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THE COMPLEX Lp LOOMIS–WHITNEY INEQUALITY

QINGZHONG HUANG, AI-JUN LI AND WEI WANG

(Communicated by H. Martini)

Abstract. The complex Lp Loomis-Whitney inequality for complex isotropic measures is es-
tablished, which extends the real version of the Lp Loomis-Whitney inequality for isotropic
measures due to the first two authors.

1. Introduction

A convex body K is a compact convex set in Rn which is assumed to contain the
origin in its interior. Denote by V (K) the corresponding dimensional volume. Each
convex body K is uniquely determined by its support function h(K, ·) defined by, for
x ∈ Rn , h(K,x) = max{〈x,y〉 : y ∈ K} , where 〈x,y〉 = ∑n

k=1 xkyk denotes the scalar
product of x and y in R

n . If x,y ∈ C
n , we denote their complex scalar product by

〈x,y〉c = ∑n
k=1 xkyk and the modulus of x by ‖x‖ =

√〈x,x〉c .
The classical Loomis-Whitney inequality states that for a convex body K in Rn ,

V (K)n−1 �
n

∏
k=1

V (K|e⊥k ), (1)

where K|e⊥k denotes the orthogonal projection of K onto the 1-codimensional sub-
space e⊥k perpendicular to ek and {e1, . . . ,en} is the canonical basis of Rn . Moreover,
equality in (1) holds if and only if K is a coordinate box; i.e., up to translations, there
are positive numbers (αk)n

k=1 such that

K =
n

∑
k=1

αk[−ek,ek],

where [−ek,ek] is the segment jointing −ek to ek and the sum is the Minkowski ad-
dition of convex sets. This inequality was first proved by Loomis and Whitney [27] in
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1949 and has been widely studied in recent years (see e.g., [8, 9, 11, 12, 15, 16, 17, 18,
20, 24, 25, 26, 33]). It is well-known (see e.g., [32, (5.77)]) that

V (K|e⊥k ) =
n
2
V (K, [n−1]; [−ek,ek]),

where V (K, [n−1]; [−ek,ek]) is the mixed volume of (n−1)-copies of K and one copy
of [−ek,ek] . Thus, the Loomis-Whitney inequality (1) can be rewritten as

V (K)n−1 � nn

2n

n

∏
k=1

V (K, [n−1]; [−ek,ek]). (2)

In order to define the volume in C
n , we identify C

n with R
2n using the standard

mapping from x = (x1, . . . ,xn) = (x11 + ix12, . . . ,xn1 + ixn2) to (x11,x12, . . . ,xn1,xn2) . A
complex version of (2), as a special case of our main result, can be stated as follows: if
K is a convex body in R2n , then

V (K)2n−1 � n2n

πn

n

∏
k=1

V (K, [2n−1];Dk)2, (3)

where Dk is a unit disc in span{e2k−1,e2k} and {e1, . . . ,e2n} denotes the canonical
basis of R2n . Moreover, equality in (3) holds if and only if K is a polydisc; i.e., up to
translations, there are positive numbers (αk)n

k=1 such that

K =
n

∑
k=1

αkDk.

Motivated by the recent work of the first two authors [24] on the Lp Loomis-
Whitney inequality for isotropic measures, this paper is devoted to the complex Lp

Loomis-Whitney inequality for complex isotropic measures. The following two notions
are essential to our main result.

The complex isotropic measure, recently introduced by the first author and He
[19], is a Borel measure μ on the unit sphere S2n−1 of Cn satisfying

∫
S2n−1

|〈x,v〉c|2dμ(v) = ‖x‖2, (4)

for all x ∈ Cn . Since we identify Cn with R2n , (4) can be written as
∫

S2n−1
[〈x,v〉2 + 〈x,v†〉2]dμ(v) = ‖x‖2, (5)

where the operator † : R2n → R2n is defined as

v = (v11,v12, . . . ,vn1,vn2) �→ v† = (−v12,v11, . . . ,−vn2,vn1).

