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JOINT WEAK TYPE INTERPOLATION

ON LORENTZ–KARAMATA SPACES

MICHAL BATHORY

(Communicated by L. Pick)

Abstract. We present sharp interpolation theorems, including all limiting cases, for a class of
quasilinear operators of joint weak type acting between Lorentz-Karamata spaces over σ -finite
measure. This class contains many of the important integral operators. The optimality in the
scale of Lorentz-Karamata spaces is also discussed. The proofs of our results rely on a char-
acterization of Hardy-type inequalities restricted to monotone functions and with power-slowly
varying weights. Some of the limiting cases of these inequalities have not been considered in the
literature so far.

1. Introduction

The generalized Lorentz-Zygmund (GLZ) spaces are very useful when one needs
to find a precise description of the boundedness of the given operator, especially in the
limiting cases (cf. [1], [7], for example). The Lorentz-Karamata (LK) spaces generalize
the GLZ spaces in the sense that the logarithmic-like weight is replaced by a slowly
varying function. The LK spaces were introduced in [6], however the key notion of
the slowly varying function (in the sense of Karamata) is much older (see e.g. [20, p.
186] and references there). It seems that the choice of the LK spaces lead to an optimal
balance between the generality and explicitness of our theorems.

The main results of this paper are formulated in Section 3 and proved in Section 5.
Those are the interpolation theorems for quasilinear operators of joint weak type, i.e.
operators, which are, in certain sense, dominated by the Calderón operator (see (2.1)
below). This class contains many important operators (e.g. convolution or singular
integral operators) and thus, our results are widely applicable. We will illustrate this
on several examples in Section 7. The assumption that some operator is of joint weak
type allows to reduce the question of its boundedness to the question of the validity
of certain Hardy-type inequality, restricted to non-increasing functions. Thus, the es-
sential part of this paper is to find necessary and sufficient conditions for this kind of
inequalities to hold - this is the content of Section 4. Moreover, since weights appear-
ing in those inequalities are of a special (and yet very general) form (w(x) = xαb(x) ,
where α ∈ R and b is a slowly varying function) we are able to pinpoint the cases,
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where the restriction of these inequalities to monotone functions plays any role. In
fact, we will show that in most of the cases it is sufficient to apply the known criteria
for non-restricted weighted Hardy inequalities (Theorem 4.5 below) and some rather
elementary arguments. However, there are certain limiting cases where one requires
a different approach to obtain sharp results. It turns out that these problematic cases
can occur only for certain subclass of considered operators; the Hilbert transform is the
canonical example. Thus, the characterization of its boundedness in the limiting cases
is, in a sense, the most challenging and this will be our ultimate goal.

Our work extends the results of several papers. In [1] the authors already use
the notion of joint weak type and develop an interpolation theory for operators acting
between Lorentz-Zygmund spaces over σ -finite measure. We, on the other hand, work
with the more general scale of spaces and, perhaps more importantly, we clarify the
connection with the correspondingHardy-type inequalities, which we characterize fully
and which are certainly of independent interest. This, together with appropriate lower
bounds on the operator, allows us to prove also the necessity of obtained conditions
for its boundedness. In [16] the author gives necessary and sufficient conditions for
the boundedness of several important operators acting between the classical Lorentz
spaces. However, some of the limiting cases (when the Lorentz space index r is 1
or ∞) are missing there and the used methods do not apply to them (the case 0 <
r � 1 was eventually described by M. Carro and J. Soria in [4]). Moreover, unlike
in both articles [16] and [1], we discuss also the optimality (or sharpness) of obtained
results (see Section 6). Finally, we extend the theory presented in [7] by considering
more general spaces with σ -finite measure and consequently, by proving more general
Hardy-type inequalities for the whole interval (0,∞) .

2. Preliminaries

The following conventions are used throughout this paper: ∞ := +∞ , 0
0 := 0,

c
∞ := 0, c

0 := ∞ , for c ∈ (0,∞] . We also put ∞ · 0 = 0 ·∞ := 0. The conjugate index
p′ to p ∈ [1,∞] is defined by 1

p + 1
p′ = 1. The symbol χI stands for the characteristic

function of an interval I ⊆ R . The abbreviations LHS(#) or RHS(#) are used for the
left-hand side or the right-hand side of the relation (#) .

For two non-negative expressions E,F , we shall write E � F or equivalently
F � E if there is a constant c ∈ (0,∞) such that E � cF and c is independent of
appropriate quantities involved in E , F . Typically, c will always be independent of
functions f ,g,h and variables x,t,u,τ , but can depend on any other symbol. When
E � F � E , we say that E is equivalent to F and we will denote this by E ≈ F .

The decreasing rearrangement

Let (R,μ) be a measure space with σ -finite measure μ . If μ(R) < ∞ , we will
suppose μ(R) = 1 without loss of generality. We denote by M (R,μ) the set of all
scalar valued (real or complex) μ -measurable functions defined on R . The symbol
M +(A,B) stands for the set of non-negative, measurable (with respect to Lebesgue
measure on R) functions defined on the interval (A,B) , which is always one of the
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intervals (0,1),(1,∞),(0,∞) . Moreover, the symbols M +(A,B;↓) and M +(A,B;↑)
denote the sets of all functions from M +(A,B) which are non-increasing and non-
decreasing, respectively. By ‖·‖r,(A,B) , 1 � r � ∞ , we shall denote the usual Lebesgue
space norm over (A,B) .

The distribution function d of f with respect to μ is defined by

d(μ , f )(h) = μ({x ∈ R : | f (x)| > h}), h � 0.

The decreasing rearrangement of f is then given by

f ∗(t) = f ∗(R,μ)(t) = inf{h > 0 : d(μ , f )(h) � t} , t ∈ (0,∞).

We say that functions f ∈ (R1,μ1) and g ∈ (R2,μ2) are equimeasurable if their distri-
bution functions are the same, i.e. if d(μ1, f ) = d(μ2,g) . See [2, Chapter 2, Section 1]
for details.

The Calderón operator

Suppose 1 � p1 < p2 � ∞ , 1 � q1,q2 � ∞ , q1 
= q2 . The Calderón operator Sσ
associated with the interpolation segment σ = [( 1

p1
, 1

q1
);( 1

p2
, 1

q2
)] is defined for every

g ∈ M +(0,∞) and all x ∈ (0,∞) as

Sσ g(x) = x
− 1

q1

∫ xm

0
t

1
p1

−1
g(t)dt + x

− 1
q2

∫ ∞

xm
t

1
p2

−1
g(t)dt, (2.1)

where m = ( 1
q1
− 1

q2
)( 1

p1
− 1

p2
)−1 denotes the slope of the segment σ .

