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POLYNOMIAL AND MULTILINEAR HARDY––LITTLEWOOD

INEQUALITIES: ANALYTICAL AND NUMERICAL APPROACHES

JAMILSON R. CAMPOS, WASTHENNY CAVALCANTE, VINÍCIUS V. FÁVARO,
DANIEL PELLEGRINO AND DIANA M. SERRANO-RODRÍGUEZ

(Communicated by C. P. Niculescu)

Abstract. We investigate the constants of the polynomial and multilinear Hardy–Littlewood in-
equalities. Among other results, we show that a simple application of the best known constants
of the Clarkson inequality improves a recent result of Araújo et al. In a final section, as an
independent appendix, we present some computer-aided estimates for the lower bounds of the
multilinear Hardy–Littlewood inequalities.

1. Introduction

Let K be the real or complex scalar field, and m � 1 be a positive integer. In
1930 Littlewood proved his well-known 4/3 inequality to solve a problem posed by
P.J. Daniell (see [20]). The Littlewood’s 4/3 inequality asserts that(

∞

∑
i, j=1

∣∣T (ei,e j)
∣∣ 4

3

) 3
4

�
√

2‖T‖

for every continuous bilinear form T : c0× c0 → K , where

‖T‖ := sup
z(1),z(2)∈Bc0

|T (z(1),z(2))|.

The exponent 4/3 is optimal and in the case K = R the optimality of the constant
√

2
is also known (see [17]). Soon afterwards this inequality was generalized by Hardy and
Littlewood ([19], 1934) for bilinear forms on �p and, in 1982 Praciano-Pereira ([32])
extended the result of Hardy and Littlewood to m-linear forms on �p .

The Hardy–Littlewood inequalities for m-linear forms is the following result:
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APQ-03181-16 and CNPq Grant 307517/2014-4. W. Cavalcante was supported by Capes. D. M. Serrano-Rodrı́guez was sup-
ported by Capes Grant 000786/2015-02. D. Pellegrino was supported by Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico – CNPq – Brasil, Grant 302834/2013-3.

c© � � , Zagreb
Paper MIA-21-24

329

http://dx.doi.org/10.7153/mia-2018-21-24
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THEOREM 1.1. (Multilinear Hardy–Littlewood/Praciano-Pereira) Let m � 2 be
a positive integer. For p � 2m, there is a constant CK,m,p � 1 such that(

∞

∑
i1,...,im=1

|T (ei1 , . . . ,eim)| 2mp
mp+p−2m

)mp+p−2m
2mp

� CK,m,p ‖T‖ ,

for all m-linear forms T : �p×·· ·× �p → K .

The exponent 2mp
mp+p−2m is optimal and ‖T‖ := supz(1),...,z(m)∈B�p

|T (z(1), . . . ,z(m))| .
In the limiting case ( p = ∞, considering, of course f (∞) := limp→∞ f (p) regardless of
the function f ), we recover the classical multilinear Bohnenblust–Hille inequality (see
[9]). For another extensions of Hardy-Littlewood inequalities to m-linear forms see
[6, 16].

The original upper estimate for CK,m,p is 2
m−1

2 . Recently, in some papers (see
[4] and [5]), this estimate was improved for all m and p with the only exception of
the case CR,m,2m . The precise behavior of the growth of the optimal constants CK,m,p

is still unknown (some partial results can be found in [3, 4, 5]). Up to now, the best
known lower estimates for CR,m,p are always smaller than 2 and again the more critical
situation is when p = 2m , where the lower estimates presented in [3] are more difficult
to obtain and not explicitly stated for the case p = 2m .

As a consequence of the above inequality we have the Hardy–Littlewood inequal-
ities for m-homogeneous polynomials:

THEOREM 1.2. (Polynomial Hardy–Littlewood inequality) Let m � 2 be a posi-
tive integer. For p � 2m, there is a constant DK,m,p � 1 such that(

∑
|α |=m

|aα |
2mp

mp+p−2m

)mp+p−2m
2mp

� DK,m,p ‖P‖ ,

for all positive integers n and all m-homogeneous polynomials P : �n
p → K given by

P(x) = ∑
|α |=m

aαxα .

Again, the exponent 2mp
mp+p−2m is optimal and ‖P‖ := sup{|P(x)| : ‖x‖ = 1}.