An important example of complex isotropic measures on S2n−1 is the complex
cross measure introduced in [19], which is the Rθ -invariant complex isotropic measure
μ such that

suppμ = {span{v1,v
†
1}∩S2n−1, . . . ,span{vn,v

†
n}∩S2n−1},
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where {v1,v
†
1 . . . ,vn,v†

n} is an orthonormal basis of R2n . Furthermore, a generalized
�p(Cn)-ball Bp,α(Cn) := Bp,α(Cn)(μ) formed by the complex cross measure μ (con-
centrated on {span{v1,v

†
1} ∩ S2n−1, . . . ,span{vn,v†

n} ∩ S2n−1} ) is defined as follows:
there are positive numbers (αk)n

k=1 such that

Bp,α(Cn) =
{

x ∈ R
2n :

( n

∑
k=1

αk|〈x,vk〉c|p
) 1

p � 1
}

=
{

x ∈ R
2n :

( n

∑
k=1

αk[〈x,vk〉2 + 〈x,v†
k〉2]

p
2

) 1
p � 1

}
, 1 � p < ∞, (6)

and for p = ∞ ,

B∞,α(Cn) =
{

x ∈ R
2n : αk|〈x,vk〉c| � 1 for all k = 1, . . . ,n

}

=
{

x ∈ R
2n : αk[〈x,vk〉2 + 〈x,v†

k〉2]
1
2 � 1 for all k = 1, . . . ,n

}
. (7)

We shall mention that B∞,α(Cn) = ∑n
k=1 α−1

k (B2n
2 ∩ span{vk,v

†
k}) is also called a poly-

disc formed by μ , where B2n
2 is the Euclidean unit ball in R2n .

For p � 1, we define the Rθ -invariant Lp complex projection body ΠD
p K of a

convex body K in R2n , in terms of its support function is given by, for v ∈ S2n−1 ,

h(ΠD
p K,v) =

( 1
2n

∫
S2n−1

|〈v,u〉c|pdSp(K,u)
) 1

p

=
( 1

2n

∫
S2n−1

[〈v,u〉2 + 〈v,u†〉2] p
2 dSp(K,u)

) 1
p
,

where dSp(K, ·) is the Lp surface area measure of K . For p = 1, it reduces to the
Rθ -invariant complex projection body introduced by Abardia and Bernig [3].

Thus, the complex Loomis-Whitney inequality for complex isotropic measures
can be formulated as follows:

THEOREM 1. Suppose p � 1 and K is a convex body in R2n . If μ is a complex
isotropic measure on S2n−1 , then

V (K)
2n−p

p � An,p exp
{∫

S2n−1
logh(ΠD

p K,v)2dμ(v)
}
, (8)

where

An,p =
n2n/pΓ(2n+1− 2n

p )

πnΓ(3− 2
p)n

.

In addition, if μ is a complex cross measure on S2n−1 , then equality in (8) holds for
p > 1 if and only if K is a generalized �p∗(Cn)-ball formed by μ and equality in (8)
holds for p = 1 if and only if K is a polydisc formed by μ (up to translations).
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Here p∗ is the Hölder conjugate of p ; i.e., 1/p+1/p∗ = 1.
When p = 1, together with (22), inequality (8) reduces to

V (K)2n−1 � n2n

πn exp
(∫

S2n−1
logV (K, [2n−1];D · v)2dμ(v)

)
, (9)

where D ·v := {cv : c∈D} and D is the unit disk in C . Inequality (3) now follows from
(9) by taking the basic complex cross measure μ , which is a complex cross measure
such that suppμ = {span{e1,e2}∩ S2n−1, . . . ,span{e2n−1,e2n}∩ S2n−1} . Note that a
complex cross measure is just a rotation of the basic complex cross measure, since
{v1,v

†
1, . . . ,vn,v†

n} is an orthonormal basis of R
2n .

2. Background materials

2.1. Elements of the Lp Brunn-Minkowski theory

We collect in this section some elements of the Lp Brunn-Minkowski theory,
which has its origins in the work of Firey from the 1960s and has expanded rapidly
over the last two decade since the remarkable works of Lutwak [28, 29]. For further
details we refer the reader to [32, Chapter 9] and the references therein.