Throughout the paper we consider only such operators T which take some linear
subspace D of M (R1,μ1) into M (R2,μ2) . The operator T is quasilinear if there is
k � 1 such that

|T ( f +g)| � k(|T f |+ |Tg|) and |T (α f )| = |α| |T f | ,
μ2-a.e. on R2 , for every f ,g ∈ D and all α ∈ C . Let us denote DS the set of all
functions f ∈ M (R1,μ1) which satisfy Sσ f ∗(1) < ∞ . The quasilinear operator T
is said to be of joint weak type (p1,q1; p2,q2) (notation T ∈ JW(p1,q1; p2,q2)) if
DS ⊆ D and

(T f )∗(x) � Sσ f ∗(x) ∀x ∈ (0,∞) ∀ f ∈ DS.

Futhermore, we adopt the notation introduced in [7] and write T ∈ LB1(p1,q1;m) , or
T ∈ LB2(p2,q2;m) , for a quasilinear operator T if, for any f ∈ M +(0,∞;↓) , there is
a function g ∈ M (R1,μ1) equimeasurable with f such that, for all x ∈ (0,∞) ,

(Tg)∗(x) � x
− 1

q1

∫ xm

0
t

1
p1

−1
f (t)dt, or (Tg)∗(x) � x

− 1
q2

∫ ∞

xm
t

1
p2

−1
f (t)dt,

respectively.
If X and Y are two (quasi-) normed spaces, then the symbol T : X −→ Y means

that T is bounded from X to Y (i.e. ‖T f‖Y � ‖ f‖X for all f ∈ X ). Furthermore, the
symbol X ↪→ Y stands for id : X −→ Y .
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Slowly varying functions

The function a ∈ M +(A,B) , 0 
≡ a 
≡ ∞ , is said to be slowly varying (s.v.) on
(A,B) if, for each ε > 0, there exist functions gε ∈ M +(A,B;↑) , g−ε ∈ M +(A,B;↓)
such that

tεa(t) ≈ gε(t) and t−εa(t) ≈ g−ε(t) ∀t ∈ (A,B). (2.2)

We denote by SV(A,B) the set of all slowly varying functions on (A,B) .
We shall now review some important properties of the slowly varying functions.

The most basic ones contained in the following proposition are used in the paper with-
out reference.

PROPOSITION 2.1. Let a,b ∈ SV(A,B) .

(i) All of the functions ab, 1
a , ar , t �→ a(tr) , r � 0 , are slowly varying on (A,B) .

(ii) Let [C,D] ⊆ [A,B]∩ (0,∞) . Then there exist constants c1,c2 ∈ (0,∞) such that
c1 � a(x) � c2 for all x ∈ [C,D] .

(iii) If c > 0 , then a(ct) ≈ a(t) for every t ∈ (0,∞) .

Proof. For (i), (iii), see [10, Prop. 2.2 (i), (ii), (iii)] or [6, Lemma 5.3. (i), (iii)].
Clearly, it is sufficient to prove the assertion (ii) in the case (A,B) = (0,∞) . Let

ε > 0. By (2.2), there exists a function g−ε ∈ M +(0,∞;↓) which is equivalent to the
function x �→ x−εa(x) . Then, for all x ∈ [C,D] ,

a(x) = xεx−εa(x) ≈ xεg−ε(x) � Dεg−ε(C) =: c2.

The existence of the lower bound then follows from (i) ( 1
a is also slowly varying). �

LEMMA 2.2. Let λ ∈ SV(0,∞) and r ∈ [1,∞] .

(i) If ε > 0 , then∥∥∥tε− 1
r λ (t)

∥∥∥
r,(0,x)

≈ xε λ (x) and
∥∥∥t−ε− 1

r λ (t)
∥∥∥

r,(x,∞)
≈ x−ελ (x) ∀x ∈ (0,∞).

(ii) Then∥∥∥t−
1
r λ (t)

∥∥∥
r,(0,x)

� λ (x) and
∥∥∥t−

1
r λ (t)

∥∥∥
r,(x,∞)

� λ (x) ∀x ∈ (0,∞).

Furthermore, if
∥∥∥t−

1
r λ (t)

∥∥∥
r,(0,1)

< ∞ and
∥∥∥t−

1
r λ (t)

∥∥∥
r,(1,∞)

< ∞ , then the functions

x �→
∥∥∥t−

1
r λ (t)

∥∥∥
r,(0,x)

and x �→
∥∥∥t−

1
r λ (t)

∥∥∥
r,(x,∞)

belong to SV(0,∞) , respectively.
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Proof. For (i) see, for example, [10, Proposition 2.2 (iv)]. An important conse-
quence of (i) is that every slowly varying function is equivalent to some continuous
function. This fact implies (ii) in the case r = ∞ . When r < ∞ , we can write

∥∥∥t−
1
r λ (t)

∥∥∥
r,(0,x)

=
(∫ x

0
t−1λ (t)r dt

) 1
r

�
(

x−1λ (x)r
∫ x

0
1dt

) 1
r

= λ (x)

and

∥∥∥t−
1
r λ (t)

∥∥∥
r,(x,∞)

=
(∫ ∞

x
t−2 t λ (t)r dt

) 1
r

�
(

xλ (x)r
∫ ∞

x
t−2 dt

) 1
r

≈ λ (x)

for all x ∈ (0,∞) . For the last assertion of (ii) see [12, Lemma 2.1. (v)]. �

LEMMA 2.3. Let R ∈ [1,∞) , S ∈ [1,∞] , λ ∈ SV(A,B) and set

Λ1(x) =
∫ x

A
t−1λ (t)R dt and Λ2(x) =

∫ B

x
t−1λ (t)R dt, x ∈ (A,B).

(i) Suppose that ∫ B

A
t−1λ (t)R dt = ∞. (2.3)

Then ∥∥∥t−
1
R λ (t)

∥∥∥
R,(A,x)

≈
∥∥∥t−

1
S λ (t)

R
S Λ1(t)−

1
R− 1

S

∥∥∥−1

S,(x,B)
(2.4)

and ∥∥∥t−
1
R λ (t)

∥∥∥
R,(x,B)

≈
∥∥∥t−

1
S λ (t)

R
S Λ2(t)−

1
R− 1

S

∥∥∥−1

S,(A,x)
(2.5)

for all x ∈ (A,B) .