In recent works (see [2, 15, 25]), have appeared estimates for the constants in the
polynomial case. However, as in the multilinear case, the optimal constants DK,m,p ,
and the precise behavior of the growth of this constants are still unknown.

The aim of the present paper is to improve the estimates for the constants CK,m,p

and DK,m,p , and it’s organized as follows: In Section 2 we improve previous results of
Araujo et al. by using the Clarkson’s inequality. More precisely, we relate the Clarkson
inequality to the task of obtaining lower estimates for the constants of the multilinear
Hardy–Littlewood inequality, and using the optimal constants of the Clarkson inequal-
ity we present a new closed formula for the lower estimates of the Hardy–Littlewood
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inequality, improving results from [3]. In Section 3 we investigate the polynomial
Hardy–Littlewood inequality. Finally, in the last section, which can be regarded as
an Appendix, we investigate the case p = 2m using a computer-aided approach. Our
approach has two novelties: a new class of multilinear forms, not investigated before
in similar context, and a new numerical approach in this framework. As it will be clear
along the paper the new family of multilinear forms introduced in this paper is more
effective to obtain good lower estimates for the Hardy–Littlewood inequality.

The approaches of Section 3 is entirely analytic and do not depend on computation
assistance.

2. The multilinear Hardy–Littlewood inequality

From now on, if p ∈ [1,∞) , p∗ is the extended real number such that 1
p + 1

p∗ = 1.

Also, E ′ denotes the topological dual of a Banach space E . By L (mE;F) we denote
the Banach space of all (bounded) m-linear operators U : E × ·· · ×E → F , with E ,
F Banach spaces over K . For 1 � s � r < ∞, U ∈ L (mE;F) is called multiple (r,s)-
summing if there exists a constant C > 0 such that(

n

∑
i1,...,im=1

‖U (xi1 , . . . ,xim)‖r
F

) 1
r

� C‖U‖
m

∏
k=1

∥∥∥(xik

)n
ik=1

∥∥∥
w,s

for all finite choice of vectors xik ∈ E, 1 � ik � n, 1 � k � m , where

‖(xi)
n
i=1 ‖w,s := sup

‖ϕ‖E′�1

(
n

∑
i=1

|ϕ(xi)|s
) 1

s

.

The vector space of all multiple (r,s)-summing operators in L (mE;F) is denoted by
Π(r,s) (mE;F) . For more details of the theory of multiple summing operators theory see
[22, 28, 29].

In the terminology of the multiple summing operators, it is well known (see, for
instance, [1]) that the Hardy–Littlewood/Praciano-Pereira inequality is equivalent to the
equality

Π( 2mp
mp+p−2m ;p∗

)(mE;K) = L (mE;K).

In other words, if m � 2 and p � 2m , then there is a constant CK,m,p � 1 such that

(
n

∑
i1,...,im=1

|T (xi1 , . . . ,xim)| 2mp
mp+p−2m

)mp+p−2m
2mp

� CK,m,p ‖T‖
m

∏
k=1

∥∥∥(xik

)n
ik=1

∥∥∥
w,p∗

for all m-linear forms T : E ×·· ·×E → K , for all finite choice of vectors xik ∈ E, 1 �
ik � n, 1 � k � m . For more coincidence results for multiple summing multilinear
operators see [10, 30, 31].
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As mentioned in the introduction, the case p = 2m in the Hardy–Littlewood in-
equality is specially interesting. In this case we have very few information on the con-
stants involved, and moreover, this case is a kind of dual version of the Bohnenblust–
Hille inequality, in the sense that in the pair of parameters

(
2mp

mp+p−2m ; p∗
)

, each case

has a coordinate which is kept constant (in reverse location). More specifically, in the
terminology of the multiple summing operators, the Bohnenblust–Hille inequality as-
serts that

Π( 2m
m+1 ;1)(

mE;K) = L (mE;K)

for all Banach spaces E . On the other hand, when p = 2m , the Hardy–Littlewood
inequality is equivalent to

Π(2; 2m
2m−1)(

mE;K) = L (mE;K)

for all Banach spaces E .
Up to now the best known upper estimates for the constants

(
CR,m,p

)∞
m=1 can be

found in [5, page 1887] and [4]. The updated results on the lower bounds for these
constants are:

• CR,m,p � 2
mp+2m−2m2−p

mp for p > 2m and CR,m,p > 1 for p = 2m (see [3]);