The Minkowski functional ‖ ·‖K of a convex body K in R
n is defined by ‖x‖K =

min{λ � 0 : x ∈ λK} . In this case,

h(K, ·) = ‖ · ‖K∗ , (10)

where the polar body K∗ of K is defined by

K∗ = {x ∈ R
n : 〈x,y〉 � 1 for all y ∈ K}.

For A ∈ GL(Rn) , we have
(AK)∗ = A−tK∗, (11)

where A−t is the inverse of the transpose of A . Using the polar coordinate formula, it
is easy to see that the volume of a convex body K in Rn is given by

V (K) =
1

Γ(1+ n
p )

∫
Rn

exp(−‖x‖p
K)dx, (12)

where the integral is with respect to Lebesgue measure on Rn .
For p � 1 and ε > 0, the Lp Minkowski-Firey combination K +p ε ·L of convex

bodied K,L is the convex body whose support function is given by

h(K +p ε ·L, ·)p = h(K, ·)p + εh(L, ·)p.

The Lp mixed volume Vp(K,L) of K,L was defined in [28] by

Vp(K,L) =
p
n

lim
ε→0+

V (K +p ε ·L)−V(K)
ε

.
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In particular, Vp(K,K) =V (K) . It was shown in [28] that for convex bodies K,L , there
is a positive Borel measure, Sp(K, ·) , on Sn−1 so that

Vp(K,L) =
1
n

∫
Sn−1

h(L,u)pdSp(K,u), (13)

where dSp(K, ·) = h(K, ·)1−pdS(K, ·) is the Lp surface area measure of K and dS(K, ·)
is the classical surface area measure of K . Recall that for a Borel set ω ⊂ Sn−1 , S(K,ω)
is the (n−1)-dimensional Hausdorff measure of the set of all boundary points of K for
which there exists a normal vector of K belonging to ω .

The Lp Minkowski inequality [28] states that for convex bodies K,L ,

Vp(K,L)n � V (K)n−pV (L)p, (14)

with equality if and only if K and L are dilates when p > 1, and if and only if K and
L are homothetic (i.e., they coincide up to translations and dilatations) when p = 1.

2.2. Complex isotropic measures

The unit sphere {x ∈ Cn : ‖x‖ = 1} of Cn is denoted by S2n−1 . Since we identify
C

n with R
2n , we can say that a convex body K is Rθ -invariant if for each θ ∈ [0,2π ]

and each x = (x11,x12, . . .xn1,xn2) ∈ R2n ,

‖x‖K = ‖Rθ (x11,x12), . . . ,Rθ (xn1,xn2)‖K ,

where Rθ stands for the counterclockwise rotation of R
2 by the angle θ with respect

to the origin. We say a measure (or a function) on S2n−1 is Rθ -invariant if it assumes
the same value on a set (or a point) and its Rθ image for each θ ∈ [0,2π ] . For ξ ∈ Cn

such that ‖ξ‖ = 1, denote by

Hξ =
{

x ∈ C
n : 〈x,ξ 〉c =

n

∑
k=1

xkξk = 0
}

the complex hyperplane through the origin perpendicular to ξ . Under the mapping
from Cn to R2n the hyperplane Hξ is a (2n−2)-dimensional subspace of R2n orthog-
onal to the vectors

ξ = (ξ11,ξ12, . . . ,ξn1,ξn2) and ξ † = (−ξ12,ξ11, . . . ,−ξn2,ξn1).

The complex isotropic measure μ defined in (4) has the following properties (see
[19]):

• the complex isotropic measure μ is not concentrated on Hξ ∩S2n−1 for any ξ ∈
S2n−1 .

• μ(S2n−1) = n .
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2.3. Generalized �p(Cn)-balls

Let Bp(Cn) denote the unit ball of �p(Cn)-space, understood as

Bp(Cn) =
{

x ∈ R
2n :

( n

∑
k=1

[x2
k1 + x2

k2]
p
2

) 1
p � 1

}
, 1 � p < ∞,

and for p = ∞ ,

B∞(Cn) = {x ∈ R
2n : [x2

k1 + x2
k2]

1
2 � 1, for all k = 1, . . . ,n}.