(ii) Suppose δ ∈ (0,1) = (A,B) . Then (2.4) holds for all x ∈ (0,δ ) .

(iii) Suppose δ ∈ (1,∞) = (A,B) . Then (2.5) holds for all x ∈ (δ ,∞) .

Proof.
Case (i). We prove relation (2.4) here, the proof of (2.5) is analogous.
If S = ∞ , then (2.4) is in fact an equality. It can also happen that both sides of

(2.4) are identically infinite. In other cases, we use the change of variables τ = Λ1(t)
and (2.3) to get, for all x ∈ (A,B) , that

RHS(2.4) =
(∫ B

x
t−1λ (t)RΛ1(t)−

S
R−1 dt

)− 1
S

=
(∫ ∞

Λ1(x)
τ−

S
R−1 dτ

)− 1
S

≈ LHS(2.4).

Case (ii). We proceed in the same way as in (i) to get

RHS(2.4) ≈ (Λ1(x)−
S
R −Λ1(1)−

S
R )−

1
S � LHS(2.4)
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for all x ∈ (0,1) . Moreover, since the function t �→ Λ1(t)−
S
R is strictly decreasing on

(0,1) , it follows that

(Λ1(x)−
S
R −Λ1(1)−

S
R )−

1
S � (c(δ )Λ1(x)−

S
R )−

1
S ≈ LHS(2.4)

for all x ∈ (0,δ ) , where c(δ ) = 1−Λ1(δ )
S
R Λ1(1)−

S
R > 0.

Case (iii) can be proven analogously as case (ii). �

The Lorentz-Karamata spaces

DEFINITION 2.4. Let 0 < p,r � ∞ , a ∈ SV(A,B) and put

‖ f‖p,r;a;(A,B) :=
∥∥∥t

1
p− 1

r a(t) f ∗(t)
∥∥∥

r,(A,B)
, f ∈ M (R,μ).

Let B = 1 if μ(R) = 1 and B = ∞ if μ(R) = ∞ . Then, the Lorentz-Karamata (LK)
space Lp,r;a(R,μ) ≡ Lp,r;a is defined as the set of all functions f ∈ M (R,μ) such that
‖ f‖p,r;a;(0,B) < ∞ .

Using the monotonicity of f ∗ and Lemma 2.2 (i), one can observe that Lp,r;a is

the trivial space if and only if p = ∞ and
∥∥∥t−

1
r a(t)

∥∥∥
r,(0,1)

= ∞ . Moreover, if we set

d(t) = ‖a‖∞,(0,t) , t ∈ (0,B) , and if the space L∞,∞;a is non-trivial, then d ∈ SV(0,B)
(see Lemma 2.2 (ii)) and

‖a f ∗‖∞,(0,B) �
∥∥∥‖a‖∞,(0,t) f ∗(t)

∥∥∥
∞,(0,B)

�
∥∥∥‖a f ∗‖∞,(0,t)

∥∥∥
∞,(0,B)

= ‖a f ∗‖∞,(0,B) .

Thus, L∞,∞;a = L∞,∞;d and, consequently, in the case p = ∞ it is natural to assume that

if r = ∞, then a ∈ M +(0,B;↑). (2.6)

LK spaces contain many of familiar spaces as particular cases. For example, let
�1(t) = 1 + |logt| , t ∈ (0,∞) , and �i = �1(�i−1) for all i ∈ {2,3, . . .} and set L =
∏n

i=1 �αi
i , where αi ∈ R , n ∈ N . Then L ∈ SV(0,∞) and Lp,r;L is the general-

ized Lorentz-Zygmund (GLZ) space with the n -th tier of logarithm. In particular, if
α,β ,γ ∈ R , then Lp,r;α ,β ,γ := L

p,r;�α
1 �

β
2 �

γ
3

and Lp,r;α ,β := L
p,r;�α

1 �
β
2

are the GLZ spaces

of Edmunds, Gurka and Opic (cf. [5]) and Lp,r;�α
1

is the Lorentz-Zygmund space of
Bennett and Rudnick (cf. [2]). The LK spaces also cover the (generalized) Lorentz-
Zygmund spaces Lp,r;A , A = (α0,α∞) ∈ R2 , with “broken-logartmic” function, which
were introduced in [8]. Furthermore, if 1 = χ(0,∞) , then Lp,r := Lp,r;1 is the Lorentz
space. Moreover, the space Lp(logL)α := Lp,p;�α

1
is the Zygmund space, and Lp := Lp,p

is the Lebesgue space (original definitions and properties of these classical spaces can
be found also in [2]). In the literature also spaces, which are close to L∞ , such as Lα

exp ,
appear. These spaces are covered by the LK spaces as well (Lα

exp = L∞,∞;�−α
1

). Since the
special spaces mentioned above were introduced by different authors at various times,
there is slight inconsistency in their definitions (many functionals can be used to define
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the same space). This is resolved by [7, Lemma 2.2.] (the definitions of the GLZ space
from [7] and of the LK space given here are consistent).

The choice of slowly varying function a is, of course, not restricted to compos-
ite logarithmic functions as L . For complete information on how various examples
of slowly varying functions can be constructed, see [3, Section 1.3, p. 12]. Note that
a general slowly varying function can also exhibit oscillations of infinite amplitude at

zero. An example of such slowly varying function is a(x) = exp
(
�1(x)

1
3 cos(�1(x)

1
3 )

)
,

x ∈ (0,∞) , which is taken from [3, Exercise 1.11.3, p. 58].
Similarly as in [1], we shall also consider sums and intersections of the LK spaces.

DEFINITION 2.5. Let p1, p2,r1,r2 ∈ [1,∞] , p1 
= p2 , a∈SV(0,∞) , f ∈M (R,μ) .
Then, we define

‖ f‖(p1,r1)+(p2,r2);a :=
{‖ f‖p1,r1;a;(0,1) +‖ f‖p2,r2;a;(1,∞) if p1 < p2

‖ f‖p2,r2;a;(0,1) +‖ f‖p1,r1;a;(1,∞) if p1 > p2

and
‖ f‖(p1,r1)∩(p2,r2);a := ‖ f‖(p2,r2)+(p1,r1);a .

