be such that A and B are positive semidefi-
nite, and let 0 � t � 1 . If N is a nonnegative integer, then holds the inequality

‖(1− t)AX + tXB‖2
2 � ‖A1−tXBt‖2

2 + r2
0(t)‖AX −XB‖2

2

+
N−1

∑
n=1

rn(t)
2n

∑
k=1

‖A1− k−1
2n XB

k−1
2n −A1− k

2n XB
k
2n ‖2

2χ( k−1
2n , k

2n )(t).

(34)

Proof. Utilizing the spectral theorem for positive semidefinite matrices A and B ,
it follows that there exist unitary matrices U,V ∈ Mm(C) such that A = UΛU∗ and
B =VΓV ∗ , where Λ = diag(λ1,λ2, . . . ,λm) and Γ = diag(γ1,γ2, . . . ,γm) , with λi,γi � 0
for i = 1,2, . . . ,m . If Y = U∗XV = [yi j] , then

(1− t)AX + tXB =U [((1− t)λi + tγ j)yi j]V ∗

A1−tXBt =U
[
λ 1−t

i γt
jyi j

]
V ∗

and

A1− k−1
2n XB

k−1
2n −A1− k

2n XB
k
2n = U

[(
λ 1− k−1

2n
i γ

k−1
2n

j −λ 1− k
2n

i γ
k
2n
j

)
yi j

]
V ∗.

On the other hand, a straightforward computation shows that the relation

((1− t)a+ tb)2− r2
0(t)(a−b)2 = (1− t)a2 + tb2− r0(t)(a−b)2

holds for all nonnegative real numbers a and b . Now, taking into account this relation
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and the inequality (8), it follows that

‖(1− t)AX + tXB‖2
2 =

m

∑
i, j=1

((1− t)λi + tγ j)
2 |yi j|2

= r2
0(t)

m

∑
i, j=1

(λi− γ j)
2 |yi j|2

+
m

∑
i, j=1

(
(1− t)λ 2

i + tγ2
j − r0(t)(λi − γ j)2) |yi j|2

� r2
0(t)

m

∑
i, j=1

(λi − γ j)
2 |yi j|2 +

m

∑
i, j=1

(
λ 1−t

i γt
j

)2 |yi j|2

+
N−1

∑
n=1

rn(t)
2n

∑
k=1

m

∑
i, j=1

(
λ 1− k−1

2n
i γ

k−1
2n

j −λ 1− k
2n

i γ
k
2n
j

)2|yi j|2χ( k−1
2n , k

2n )(t)

= r2
0(t)‖AX −XB‖2

2 +‖A1−tXBt‖2
2

+
N−1

∑
n=1

rn(t)
2n

∑
k=1

‖A1− k−1
2n XB

k−1
2n −A1− k

2n XB
k
2n ‖2

2χ( k−1
2n , k

2n )(t). �

REMARK 13. If N = 1, the inequality (34) becomes the refinement of (33) due
to Hirzallah and Kittaneh [10]. In addition, if N = 2 the inequality (34) becomes the
relation established in [25]. Some related refinements of the Young inequality (33),
with some extra conditions on matrices A and B can also be found in [12].

If X is a unit matrix, the inequality (33) holds for every unitarily invariant norm
(see [1]). Otherwise, the inequality (33) may not hold for other unitarily invariant
norms. However, it has been shown in [16] that the following weakened form of the
Young inequality holds for every unitarily invariant norm:

(1− t)|||AX |||+ t|||XB|||� |||A1−tXBt |||.

This weakened form of the Young inequality can also be refined via (8).

COROLLARY 8. Let A,B,X ∈ Mm(C) be such that A and B are positive semidef-
inite and 0 � t � 1 . If N is a nonnegative integer then holds the inequality

(1− t)|||AX |||+ t|||XB|||

� |||A1−tXBt |||+
N−1

∑
n=0

rn(t)
2n

∑
k=1

(|||AX ||| 1
2− k−1

2n+1 |||XB||| k−1
2n+1

−|||AX ||| 1
2− k

2n+1 |||XB||| k
2n+1

)2χ( k−1
2n , k

2n )(t).

(35)

Proof. It follows from the inequality (8) with a = |||AX ||| and b = |||XB||| , since
|||A1−tXBt ||| � |||AX |||1−t |||XB|||t (see [13]). �
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REMARK 14. Specializing the inequality (35) for the trace norm and letting X to
be a unit matrix, it follows that

tr((1− t)A+ tB)

� tr
∣∣A1−tBt

∣∣+N−1

∑
n=0

rn(t)
2n

∑
k=1

(
(trA)

1
2− k−1

2n+1 (trB)
k−1
2n+1 −(trA)

1
2− k

2n+1 (trB)
k

2n+1
)2χ( k−1

2n , k
2n )(t),

which represents improved trace version of the Young inequality. If N = 1 the above
inequality reduces to the relation established in [14].
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