For n, p ∈ [1,∞) , denote by κ2n(p) the volume of the unit ball of �p(Cn) (see [19,
Proposition 6.1]), which equals to

κ2n(p) =
πn(Γ(1+ 2

p))n

Γ(1+ 2n
p )

.

Recall that a generalized �p(Cn)-ball Bp,α(Cn) formed by the complex cross mea-

sure μ is defined in (6) and (7). Let A = diag{α1/p
1 ,α1/p

1 , . . . ,α1/p
n ,α1/p

n } . Since there
exists U ∈ O(R2n) such that vk = Ue2k−1 and v†

k = Ue2k for k = 1, . . . ,n , we have

Bp,α(Cn) =
{

x ∈ R
2n :

( n

∑
k=1

αk[〈x,vk〉2 + 〈x,v†
k〉2]

p
2

) 1
p � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

αk[〈x,Ue2k−1〉2 + 〈x,Ue2k〉2]
p
2

) 1
p � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

αk[〈U−1x,e2k−1〉2 + 〈U−1x,e2k〉2]
p
2

) 1
p � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

[〈AU−1x,e2k−1〉2 + 〈AU−1x,e2k〉2]
p
2

) 1
p � 1

}

=
{
UA−1x ∈ R

2n :
( n

∑
k=1

[〈x,e2k−1〉2 + 〈x,e2k〉2]
p
2

) 1
p � 1

}

= UA−1Bp(Cn). (15)

Then we immediately get

V (Bp,α(Cn)) = V (UA−1Bp(Cn)) = V (Bp(Cn))
( n

∏
k=1

αk

)− 2
p
. (16)

It follows from (10) and (6) that

h((Bp,α(Cn))∗,x) =
( n

∑
k=1

αk|〈x,vk〉c|p
) 1

p
. (17)
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Moreover, for p > 1, by (15), (11) and [19, Proposition 2.1], we have

(Bp,α(Cn))∗ = (UA−1Bp(Cn))∗ = UAt(Bp(Cn))∗ = UAtBp∗(Cn)

=
{
UAtx ∈ R

2n :
( n

∑
k=1

[〈x,e2k−1〉2 + 〈x,e2k〉2]
p∗
2

) 1
p∗ � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

[〈A−tU−1x,e2k−1〉2 + 〈A−tU−1x,e2k〉2]
p∗
2

) 1
p∗ � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

[〈x,UA−1e2k−1〉2 + 〈x,UA−1e2k−1〉2]
p∗
2

) 1
p∗ � 1

}

=
{

x ∈ R
2n :

( n

∑
k=1

α−p∗/p
k [〈x,vk〉2 + 〈x,v†

k〉2]
p∗
2

) 1
p∗ � 1

}

= Bp∗,α−p∗/p(Cn). (18)

For p = 1, by the same way, we have

(B1,α(Cn))∗ = B∞,α−1(Cn). (19)

Then, from (16) we obtain, for p > 1,

V ((Bp,α(Cn))∗) =V (Bp∗,α−p∗/p(Cn)) = V (Bp∗(Cn))
( n

∏
k=1

αk

) 2
p
, (20)

and for p = 1,

V ((B1,α(Cn))∗) = V (B∞,α−1(Cn)) = V (B∞(Cn))
( n

∏
k=1

αk

)2
. (21)

2.4. Complex Lp projection bodies

In recent years, the study of varieties of convex bodies in Cn has received con-
siderable attention; see, e.g., [1, 2, 3, 4, 5, 6, 7, 13, 14, 21, 22, 23, 31]. For example,
the notion of the complex projection body was introduced by Abardia and Bernig [3]
in 2011: for a convex body K ⊂ Cn and a convex body C ⊂ C , the complex projection
body ΠCK is the convex body whose support function is defined by

h(ΠCK,v) = V (K, [2n−1];C · v), v ∈ C
n,

where C ·v := {cv : c∈C}⊂Cn . Obviously, the Rθ -invariant complex projection body
ΠDK can be defined by letting C be a unit disk D in C ; i.e.,
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h(ΠDK,v) = V (K, [2n−1];D · v)
=