The spaces Lp1,r1;a+Lp2,r2;a and Lp1,r1;a∩Lp2,r2;a consist of all functions f ∈M (R,μ) ,
such that ‖ f‖(p1,r1)+(p2,r2);a < ∞ and ‖ f‖(p1,r1)∩(p2,r2);a < ∞ , respectively.

Obviously, this definition enables us to control the behaviour of f ∗ near 0 and
∞ independently. Also, it agrees with the usual definition of sum and intersection of
spaces (therefore the notation) up to one exception, when one of the spaces of the sum
is trivial. This exception allows us to properly define, e.g., the space L(logL)+L∞,1 ,
which is particularly important for Hilbert transform and which, using the usual defini-
tion of the sum, would be trivial (since L∞,1 = {0}). For detailed explanation of this
problematic, see [1].

3. The statement of the main results

If not stated otherwise, we shall assume in this section that 1 � p1 < p2 � ∞ ,
1 � q1,q2 � ∞ , q1 
= q2 , 1 � r,s,r1,s1,r2,s2 � ∞ and a,b ∈ SV(A,B) . If r > s , then
the number ρ is defined by

1
ρ

=
1
s
− 1

r
.

To formulate our main results conveniently, we introduce the following quantities. Set

N(r,s,a,b;A,B) =

⎧⎨
⎩

sup
A<x<B

b(x)a(x)−1 if r � s∥∥∥x−
1
ρ b(x)a(x)−1

∥∥∥
ρ ,(A,B)

if r > s
,

L(r,s,a,b;A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
A<x<B

∥∥∥t−
1
s b(t)

∥∥∥
s,(x,B)

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′,(A,x)

if r � s∥∥∥∥∥x−
1
ρ a(x)−

r′
ρ

∥∥∥t−
1
s b(t)

∥∥∥
s,(x,B)

∥∥∥t−
1
r′ a(t)−1

∥∥∥ r′
s′

r′,(A,x)

∥∥∥∥∥
ρ ,(A,B)

if r > s
,
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and

R(r,s,a,b;A,B)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
A<x<B

∥∥∥t−
1
s b(t)

∥∥∥
s,(A,x)

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′ ,(x,B)

if r � s∥∥∥∥∥x−
1
ρ a(x)−

r′
ρ

∥∥∥t−
1
s b(t)

∥∥∥
s,(A,x)

∥∥∥t−
1
r′ a(t)−1

∥∥∥ r′
s′

r′ ,(x,B)

∥∥∥∥∥
ρ ,(A,B)

if r > s
.

Furthermore, we put

R1(r,s,a,b;A,B)=

⎧⎪⎪⎨
⎪⎪⎩

sup
A<x<B

∥∥∥t−
1
s b(t) log x

t

∥∥∥
s,(A,x)

∥∥∥t−
1
r a(t)

∥∥∥−1

r,(A,x)
if r � s∥∥∥∥x−

1
ρ a(x)

r
ρ
∥∥∥t−

1
s b(t) log x

t

∥∥∥
s,(A,x)

∥∥∥t−
1
r a(t)

∥∥∥− r
s

r,(A,x)

∥∥∥∥
ρ ,(A,B)

if r > s
,

R2(r,s,a,b;A,B)

=

⎧⎪⎪⎨
⎪⎪⎩

sup
A<x<B

∥∥∥t−
1
s b(t)

∥∥∥
s,(A,x)

∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′,(x,B)

if r � s∥∥∥∥x−
1
ρ b(x)

s
ρ
∥∥∥t−

1
s b(t)

∥∥∥ s
r

s,(A,x)

∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′,(x,B)

∥∥∥∥
ρ ,(A,B)

if r > s
,

where V (t) =
∫ t
Au−1a(u)r du , t ∈ (A,B) , and

R3(r,s,a,b;A,B) =
∥∥∥∥x−

1
s b(t)

∫ B

x
t−1‖a‖−1

∞,(A,t) dt

∥∥∥∥
s,(A,B)

if r = ∞.

Finally, let

R∞(r,s,a,b;A,B) =

⎧⎪⎪⎨
⎪⎪⎩

R1(r,s,a,b;A,B)+R2(r,s,a,b;A,B) if 1 < r,s < ∞
R1(r,s,a,b;A,B) if r = 1 or 1 = s < r < ∞
R2(r,s,a,b;A,B) if 1 < r < s = ∞
R3(r,s,a,b;A,B) if r = ∞.

Whenever the context is clear, we shall write just N instead of N(r,s,a,b;A,B)
and similarly for all the other quantities above.

Now we are almost ready to formulate our interpolation theorems. We recall that
we work with the operators acting between (subspaces of) M (R1,μ1) and M (R2,μ2) .
We shall suppose that μ1(R1) = μ2(R2) = ∞ ; for the finite measure spaces see Re-
mark 3.7 (i) below. If b ∈ SV(A,B) , we put

b∗(t) = b(t
1
m ), t ∈ (A,B),

where m denotes the slope of the interpolation segment σ = [( 1
p1

, 1
q1

);( 1
p2

, 1
q2

)] , asso-
ciated with the Calderón operator Sσ .

The following theorem is a generalization of the classical Marcinkiewicz interpo-
lation theorem (cf. [2, Chapter 4, Theorem 4.13]) to the LK spaces.
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THEOREM 3.1. Let T ∈ JW(p1,q1; p2,q2) ∩ (LB1(p1,q1;m) ∪ LB2(p2,q2;m)) .
Suppose that θ ∈ (0,1) and p,q satisfy

1
p

=
1−θ

p1
+

θ
p2

,
1
q

=
1−θ
q1

+
θ
q2

.

Then
T : Lp,r;a −→ Lq,s;b

if and only if
N(r,s,a,b∗;0,∞) < ∞.

The parameter θ from the previous theorem was restricted to (0,1) , therefore we
refer to this case as to the non-limiting case. The next theorem describes the limiting
case θ = 0.

THEOREM 3.2. Let T ∈ JW(p1,q1; p2,q2)∩LB1(p1,q1;m) . Then

T : Lp1,r;a −→ Lq1,s;b

if and only if
L(r,s,a,b∗;0,∞) < ∞.

The following theorem describes the limiting case θ = 1 and is completely anal-
ogous to the previous theorem as long as p2 < ∞ .

THEOREM 3.3. Let T ∈ JW(p1,q1; p2,q2)∩LB2(p2,q2;m) , p2 < ∞ . Then

T : Lp2,r;a −→ Lq2,s;b

if and only if
R(r,s,a,b∗;0,∞) < ∞.