Of course, the search of optimal lower estimates for the multilinear Hardy– Little-
wood (here, for real scalars), shall be done by choosing suitable operators T : �p×·· ·×
�p → R such that the quotient(

∞
∑

j1,..., jm=1

∣∣T (e j1 , . . . ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

‖T‖
is maximized. However, as it will be clear in this paper, we shall work with m− linear
forms in finitely many variables: T : �n

p× ·· ·× �n
p → R . The reader may wonder why

it is relevant to work with finitely many variables in a problem of infinite-dimensional
nature. One of the answers is the intrinsic difficulty of the problem, since the estimate
of ‖T‖ := supz(1),...,z(m)∈B�p

|T (z(1), . . . ,z(m))| seems to be a quite hardwork for most of

the operators T : �p×·· ·× �p → R . Another reason, and maybe the more important, is
that it has been shown in previous works that just by working in finitely many variables
sometimes we can achieve the optimal estimates (see, for instance [17, 26, 27]).

In this section we find an overlooked (and simple) connection between the Clark-
son’s inequalities and the Hardy–Littlewood’s constants which helps to find analytical
lower estimates (without the use of a computational aid) for these constants.

THEOREM 2.1. Let m � 2 and p � 2m. The optimal constants of the Hardy-
Littlewood inequalities satisfies

CR,m,p � 2
2mp+2m−p−2m2

mp

supx∈[0,1]
((1+x)p∗+(1−x)p∗)

1
p∗

(1+xp)1/p

.
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Proof. For a given Banach space E we know that Ψ : L
(
2E;R

)→ L (E;E∗)
given by Ψ(T )(x)(y) = T (x,y) is an isometric isomorphism. For E = �2

p and using the
characterization of the dual of �2

p , we conclude that for the bilinear form

T2,p : �2
p× �2

p → R

((x(1)
i ),(x(2)

i )) �→ x(1)
1 x(2)

1 + x(1)
1 x(2)

2 + x(1)
2 x(2)

1 − x(1)
2 x(2)

2 ,

we have
Ψ(T2,p) : �2

p → �2
p∗

(xi) �→ (x1 + x2,x1 − x2).

Since p � 2m and m � 2, using the best constants from the Clarkson’s inequality in
the real case (see [21, Theorem 2.1]) we know the norm of the linear operator Ψ(T2,p)
(and consequently the norm of the bilinear form T2,p ), i.e.,

‖T2,p‖ =
∥∥Ψ(T2,p)

∥∥= sup
x∈[0,1]

((1+ x)p∗ +(1− x)p∗)
1
p∗

(1+ xp)1/p
.

Now, as in [3], we define inductively

Tm,p : �2m−1

p ×·· ·× �2m−1

p → R

(x(1), . . . ,x(m)) �→ (x(m)
1 + x(m)

2 )Tm−1,p(x(1), . . . ,x(m))
+(x(m)

1 − x(m)
2 )Tm−1,p(B2m−1

(x(1)), . . . ,B2(x(m−1))),

where x(k) = (x(k)
j )2m−1

j=1 ∈ �2m−1

p , 1 � k � m , and B is the backward shift operator in

�2m−1

p and, again as in [3], we conclude that

|Tm,p(x(1), . . . ,x(m))| � |x(m)
1 + x(m)

2 ||Tm−1,p(x(1), . . . ,x(m))|
+ |x(m)

1 − x(m)
2 ||Tm−1,p(B2m−1

(x(1)),B2m−2
(x(2)), . . . ,B2(x(m−1)))|

� ‖Tm−1,p‖(|x(m)
1 + x(m)

2 |+ |x(m)
1 − x(m)

2 |)
� 2‖Tm−1,p‖‖x(m)‖p,

i.e.,
‖Tm,p‖ � 2m−2‖T2,p‖.

Now we have

(4m−1)
mp+p−2m

2mp =

(
2m−1

∑
j1,..., jm=1

∣∣Tm,p(e j1 , . . . ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

� CR,m,p2
m−2‖T2,p‖

(2.1)
and thus

CR,m,p � (4m−1)
mp+p−2m

2mp

2m−2‖T2,p‖ =
2

2mp+2m−p−2m2
mp

supx∈[0,1]

(
(1+x)p∗+(1−x)p∗)1/p∗

(1+xp)1/p

. �
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When m = 2, using estimates of [21, page 1369], note that

CR,2,4 � 2√
3

> 1.1546

CR,2,8 � 2
5
4

1.892
> 1.2570

CR,2,p � 2
2mp+2m−p−2m2

mp

1.9836
> 1.3591 for p = 1+ log9/10 1/19

CR,2,p � 2
2mp+2m−p−2m2

mp

1.9999
> 1.4105 for p = 1+ log99/100 1/199.