1
2n

∫
S2n−1

h(D · v,u)dS(K,u)

=
1
2n

∫
S2n−1

sup
θ∈[0,2π ]

{Re〈eiθv,u〉c}dS(K,u)

=
1
2n

∫
S2n−1

sup
θ∈[0,2π ]

{Re(eiθ 〈v,u〉c)}dS(K,u)

=
1
2n

∫
S2n−1

|〈v,u〉c|dS(K,u), (22)

for every v ∈ Cn . For p � 1, the Rθ -invariant Lp complex projection body ΠD
p K of a

convex body K in Cn can be defined by

h(ΠD
p K,v) =

( 1
2n

∫
S2n−1

|〈v,u〉c|pdSp(K,u)
) 1

p
, v ∈ C

n. (23)

The fact that h(ΠD
p K,v) is the support function of a convex body in R

2n can be verified
as in [19, Theorem 4.3].

3. Proof of the main result

Assume that the measure μ is not concentrated on Hξ ∩S2n−1 for any ξ ∈ S2n−1 .
Let α : S2n−1 → (0,+∞) be a Rθ -invariant positive continuous function. For p � 1,
we define the complex Lp zonoid Zp,α(μ) with generating measure αdμ as the Rθ -
invariant convex body in Cn , in terms of its support function, for u ∈ S2n−1 ,

h(Zp,α(μ),u) =
(∫

S2n−1
|〈u,v〉c|pα(v)dμ(v)

) 1
p

=
(∫

S2n−1

∥∥u|span{v,v†}∥∥pα(v)dμ(v)
) 1

p
. (24)

Here
∥∥u|span{v,v†}∥∥ is the length of the orthogonal projection of u onto the 2-dimen-

sional subspace span{v,v†} . The fact that h(Zp,α(μ),u) is the support function of a
convex body in R2n can be verified as in [19, Theorem 4.3].

In particular, if μ is a complex cross measure, then we may assume that suppμ =
{span{v1,v

†
1}∩S2n−1, . . . ,span{vn,v†

n}∩S2n−1} . It was shown in [19, Lemma 4.1] that
μ(span{vk,v

†
k}∩ S2n−1) = 1 for 1 � k � n . Denote α(vk) =: αk > 0. By (24), (17),

(18) and (19), we have, for p > 1,

h(Zp,α(μ),x) =
( n

∑
k=1

α(vk)|〈x,vk〉c|p
) 1

p

= h((Bp,α(Cn))∗,x) = h(Bp∗,α−p∗/p(Cn),x), (25)
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and

h(Z1,α(μ),x) = h((B1,α(Cn))∗,x) = h(B∞,α−1(Cn),x), (26)

for each x ∈ R
2n . From (20) and (21), we get, for p > 1,

V (Zp,α(μ)) = V (Bp∗,α−p∗/p(Cn)) = V (Bp∗(Cn))
( n

∏
k=1

αk

) 2
p
, (27)

and

V (Z1,α(μ)) = V (B∞,α−1(Cn)) = V (B∞(Cn))
( n

∏
k=1

αk

)2
. (28)

The following particular case of multidimensional reverse Brascamp-Lieb inequal-
ity [10] is needed.

LEMMA 1. Suppose v1, . . . ,vm ∈ S2n−1 and c1, . . . ,cm > 0 such that

m

∑
k=1

ck
∥∥x|span{vk,v

†
k}

∥∥2 = ‖x‖2 for every x ∈ R
2n. (29)

Then for all integrable functions fi : span{vk,v
†
k}→ [0,∞) , 1 � k � m,

∫ ∗

R2n
sup

{ m

∏
k=1

fk(yk)ck : x =
m

∑
k=1

ckyk,yk ∈ span{vk,v
†
k}

}
dx �

m

∏
k=1

(∫
span{vk,v

†
k}

fk
)ck

.

The following lemma extends Theorem 6.5 in [19].