When p2 = ∞ , the situation turns out to be more delicate.

THEOREM 3.4. Let T ∈ JW(p1,q1;∞,q2)∩LB2(∞,q2;m) and suppose that (2.6)
is satisfied. Then

T : L∞,r;a −→ Lq2,s;b

if and only if ∥∥∥t−
1
r a(t)

∥∥∥
r,(0,∞)

= ∞ (3.1)

and
R∞(r,s,a,b∗;0,∞) < ∞.

Next, we state results concerning the sums and intersections of LK spaces. We
concentrate on the limiting cases only as the situation in the non-limiting case is obvi-
ous.
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THEOREM 3.5. Let T ∈ JW(p1,q1; p2,q2)∩LB1(p1,q1;m)∩LB2(p2,q2;m) with
p2 < ∞ .

(i) Then
T : Lp1,r1;a +Lp2,r2;a −→ Lq1,s1;b +Lq2,s2;b

if and only if

L(r1,s1,a,b∗;0,1)+R(r2,s2,a,b∗;1,∞) < ∞.

(ii) Then
T : Lp1,r1;a∩Lp2,r2;a −→ Lq1,s1;b∩Lq2,s2;b

if and only if

L(r1,s1,a,b∗;1,∞)+R(r2,s2,a,b∗;0,1) < ∞.

THEOREM 3.6. Let T ∈ JW(p1,q1;∞,q2)∩LB1(p1,q1;m)∩LB2(∞,q2;m) and
suppose that (2.6) is satisfied.

(i) Then
T : Lp1,r1;a +L∞,r2;a −→ Lq1,s1;b +Lq2,s2;b

if and only if ∥∥∥∥t
− 1

r2 a(t)
∥∥∥∥

r2,(1,∞)
= ∞

and
L(r1,s1,a,b∗;0,1)+R∞(r2,s2,a,b∗;1,∞) < ∞.

(ii) Then
T : Lp1,r1;a∩L∞,r2;a −→ Lq1,s1;b∩Lq2,s2;b

if and only if

L(r1,s1,a,b∗;1,∞)+R∞(r2,s2,a,b∗;0,1) < ∞.

Let us now make some remarks about the theorems above.

REMARK 3.7. (i) When the underlying measure spaces are finite and q1 < q2 ,
then Theorems 3.1, 3.2, 3.3 continue to hold, provided we replace the interval (0,∞) by
(0,1) . The same is true for Theorem 3.4, provided that condition (3.1) is dropped. This
is a consequence of the fact that the Hardy-type inequalities which will be used to prove
the mentioned theorems hold on (0,1) and (0,∞) in the same form (cf. Lemmas 4.1 –
4.4 below).

(ii) It will be apparent from the proofs in Section 5 that the existence of the
lower bounds for the operator T is only used to prove the necessity of the corre-
sponding conditions. In other words, if we omit the assumptions T ∈ LB1(p1,q1;m)
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and T ∈ LB2(p2,q2;m) , the theorems above still provide sufficient conditions for the
boundedness of T .

(iii) There exist r,s ∈ [1,∞] and a,b ∈ SV(A,B) such that

R1(r,s,a,b;A,B)+R2(r,s,a,b;A,B) < ∞ and R(r,s,a,b;A,B) = ∞.

Indeed, let 1 < r < s < ∞ and

a(t) = �1(t)−
1
r �2(t)θ and b(t) = �1(t)−1− 1

s �2(t)θ+γ , t ∈ (0,1),

where θ < − 1
r − 1

s and 0 < γ < 1
r − 1

s (we prove the statement for (A,B) = (0,1) ;
other cases are similar). Then, using the substitution τ = �2(t) , we get∥∥∥t−

1
s b∗(t) log x

t

∥∥∥
s,(0,x)

∥∥∥t−
1
r a(t)

∥∥∥−1

r,(0,x)

�
∥∥∥t−

1
s �1(t)−

1
s �2(t)θ+γ

∥∥∥
s,(0,x)

∥∥∥t−
1
r �1(t)−

1
r �2(t)θ

∥∥∥−1

r,(0,x)

=
(∫ ∞

�2(x)
τθs+γs dτ

) 1
s
(∫ ∞

�2(x)
τθr dτ

)− 1
r

≈ �2(x)θ+γ+ 1
s �2(x)−θ− 1

r = �2(x)γ+ 1
s − 1

r � 1

for all x ∈ (0,1) and thus R1(r,s,a,b;0,1) < ∞ . Now observe that in our case

A(t) =
∫ t

0
u−1a(u)r du ≈ �2(t)θr+1 ∀t ∈ (0,1).

Consequently, using the substitutions u = �1(t) and τ = �2(t) , we obtain∥∥∥t−
1
s b∗(t)

∥∥∥
s,(0,x)

∥∥∥t−
1
r′ a(t)

r
r′ A(t)−1 log t

x

∥∥∥
r′,(x,1)

�
∥∥∥t−

1
s �1(t)−1− 1

s �2(t)θ+γ
∥∥∥

s,(0,x)

∥∥∥t−
1
r′ �1(t)

− 1
r′ �2(t)

θ r
r′ −θr−1

∥∥∥
r′,(x,1)

�1(x)

=
(∫ ∞

�1(x)
u−s−1�1(u)θs+γs du

) 1
s
(∫ �2(x)

1
τ−r′(θ+1) dτ

) 1
r′

�1(x)

≈ �1(x)−1�2(x)θ+γ�2(x)
−θ−1+ 1

r′ �1(x) = �2(x)γ− 1
r � 1 (3.2)

for all x ∈ (0,1) and thus, R2(r,s,a,b;0,1) < ∞ holds as well. It remains to show that
R(r,s,a,b;0,1) = ∞ . We can see from (3.2) that∥∥∥t−

1
s b∗(t)

∥∥∥
s,(0,x)

≈ �1(x)−1�2(x)θ+γ ∀x ∈ (0,1).

This, together with

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′ ,(x,1)

=
∥∥∥t−

1
r′ �1(t)

1
r �2(t)−θ

∥∥∥
r′,(x,1)

=
(∫ �1(x)

1
ur′−1�1(u)−θr′ du

) 1
r′

≈ �1(x)�2(x)−θ



396 M. BATHORY

for all x ∈ (0,1) , gives∥∥∥t−
1
s b∗(t)

∥∥∥
s,(0,x)

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′,(x,1)

≈ �2(x)γ ,

which tends to infinity as x → 0+ . When r = 1 or s = ∞ , the given example (with the
usual modifications) works as well.