Using the old estimates of [3] for p > 2m (i.e., CR,m,p � 2
mp+2m−2m2−p

mp ) we can easily
verify that the old estimates are worse. Also, in the old estimates we have no closed
formula for the case p = 2m.

REMARK 2.2. One may try to use the complex Clarkson’s inequalities to obtain
nontrivial lower bounds for the constants of the complex Hardy-Littlewood inequality.
But, this is not effective, since we just get trivial lower bounds, i.e., 1 .

REMARK 2.3. (The case m < p < 2m) There is also a version of Hardy– Little-
wood’s inequality for m < p < 2m, due to Dimant and Sevilla-Peris ([16] and the forth-
coming Section 6). In this case, the optimal exponent is p

p−m and we still denote the
optimal constant for this inequality by CK,m,p . The best information we have so far for
the lower estimates for the constant CR,m,p are trivial, that is,

1 � CR,m,p � (
√

2)m−1.

Similarly to the argument used in the proof of the Theorem 2.1, we can also provide a
closed formula (which depends on p ) for the lower bounds of CR,m,p , but in this case,
we do not always have nontrivial information. More precisely, we prove that

CR,m,p � 2
mp+2m−2m2

p

supx∈[0,1]
((1+x)p∗+(1−x)p∗)

1
p∗

(1+xp)
1
p

.

It is important to mention this case because, for suitable choices of p , we get nontrivial
lower estimates for CR,m,p . For instance,

CR,2,7/2 � 1.104, CR,3,28/5 � 1.025, and CR,100,199999/1000 � 1.003.

This leads us to question the following: Would also be the optimal constants of the
Hardy–Littlewood inequality for m < p < 2m strictly greater than 1?
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3. The polynomial Hardy–Littlewood inequality

Let E be a real or complex Banach space and m be a positive integer and let
K be the real or complex scalar field. A map P : E → K is a homogeneous poly-
nomial on E of degree m if there exists a symmetric m-linear form L on Em such
that P(x) = L(x, . . . ,x) for all x ∈ E . We denote by P(mE) the space of continuous
m-homogeneous polynomials on E endowed with the usual norm

‖P‖ := sup{|P(x)| : ‖x‖ = 1}.

Observe that an m-homogeneous polynomial in Kn can be written as

P(x) = ∑
|α |=m

aαxα ,

where x = (x1, . . . ,xn) ∈ Kn , α = (α1, . . . ,αn) ∈ (N∪{0})n , |α| = α1 + · · ·+ αn and
xα = xα1

1 · · ·xαn
n . We denote

|P|p :=

(
∑

|α |=m

|aα |p
)1/p

and

|P|∞ := max |aα | .
The polynomial Hardy–Littlewood inequality is:

THEOREM 3.1. (Polynomial Hardy–Littlewood inequality) For m < p � ∞ there
is a constant DK,m,p � 1 such that

(
∑

|α |=m
|aα |

2mp
mp+p−2m

)mp+p−2m
2mp

� DK,m,p ‖P‖ , if p � 2m

(
∑

|α |=m
|aα |

p
p−m

) p−m
p

� DK,m,p ‖P‖, if m < p � 2m,

(3.1)

for all positive integers n and all m-homogeneous polynomials P : �n
p → K given by

P(x) = ∑
|α |=m

aαxα .

This is a consequence of the multilinear Hardy–Littlewood inequality, previously
described, and the following inequality also known as Hardy–Littlewood inequality
[16]:
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THEOREM 3.2. (Hardy–Littlewood/Dimant–Sevilla-Peris) For m < p � 2m, there
is a constant CK,m,p � 1 such that(

n

∑
i1,...,im=1

|T (ei1 , . . . ,eim)| p
p−m

) p−m
p

� CK,m,p ‖T‖

for all positive integers n and all m-linear forms T : �n
p×·· ·× �n

p → K .