LEMMA 2. Suppose p � 1 and α is a Rθ -invariant continuous positive function
on S2n−1 . If μ is a complex isotropic measure on S2n−1 , then

V (Zp,α(μ)) � V (Bp∗(Cn))
(

exp
∫

S2n−1
logα(v)dμ(v)

) 2
p
, (30)

with equality if μ is a complex cross measure on S2n−1 .

Proof. Suppose the measure μ = ∑m
k=1 ckδvk is a discrete complex isotropic mea-

sure on S2n−1 . Then the complex isotropic condition (5) is just the condition (29).
Write α(vk) =: αk > 0.

Case p = 1: By (24) and the fact that
∥∥x|span{vk,v

†
k}

∥∥ = h(B2n
2 |span{vk,v

†
k},x) ,

we have, for every x ∈ R2n ,

h(Z1,α(μ),x) =
m

∑
k=1

αkck

∥∥x|span{vk,v
†
k}

∥∥

=
m

∑
k=1

αkckh(B2n
2 |span{vk,v

†
k},x)

= h
( m

∑
k=1

ckαkB
2n
2 |span{vk,v

†
k},x

)
.
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Hence

Z1,α(μ) =
{

x ∈ R
2n : x =

m

∑
k=1

ckyk,yk ∈ αkB2(R2n)|span{vk,v
†
k}

}
. (31)

Define functions fk : span{vk,v
†
k}→ [0,∞),1 � k � m , by

fk(y) = 1[0,αk](‖y‖).

From (31), Lemma 1 and the fact that μ(S2n−1) = ∑m
k=1 ck = n , we obtain

V (Z1,α(μ)) =
∫

R2n
sup

{ m

∏
k=1

1[0,αk](‖yk‖)ck : x =
m

∑
k=1

ckyk,yk ∈ span{vk,v
†
k}

}
dx

=
∫

R2n
sup

{ m

∏
k=1

fk(yk)ck : x =
m

∑
k=1

ckyk,yk ∈ span{vk,v
†
k}

}
dx

�
m

∏
k=1

(∫
span{vk,v

†
k}

fk
)ck

=
m

∏
k=1

(∫
span{vk,v

†
k}

1[0,αk](‖x‖)dx
)ck

= πn
m

∏
k=1

α2ck
k .

Case p > 1: We claim that

‖x‖p∗
Zp,α(μ) � inf

{ m

∑
k=1

α1−p∗
k ck(r2

k1 + r2
k2)

p∗/2 :
m

∑
k=1

ck(rk1vk + rk2v
†
k) = x

}
. (32)

In fact, let x =
m
∑

k=1
ck(rk1vk + rk2v

†
k) . By Hölder’s inequality twice, (24) and (10), we

have

〈x,y〉 =
m

∑
k=1

ck(rk1〈y,vk〉+ rk2〈y,v†
k〉)

�
m

∑
k=1

ck(r2
k1 + r2

k2)
1
2 (〈y,vk〉2 + 〈y,v†

k〉2)
1
2

�
( m

∑
k=1

α1−p∗
k ck(r2

k1 + r2
k2)

p∗
2

) 1
p∗

( m

∑
k=1

αkck(〈y,vk〉2 + 〈y,v†
k〉2)

p
2

) 1
p

=
( m

∑
k=1

α1−p∗
k ck(r2

k1 + r2
k2)

p∗
2

) 1
p∗ ‖y‖(Zp,α(μ))∗ .

Let mx = (∑m
k=1 α1−p∗

k ck(r2
k1 + r2

k2)
p∗/2)1/p∗ . Thus, the fact that y/‖y‖(Zp,α(μ))∗ lies on

the boundary of the convex body (Zp,α(μ))∗ implies

x
mx

∈ Zp,α(μ).
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Hence ∥∥∥ x
mx

∥∥∥
Zp,α (μ)

� 1.

That is,

‖x‖Zp,α (μ) �
( m

∑
k=1

α1−p∗
k ck(r2

k1 + r2
k2)

p∗/2
)1/p∗

,

for x =
m
∑

k=1
ck(rk1vk + rk2v

†
k) . Taking the infimum yields the claim.