4. Weighted inequalities for integral operators

We will show in Section 5 that the boundedness of T is fully determined by the va-
lidity of certain Hardy-type inequalities that are restricted to non-increasing functions.
The aim of this section is to characterize weights for which these inequalities hold. By
weights, we mean functions from M +(A,B) that are positive and finite almost every-
where on (A,B) . We shall denote the set of all weights by W (A,B) .

First of all, we are going to state Lemmas 4.1, 4.2, 4.3 and 4.4, which form an
essential part of the paper (they are applied to prove the main results). After that, we
review some general criteria and use them to prove the lemmas. The following assertion
will be used to prove Theorem 3.1 (the non-limiting case).

LEMMA 4.1. Let r,s ∈ [1,∞] , a,b ∈ SV(A,B) . Suppose κ ∈ R and ν > μ > 0 .
Then the following five conditions are equivalent:

(i) N(r,s,a,b;A,B) < ∞;

(ii)

∥∥∥∥t−μ− 1
s b(t)

∫ t

A
uκ−1g(u)du

∥∥∥∥
s,(A,B)

�
∥∥∥t−μ+κ− 1

r a(t)g(t)
∥∥∥

r,(A,B)
∀g∈M +(A,B);

(iii)

∥∥∥∥t−μ− 1
s b(t)

∫ t

A
uν−1 f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥t−μ+ν− 1

r a(t) f (t)
∥∥∥

r,(A,B)
∀ f ∈M +(A,B;↓);

(iv)

∥∥∥∥tμ− 1
s b(t)

∫ B

t
uκ−1g(u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tμ+κ− 1

r a(t)g(t)
∥∥∥

r,(A,B)
∀g ∈ M +(A,B);

(v)

∥∥∥∥tμ− 1
s b(t)

∫ B

t
uν−1 f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tμ+ν− 1

r a(t) f (t)
∥∥∥

r,(A,B)
∀ f ∈M +(A,B;↓).

The parameter κ can be, of course, eliminated by a suitable substitution; we keep
it there just to emphasise that the inequalities above share the same structure. The
following two lemmas describe the case, where μ from Lemma 4.1 is zero. They will
be used to prove Theorems 3.2, 3.3 and 3.5 (limiting cases θ = 0, θ = 1 with p2 < ∞).

LEMMA 4.2. Let r,s ∈ [1,∞] , a,b ∈ SV(A,B) , κ ∈ R and ν > 0 . Then the fol-
lowing three conditions are equivalent:

(i) L(r,s,a,b;A,B) < ∞;
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(ii)

∥∥∥∥t−
1
s b(t)

∫ t

A
uκ−1g(u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tκ− 1

r a(t)g(t)
∥∥∥

r,(A,B)
∀g ∈ M +(A,B);

(iii)

∥∥∥∥t−
1
s b(t)

∫ t

A
uν−1 f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tν− 1

r a(t) f (t)
∥∥∥

r,(A,B)
∀ f ∈ M +(A,B;↓).

LEMMA 4.3. Let r,s ∈ [1,∞] , a,b ∈ SV(A,B) , κ ∈ R and ν > 0 . Then the fol-
lowing three conditions are equivalent:

(i) R(r,s,a,b;A,B) < ∞;

(ii)

∥∥∥∥t−
1
s b(t)

∫ B

t
uκ−1g(u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tκ− 1

r a(t)g(t)
∥∥∥

r,(A,B)
∀g ∈ M +(A,B);

(iii)

∥∥∥∥t−
1
s b(t)

∫ B

t
uν−1 f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥tν− 1

r a(t) f (t)
∥∥∥

r,(A,B)
∀ f ∈ M +(A,B;↓);

Finally, in the following lemma we consider the remaining and most interesting
case, that occurs when μ = ν = 0 and the inequality is restricted to non-increasing
functions. It will be used to prove Theorems 3.4 and 3.6 (limiting case θ = 1 with
p2 = ∞).

LEMMA 4.4. Let r,s ∈ [1,∞] and a,b ∈ SV(A,B) . Then

∥∥∥∥t−
1
s b(t)

∫ B

t
u−1 f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥t−

1
r a(t) f (t)

∥∥∥
r,(A,B)

(4.1)

holds for every f ∈ M +(A,B;↓) if and only if

R∞(r,s,a,b;A,B) < ∞

and ∥∥∥t−
1
r a(t)

∥∥∥
r,(A,B)

= ∞ when B = ∞. (4.2)

Note that, due to the monotonicity of f , the analogy of inequality (4.1) for
∫ t
A

is non-trivial only if (A,B) = (1,∞) and then it can be converted to an inequality of
the same form as (4.1) on (0,1) , but restricted to non-decreasing functions. Since we
will have no use for such an inequality and since the resulting characterization is not as
interesting, we shall omit it.

To prove the first three of the four lemmas above, we will use the following well
known characterization of weighted Hardy inequalities, for which we refer to [15, The-
orems 5.9, 5.10, 6.2, 6.3, Remark 5.5] or to [17].
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THEOREM 4.5. Let v,w ∈ W (A,B) , r,s ∈ [1,∞] and let 1
ρ = 1

s − 1
r .

(i) Then ∥∥∥∥w(t)
∫ t

A
g

∥∥∥∥
s,(A,B)

� ‖vg‖r,(A,B) ∀g ∈ M +(A,B)

if and only if

either r � s and sup
A<x<B

‖w‖s,(x,B)

∥∥v−1
∥∥

r′ ,(A,x) < ∞,

or r > s and

∥∥∥∥‖w‖s,(x,B)

∥∥v−1
∥∥ r′

s′
r′,(A,x) v(x)

− r′
ρ

∥∥∥∥
ρ ,(A,B)

< ∞.

(ii) Then ∥∥∥∥w(t)
∫ B

t
g

∥∥∥∥
s,(A,B)

� ‖vg‖r,(A,B) ∀g ∈ M +(A,B)

if and only if

either r � s and sup
A<x<B

‖w‖s,(A,x)

∥∥v−1
∥∥

r′ ,(x,B) < ∞,

or r > s and

∥∥∥∥‖w‖s,(A,x)

∥∥v−1
∥∥ r′

s′
r′,(x,B) v(x)

− r′
ρ

∥∥∥∥
ρ ,(A,B)

< ∞.