Above, the exponent p
p−m is optimal and therefore in (3.1) both exponents p

p−m

and 2mp
mp+p−2m are optimal. The case p = ∞ in the appropriate inequality of (3.1), is the

classical polynomial Bohnenblust–Hille inequality (see [9]).
From now on DK,m,p denotes the optimal constants satisfying (3.1). As in the

multilinear case, the precise behavior of the growth of the constants DK,m,p is still
unknown (partial results can be found in [2, 15, 25]). For instance, in [2, Theorem 3.1]
it is proved that for p � 2m we have

DR,m,p �
(

16
√

2
)m

.

When p = ∞ we know that (see [8, 14])

limsup
m

D1/m
R,m,∞ = 2;

limsup
m

D1/m
C,m,∞ = 1.

It will be convenient to define H1 = {(p,m) ∈ R×N : m < p < 2m} and H2 =
{(p,m) ∈ R×N : p � 2m} with any total order. The main results of this section are the
following:

LEMMA 3.3. Let j = 1,2. Then

limsup
Hj

D1/m
R,m,p � 2.

Proof. Consider the sequence of norm-one j -homogeneouspolynomials Qj : �p →
R defined recursively by

Q2(x1,x2) = x2
1− x2

2,

Q2m(x1, . . . ,x2m) = Q2m−1(x1, . . . ,x2m−1)2 −Q2m−1(x2m−1+1, . . . ,x2m)2.

From the proof of [14, Theorem 3.1], we known that

|Qn
2m |∞ �

(
2n

n+1

)2m−1

(3.2)

for every natural number n,m . Next, since for every homogeneous polynomial P we
obviously have

|P|p � |P|∞,
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from (3.2) we conclude that

DR,n2m,p �
(

2n

n+1

)2m−1

.

Note that

D1/n2m

R,n2m,p �
((

2n

n+1

)2m−1
) 1

n2m

=
(

2n

n+1

) 2m−1
n2m

and making m → ∞ we have(
2n

n+1

) 2m−1
n2m

→ 2

(n+1)1/n

and now making n → ∞ we have

2

(n+1)1/n
→ 2. �

From now on we write

ρ (p,m) =
p

p−m
if m < p � 2m,

ρ (p,m) =
2mp

mp+ p−2m
if p � 2m.

Now we prove the theorem:

THEOREM 3.4. Let j = 1,2. At least one of the following two sentences hold true:

(a) limsupHj
D1/m

R,m,p = 2.

(b) limsupHj
D1/m

C,m,p > 1.

Proof. Suppose that (a) is not true for some j . So (using the previous result) we
would have limsupHj

D1/m
R,m,p > (2+ ε) > 2. Therefore, for each k ∈ N there is nk ∈ N ,(

pk ,mk
) ∈ Hj and a mk -homogeneous polynomial Pmk : �nk

pk → R such that(
∑

|α |=mk

|aα |ρ(pk ,mk)
) 1

ρ(pk ,mk)
� DR,mk ,pk

∥∥Pmk

∥∥ ,

with
DR,mk,pk > (2+ ε)mk .

Considering the complexification of Pmk we know that∥∥(Pmk

)
C

∥∥� 2mk−1
∥∥Pmk

∥∥
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and now looking for the complex polynomials
(
Pmk

)
C

we would have

(
∑

|α |=mk

|aα |ρ(pk,mk)

) 1
ρ(pk ,mk)

� DC,mk ,pk

∥∥(Pmk

)
C

∥∥
� DC,mk ,pk2

mk−1
∥∥Pmk

∥∥
and thus

DR,mk ,pk � DC,mk ,pk2
mk−1,

i.e.,

D1/mk
R,mk ,pk

� D1/mk
C,mk ,pk

2
mk−1
mk � 2D1/mk

C,mk ,pk
.

Now, since

D1/mk
R,mk ,pk

> 2+ ε

we conclude that

D1/mk
C,mk ,pk

> 1+
ε
2

> 1

for all k , and thus

limsup
Hj

D1/m
C,m,p > 1.