Define functions fk : span(vk,v
†
k) → [0,∞),1 � k � m , by

fk(y) = exp(−α1−p∗
k ‖y‖p∗).

From (12), (32), Lemma 1 and the fact that μ(S2n−1) = ∑m
k=1 ck = n , we have

Γ
(
1+

2n
p∗

)
V (Zp,α(μ))

=
∫

R2n
exp(−‖x‖p∗

Zp,α(μ))dx

�
∫

R2n
sup

{ m

∏
k=1

exp(−α1−p∗
k ck(r2

k1 + r2
k2)

p∗
2 ) :

m

∑
k=1

ck(rk1vk + rk2v
†
k) = x

}
dx

=
∫

R2n
sup

{ m

∏
k=1

fk(yk)ck : x =
m

∑
k=1

ckyk,yk ∈ span{vk,v
†
k}

}
dx

�
m

∏
k=1

(∫
span{vk,v

†
k}

fi
)ck

=
m

∏
k=1

(∫
span{vk,v

†
k}

e−α1−p∗
k ‖x‖p∗

dx
)ck

=
(

πΓ
(
1+

2
p∗

))n( m

∏
k=1

αck
k

) 2
p
.

Therefore, V (Zp,α(μ)) � κ2n(p∗)
( m

∏
k=1

αck
k

) 2
p
.

Now let μ be an arbitrary complex isotropic measure on S2n−1 . As shown in [19,
Theorem 3.2], there exists a sequence μl, l ∈N , of discrete complex isotropic measures
such that μl converges weakly to μ as l → ∞ . Thus,

lim
l→∞

h(Zp,α(μl),u) = h(Zp,α(μ),u), u ∈ S2n−1.

Note that the pointwise convergence of support functions implies the convergence of
the corresponding convex bodies in the Hausdorff metric (see e.g., [32]). Then the
continuity of volume and the fact that

( m

∏
k=1

αck
k

) 2
p

=
(

exp
( n

∑
k=1

ck logαk

)) 2
p

give inequality (30).
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If μ is a complex cross measure on S2n−1 such that suppμ = {span{v1,v
†
1} ∩

S2n−1, . . . ,span{vn,v†
n}∩S2n−1} , then the equality of (30) follows from (27) and (28). �

Finally, we complete the proof of Theorem 1.

THEOREM 2. Suppose p � 1 and K is a convex body in R2n . If μ is a complex
isotropic measure on S2n−1 , then

V (K)2n−p � n2nκ2n(p∗)−p exp
(∫

S2n−1
logh(ΠD

p K,v)2pdμ(v)
)
. (33)

In addition, if μ is a complex cross measure on S2n−1 , then equality in (33) holds for
p > 1 if and only if K is a generalized �p∗(Cn)-ball formed by μ , and equality in (33)
holds for p = 1 if and only if K is a polydisc formed by μ (up to translations).

Proof. Let

α(v) = h(ΠD
p K,v)−p =

( 1
2n

∫
S2n−1

|〈v,u〉c|pdSp(K,u)
)−1

, (34)

for v ∈ suppμ . From (14), (13), the definition of Zp,α(μ) (24), Fubini’s theorem, (34)
and the fact that μ(S2n−1) = n , we have

V (K)2n−p � V (Zp,α(μ))−pVp(K,Zp,α(μ))2n

= V (Zp,α(μ))−p
( 1

2n

∫
S2n−1

h(Zp,α(μ),u)pdSp(K,u)
)2n

= V (Zp,α(μ))−p
( 1

2n

∫
S2n−1

(∫
S2n−1

|〈u,v〉c|pα(v)dμ(v)
)
dSp(K,u)

)2n

= V (Zp,α(μ))−p
( 1

2n

∫
S2n−1

∫
S2n−1

|〈u,v〉c|pdSp(K,u)α(v)dμ(v)
)2n

= V (Zp,α(μ))−p
(∫

S2n−1
h(ΠD

p K,v)pα(v)dμ(v)
)2n

= n2nV (Zp,α(μ))−p.