Proof of Lemma 4.1. Equivalence of (i) and (ii) follows from Theorem 4.5 with

v(t) = t−μ+ 1
r′ a(t) and w(t) = t−μ− 1

s b(t) , μ > 0, t ∈ (A,B) . Indeed, using Lemma 2.2
(i), we obtain this way that∥∥∥∥t−μ− 1

s b(t)
∫ t

A
h

∥∥∥∥
s,(A,B)

�
∥∥∥t−μ+ 1

r′ a(t)h(t)
∥∥∥

r,(A,B)
∀h ∈ M +(A,B) (4.3)

if and only if N < ∞ . Condition (i) follows from (4.3) on substituting h(u) = uκ−1g(u) ,
u ∈ (A,B) , where κ ∈ R and g ∈ M +(A,B) ,

Equivalence of (i) and (iv) can be proved analogously as that of (i) and (ii).
Implications (ii) ⇒ (iii) and (iv) ⇒ (v) are trivial.
Implication (iii) ⇒ (ii) . Let g ∈ M +(A,B) and

f (t) =
∫ B

t
g, t ∈ (A,B). (4.4)

Then f ∈ M +(A,B;↓) and we obtain from (iii) that∥∥∥∥t−μ− 1
s b(t)

∫ t

A
uν−1

(∫ B

u
g

)
du

∥∥∥∥
s,(A,B)

�
∥∥∥∥t−μ+ν− 1

r a(t)
∫ B

t
g

∥∥∥∥
r,(A,B)

(4.5)
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for every g ∈ M +(A,B) . To estimate the integral on LHS(4.5) , we use the Fubini’s
theorem to get∫ t

A
uν−1

∫ B

u
g(τ)dτ du �

∫ t

A

∫ t

u
uν−1g(τ)dτ du =

∫ t

A

∫ τ

A
uν−1g(τ)dudτ

≈
∫ t

A
(τν −Aν)g(τ)dτ (4.6)

for all t ∈ (A,B) . If A 
= 0, i.e. if (A,B) = (1,∞) , then we continue with the estimate
as follows:∫ t

1
(τν −1)g(τ)dτ �

∫ t

2
(τν −1)g(τ)dτ �

∫ t

2
(τν − ( τ

2 )ν)g(τ)dτ ≈
∫ t

2
τνg(τ)dτ

for all t ∈ (2,∞) . This, together with (4.6) gives (after simple substitutions)

LHS(4.5) �
∥∥∥∥t−μ− 1

s b(t)
∫ t

A
uνg(u)du

∥∥∥∥
s,(A,B)

. (4.7)

Now we estimate RHS(4.5) from above. We put α = −μ + ν > 0 and β = 1. We are
going to apply weighted Hardy inequality (iv) with α,β instead of μ ,κ , respectively,
and with s = r and b = a , so that N(r,r,a,a;A,B) < ∞ . Thus, by the equivalence of (i)
and (iv), which we have already proved, we get∥∥∥∥t−μ+ν− 1

r a(t)
∫ B

t
g

∥∥∥∥
r,(A,B)

�
∥∥∥t−μ+ν+ 1

r′ a(t)g(t)
∥∥∥

r,(A,B)
∀g ∈ M +(A,B).

This, (4.5) and (4.7) give∥∥∥∥t−μ− 1
s b(t)

∫ t

A
uνg(u)du

∥∥∥∥
s,(A,B)

�
∥∥∥t−μ+ν+ 1

r′ a(t)g(t)
∥∥∥

r,(A,B)
∀g ∈ M +(A,B),

which can be rewritten (using the substitution g(u) = uκ−ν−1h(u) , u ∈ (A,B)) as (i).
Implication (v)⇒ (iv) can be proved similarly as implication (iii)⇒ (ii) . Indeed,

using test function (4.4) in (iv), we arrive at∥∥∥∥tμ− 1
s b(t)

∫ B

t
uν−1

(∫ B

u
g

)
du

∥∥∥∥
s,(A,B)

�
∥∥∥∥tμ+ν− 1

r a(t)
∫ B

t
g

∥∥∥∥
r,(A,B)

(4.8)

for every g ∈ M +(A,B) . The estimate of LHS(4.8), corresponding to (4.6), now takes
the form∫ B

t
uν−1

∫ B

u
g(τ)dτ du =

∫ B

t

∫ τ

t
uν−1g(τ)dudτ ≈

∫ B

t
(τν − tν)g(τ)dτ

�
∫ B

2t
(τν − tν)g(τ)dτ �

∫ B

2t
(τν − ( τ

2)ν)g(τ)dτ ≈
∫ B

2t
τνg(τ)dτ

for all t ∈ (A, B
2 ) . The rest of the proof is analogous to the proof of implication

(iii) ⇒ (ii) . �
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Proofs of Lemmas 4.2 and 4.3. One can repeat the proof of Lemma 4.1 (the equiv-
alence of (i), (ii), (iii), or (i), (iv), (v), respectively) with μ = 0. �

The proof of Lemma 4.4 is the most difficult and it will require different ap-
proach than the proof of Lemmas 4.1, 4.2, 4.3. The problem is that the characteriz-
ing conditions for inequality (4.1) restricted to non-increasing functions can be actually
weaker than the characterizing conditions for the same inequality considered for all
non-negative functions (cf. Lemma 4.3 (ii) with κ = 0 and Remark 3.7 (iii)). In other
words, the restriction of (4.1) to non-increasing functions has a significant effect on its
characterizing conditions (cf. [7, p. 129] and [7, Remarks 10.5. and 10.8.]). This in
turn means that one cannot prove the sufficiency of those weaker conditions using The-
orem 4.5 and thus, more suitable results are needed - we are going to use the reduction
theorem.

Probably the first result of this kind appeared in [16]. Sawyer’s result can be very
well used in our situation; we will, however, use another result by A. Gogatishvili and
V. D. Stepanov, which is more recent (and easier to prove). We are going to state it here
for an integral operator with general kernel given by

Sg(t) =
∫ B

A
k(t,u)g(u)du, g ∈ M +(A,B), t ∈ (A,B), (4.9)

where k is non-negative measurable function on (A,B)× (A,B) .