Reciprocally, if (b) is not true for some j , then limsupHj
D1/m

C,m,p = 1 and thus

limsup
Hj

D1/m
R,m,p � 2

and from the previous lemma we conclude that

limsup
Hj

D1/m
R,m,p = 2. �

A. Appendix

A.1. Numerical estimates

In this section we use a computer-aided approach to obtain new lower bounds
for the Hardy–Littlewood inequality for real scalars. Computer-aided arguments are
essential in some parts of modern mathematics. For instance, some significant advances
related to the Grothendieck constant are based in these arguments (see [11, 24]). In the
case of Hardy–Littlewood inequality for real scalars, when p is taken to be infinity
(i.e., the Bohnenblust–Hille inequality), estimating the constants involved is crucial for
applications (see, for instance [23], for applications in Quantum Information Theory).
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A.1.1. First estimates (using well-known multilinear forms)

Since the publication of [17], the family of m-linear forms Tm : �∞×·· ·×�∞ → R

defined inductively by

T2(x,y) = x1y1 + x1y2 + x2y1 − x2y2,

T3(x,y,z) = (z1 + z2)(x1y1 + x1y2 + x2y1− x2y2)
+ (z1− z2)(x3y3 + x3y4 + x4y3− x4y4) ,

T4(x,y,z,w) = (w1 +w2)
(

(z1 + z2)(x1y1 + x1y2 + x2y1− x2y2)
+(z1− z2)(x3y3 + x3y4 + x4y3− x4y4)

)
+(w1 −w2)

(
(z3 + z4)(x5y5 + x5y6 + x6y5− x6y6)

+(z3− z4)(x7y7 + x7y8 + x8y7− x8y8)

)
,

...

Tm(x1, . . . .,xm) = (x1
m + x2

m)Tm−1(x1, . . . ,xm−1) (A.1)

+(x1
m− x2

m)Tm−1(B2m−2
(x1),B2m−2

(x2),B2m−3
(x3) . . . ,B2(xm−1)),

where B : �∞ → �∞ is the backward shift operator, have been used to find lower estimates
for Bohnenblust–Hille and related inequalities (se also [27]). In the context of the
Hardy–Littlewood inequalities we also have good results, but in the next subsection we
invent different multilinear forms that, in our context, provide better estimates.

The numerical issue involved to obtain our estimates is the calculus of ‖Tm‖ when
�∞ is replaced by �p (in this case we write Tm,p instead of Tm ) . This task refers to a
typical nonlinear optimization problem subject to restrictions.

To perform this computer-aided calculus we use a multi-paradigm numerical com-
puting environment called MATLAB (MATrix LABoratory) (see [18]) to specify and
solve our optimization problem. The MATLAB software has a toolbox called Opti-
mization that provides a robust large-scale nonlinear optimization method called Inte-
rior Point Algorithm. Mathematical details of the interior point algorithm can be found
in several publications (see for instance [12, 13, 33]).

The source codes were built to maximize the function f (x) = |Tm,2m(x)| (denoted
in the code simply by Tm2m) subject to the restriction g(x) = ‖x‖2m − 1 = 0. As the
MATLAB offers only the minimization feature we placed the equivalent problem of
minimize − f (x) subject to the same restriction. Furthermore, as the absolute value
function have problems with differentiability, which compromises the functionality of
the algorithm, we finally calculate the problem by following the steps:

(i) Calculating the global minimum of Tm,2m(x) with the restriction g(x) = 0;
(ii) Calculating the global minimum of −Tm,2m(x) with the restriction g(x) = 0

and
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(iii) Taking the greatest absolute value of numbers obtained in (i) and (ii).
In Appendix A.2 we present, as an example, the program source code which calculates
(i).

So, performing these calculations for Tm,2m , we obtain

CR,2,4 > 2
1.74 > 1.149

CR,3,6 > 4
3.29 > 1.215

CR,4,8 > 8
6.40 > 1.250

CR,5,10 > 16
12.60 > 1.269

CR,6,12 > 32
25.00 > 1.280

CR,7,14 > 64
49.47 > 1.293

CR,8,16 > 128
98.36 > 1.301

CR,9,18 > 256
195.81 > 1.307.

(A.2)

A.1.2. New multilinear forms and better estimates

Up to now the best known multilinear forms by use in order to find lower bounds
for the Bohnenblust–Hille and Hardy–Littlewood inequalities were defined in (A.1).
Now we show that for m = 4,8,16, . . . we get better estimates using slightly different
multilinear forms and numerical computation. Define by

T̃2(x,y) = x1y1 + x1y2 + x2y1 − x2y2,

T̃4(x,y,z,w) = (x1y1 + x1y2 + x2y1− x2y2)(z1w1 + z1w2 + z2w1 − z2w2)
+ (x1y1 + x1y2 + x2y1− x2y2)(z3w3 + z3w4 + z4w3− z4w4)
+ (x3y3 + x3y4 + x4y3− x4y4)(z1w1 + z1w2 + z2w1− z2w2)
− (x3y3 + x3y4 + x4y3− x4y4)(z3w3 + z3w4 + z4w3− z4w4) ,