By Lemma 2,

V (K)2n−p � n2nV (Zp,α(μ))−p � n2nκ2n(p∗)−p exp
(∫

S2n−1
logα−2(v)dμ(v)

)

= n2nκ2n(p∗)−p exp
(∫

S2n−1
logh(ΠD

p K,v)2pdμ(v)
)
, (35)

which is the desired inequality.
For the equality conditions of (35), by the Lp Minkowski inequality (14), equality

of the first inequality in (35) holds if and only if K and Zp,α(μ) are dilates when
p > 1 (K and Zp,α(μ) are homothetic when p = 1). If μ is a complex cross measure
on Sn−1 , Lemma 2 implies that equality of the second inequality in (35) holds and
Zp,α(μ) is the generalized �p∗(Cn)-ball Bp∗,α−p∗/p(Cn) formed by μ . Hence K is a
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dilation of the generalized �n
p∗ -ball formed by the cross measure μ , which is still the

generalized �n
p∗ -ball formed by μ when p > 1 (K is a polydisc formed by μ up to

translations when p = 1).
Conversely, we will show that, when p > 1, equality in (35) holds if K is the

generalized �n
p∗(C

n)-ball formed by μ ; i.e., there are positive numbers (αk)n
k=1 such

that

K =
{

x ∈ R
n :

( n

∑
k=1

αk|〈x,vk〉c|p∗
) 1

p∗ � 1
}
, (36)

where suppμ = {span{v1,v
†
1}∩S2n−1, . . . ,span{vn,v†

n}∩S2n−1} and {v1,v
†
1 . . . ,vn,v†

n}
is an orthonormal basis of R2n . From (35), it is sufficient to verify that K and Zp,α(μ)
are dilates. From (15), we have

K = Bp∗,α(Cn) = UA−1Bp∗(Cn),

where A = diag{α1/p∗
1 ,α1/p∗

1 , . . . ,α1/p∗
n ,α1/p∗

n } and U ∈O(R2n) such that vk =Ue2k−1 ,
v†
k = Ue2k for k = 1, . . . ,m . From (34) and [30, Proposition 1.2], we get

α(vk) = h(ΠD
p K,vk)−p = h(ΠD

p (UA−1Bp∗(Cn)),vk)−p

=
( 1

2n

∫
S2n−1

|〈vk,u〉c|pdSp(UA−1Bp∗(Cn),u)
)−1

=
( 1

2n

∫
S2n−1

[〈vk,u〉2 + 〈v†
k,u〉2]

p
2 dSp(UA−1Bp∗(Cn),u)

)−1

=
( 1

2n

∫
S2n−1

[〈vk,UAtu〉2 + 〈v†
k,UAtu〉2] p

2 dSp(Bp∗(Cn)),u)
)−1

=
( 1

2n

∫
S2n−1

[〈AUtvk,u〉2 + 〈AUtv†
k ,u〉2]

p
2 dSp(Bp∗(Cn)),u)

)−1

=
( 1

2n

∫
S2n−1

α p/p∗
k [〈e2k−1,u〉2 + 〈e2k,u〉2]

p
2 dSp(Bp∗(Cn)),u)

)−1

= h(ΠD
p (Bp∗(Cn)),e2k−1)−pα−p/p∗

k

for every k = 1, . . . ,n . Notice that h(ΠD
p (Bp∗(Cn)),e2k−1)−p is a constant for all k =

1, . . . ,n . Thus, there exists a constant c > 0 such that α(vk) = cα−p/p∗
k for every

k = 1, . . . ,n . Now, it follows from (25) and (36) that

Zp,α(μ) = Bp∗,α−p∗/p(Cn)

=
{

x ∈ R
n :

( n

∑
k=1

α(vk)−p∗/p|〈x,vk〉c|p∗
) 1

p∗ � 1
}

=
{

x ∈ R
n :

( n

∑
k=1

c−p∗/pαk|〈x,vk〉c|p∗
) 1

p∗ � 1
}

= c
1
p K.

That is, K and Zp,α(μ) are dilates when p > 1. When p = 1, the proof, together with
the observation that ΠD(K + v0) = ΠDK for every v0 ∈ R2n , is the same. �
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