T̃8(x,y,z,w,r,s, t,u) = T̃4(x,y,z,w)T̃4(r,s,t,u)

+ T̃4(x,y,z,w)T̃4(B4 (r) ,B4 (s) ,B4 (t) ,B4 (u))

+ T̃4(B4(x),B4(y),B4(z),B4(w))T̃4(r,s, t,u)

− T̃4(B4(x),B4(y),B4(z),B4(w))T̃4(B4 (r) ,B4 (s) ,B4 (t) ,B4 (u)),
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and so on (recall that B is the shift operator, as defined before). When �∞ is replaced
by �p we write T̃2k,p instead of T̃2k . Using the same computational apparatus to T̃4, T̃8,
etc, we obtain

CR,4,8 > 23

6.20 > 1.290

CR,8,16 > 27

91.48 > 1.399

CR,16,32 > 215

22137.70 > 1.480,

(A.3)

and this procedure seems clearly better than the former.

In order to deal with values of m that are not power of 2 we cannot define T̃m

(at least with the same rule) and, as we know, T̃m provides better lower estimates for
CR,4,8,CR,8,16,CR,16,32 . However, we can use the operators T̃2, T̃4, T̃8, T̃16 and, induc-
tively, define, for m = 3,5,6,7,9,10 . . .

T̃m,p : �2m−1

p ×·· ·× �2m−1

p → R

(x(1), . . . ,x(m)) �→ (x(m)
1 + x(m)

2 )T̃m−1,p(x(1), . . . ,x(m))
+(x(m)

1 − x(m)
2 )T̃m−1,p(B2m−1

(x(1)), . . . ,B2(x(m−1))),

Hence, again using MATLAB, we can improve the estimates of (A.2) to:

New Estimates Estimates from (A.2)

CR,2,4 > 2
1.74 ≈ 1.149 = 1.149

CR,3,6 > 4
3.29 ≈ 1.215 = 1.215

CR,4,8 > 8
6.20 ≈ 1.290 > 1.250

CR,5,10 > 16
12.38 ≈ 1.292 > 1.269

CR,6,12 > 32
24.67 ≈ 1.297 > 1.280

CR,7,14 > 64
49.13 ≈ 1.302 > 1.293

CR,8,16 > 128
98.36 ≈ 1.399 > 1.301

CR,9,18 > 256
185.29 ≈ 1.381 > 1.307.
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A.2. Source code

% functions

function [f] = T24(x)
% x: vector with four real coordinates
% T24: returns the value of the function in x
f = x(1)*x(3)+x(1)*x(4)+x(2)*x(3)-x(2)*x(4);
end

function [gdes,g] = restrict(x)
% gdes: inequality restriction (required by MATLAB syntax and

empty for our purposes)
% g: equality restriction
% restrict: returns the values of equality and inequality

restrictions on the vector x
gdes = [ ];
g = [x(1)\symbol{94} 4+x(2)\symbol{94} 4-1;x(3)\symbol{94} 4+
x(4)\symbol{94}4-1];
end

% main routine

% x0: start point (vector with four coordinates) that must be
provided by the user

options = optimset(‘Algorithm’,‘interior-point’);
problem = createOptimProblem(‘fmincon’,‘x0’,x0,‘objective’,
@(x)T24(x)\ldots,‘Aeq’,[ ],‘beq’,[ ],‘options’,[ ],‘lb’,[ ],‘ub’,
[],‘nonlcon’,@(x)restrict(x));
gs = GlobalSearch;
[xmin,fmin] = run(gs,problem);
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[32] T. PRACIANO-PEREIRA,On bounded multilinear forms on a class of �p spaces, J. Math. Anal. Appl.
81 (1981), 561–568.

[33] R. A. WALTZ, J. L. MORALES, J. NOCEDAL, AND D. ORBAN, An interior algorithm for nonlinear
optimization that combines line search and trust region steps, Mathematical Programming, 107 (2006),
no. 3, 391–408.

(Received April 4, 2017) Jamilson R. Campos
Departamento de Ciências Exatas
Universidade Federal da Paraı́ba

58.297-000 Rio Tinto, Brazil
e-mail: jamilson@dcx.ufpb.br;

jamilsonrc@gmail.com

Wasthenny Cavalcante
Departamento de Matemática
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Faculdade de Matemática
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