THEOREM 4.6. Let 1 � r < ∞ , 0 < s � ∞ , v,w ∈ W (A,B) and V (t) =
∫ t
A v ,

t ∈ (A,B) . Let S be the integral operator (4.9) with the kernel k . Set

K(t,u) =
∫ u

A
k(t,τ)dτ and S̃ f (t) =

∫ B

A
K(t,u) f (u)du, t,u ∈ (A,B).

Then
‖wS f‖s,(A,B) � ‖v f ‖r,(A,B) ∀ f ∈ M +(A,B;↓)

if and only if
‖wK(·,B)‖s,(A,B) � ‖v‖r,(A,B)

and ∥∥∥wS̃g
∥∥∥

s,(A,B)
�

∥∥v1−rVg
∥∥

r,(A,B) ∀g ∈ M +(A,B).

Proof. The theorem is an easy consequence of [11, Theorem 2.1]. �
We shall also need a characterization of the boundedness of Volterra integral op-

erators defined by

Vg(t) =
∫ t

0
k(t,u)g(u)du, g ∈ M +(0,∞), t ∈ (0,∞), (4.10)

where the kernel k satisfies:

(i) the function (t,u) �→ k(t,u) is non-decreasing in t or non-increasing in u ;
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(ii) k(t,u) � 0 for all t > u > 0;

(iii) k(t,τ) ≈ k(t,u)+ k(u,τ) for all t > u > τ > 0.

THEOREM 4.7. Let the V be Volterra integral operator (4.10) with kernel k sat-
isfying (i), (ii), (iii). Suppose v,w ∈ W (0,B) , where B = 1 , or B = ∞ . Then

‖wVg‖s,(0,B) � ‖vg‖r,(0,B) ∀g ∈ M +(0,B) (4.11)

if and only if one of the following conditions hold:

(i) 1 < r � s < ∞ ,
sup

0<x<B
‖wk(·,x)‖s,(x,B)

∥∥v−1
∥∥

r′,(0,x) < ∞,

sup
0<x<B

‖w‖s,(x,B)

∥∥v−1 k(x, ·)∥∥r′,(0,x) < ∞;

(ii) 1 < s < r < ∞ ,∥∥∥∥v(x)−
r′
ρ ‖wk(·,x)‖s,(x,B)

∥∥v−1
∥∥ r′

s′
r′,(0,x)

∥∥∥∥
ρ ,(0,B)

< ∞,

∥∥∥w(x)
s
ρ ‖w‖

s
r
s,(x,B)

∥∥v−1 k(x, ·)∥∥r′,(0,x)

∥∥∥
ρ ,(0,B)

< ∞.

Proof. If B = ∞ , then the result can be found in [18, Theorems 1, 2].
In the case B = 1, we can prove the sufficiency of conditions (i), (ii) by using the

theorem with B = ∞ , w = χ(0,1)w̃ and by considering (4.11) for every g ∈ M +(0,∞) ,
such that g = 0 on (1,∞) . To prove that conditions (i), (ii) are also necessary in this
case, use the same test functions as in [18]. �

Finally, we can start with a proof of Lemma 4.4.

Proof of Lemma 4.4.
Case r = ∞ . To prove the necessity of the condition R∞ < ∞ , we test (4.1) by

f (u) = ‖a‖−1
∞,(A,u) , u ∈ (A,B),

which is clearly a non-increasing function on (A,B) . In this way, we obtain∥∥∥∥t−
1
s b(t)

∫ B

t
u−1‖a‖−1

∞,(A,u) du

∥∥∥∥
s,(A,B)

�
∥∥∥a(t)‖a‖−1

∞,(A,t)

∥∥∥
∞,(A,B)

�
∥∥∥‖a‖∞,(A,t) ‖a‖−1

∞,(A,t)

∥∥∥
∞,(A,B)

= 1, (4.12)

which we wanted to show.
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To prove the sufficiency, we use R∞ < ∞ (i.e. (4.12)) and the monotonicity of f
to get

LHS(4.1) =
∥∥∥∥t−

1
s b(t)

∫ B

t
u−1 ‖a‖−1

∞,(A,u) ‖a‖∞,(A,u) f (u)du

∥∥∥∥
s,(A,B)

�
∥∥∥∥t−

1
s b(t)

∥∥∥‖a‖∞,(A,u) f (u)
∥∥∥

∞,(t,B)

∫ B

t
u−1‖a‖−1

∞,(A,u) du

∥∥∥∥
s,(A,B)

�
∥∥∥‖a‖∞,(A,t) f (t)

∥∥∥
∞,(A,B)

�
∥∥∥‖a f‖∞,(A,t)

∥∥∥
∞,(A,B)

= RHS(4.1),

hence the case r = ∞ is proved.

In the remaining cases, Theorem 4.6 with k(t,u) = χ(t,B)(u)u−1 , v(t) = t−
1
r a(t)

and w(t) = t−
1
s b(t) , t,u∈ (A,B) , yields that (4.1) holds for all f ∈M +(A,B;↓) if and

only if ∥∥∥t−
1
s b(t) log B

t

∥∥∥
s,(A,B)

�
∥∥∥t−

1
r a(t)

∥∥∥
r,(A,B)

(4.13)

and∥∥∥∥t−
1
s b(t)

∫ B

t
g(u) log u

t du

∥∥∥∥
s,(A,B)

�
∥∥∥t

1
r′ a(t)−

r
r′ V (t)g(t)

∥∥∥
r,(A,B)

∀g ∈ M +(A,B), (4.14)

where V (t) =
∫ t
Au−1a(u)r du , t ∈ (A,B) . Condition (4.13) translates as (4.2) if B = ∞ .

When B = 1, then (4.13) means that if RHS(4.13) is finite, then LHS(4.13) is as well.
We will now show that this is, in fact, a consequence of R∞(r,s,a,b,0,1) < ∞ . Indeed,
this is obvious in all cases but 1 < r < s = ∞ , i.e. when R∞ is defined only by R2 . In
this case, using the Lemma 2.3 and the assumption RHS(4.13) < ∞ , we obtain∥∥∥t−

1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′,(x,1)

�
∥∥∥t−

1
r′ a(t)

r
r′ V (t)−1

∥∥∥
r′,(

√
x,1)

log
√

x
x

≈
∥∥∥t−

1
r a(t)

∥∥∥−1

r,(0,
√

x)
log 1

x � log 1
x

for all x ∈ (0, 1
2) . Thus, if R∞(r,∞,a,b;0,1) < ∞ , then

∞ > R∞(r,∞,a,b;0,1) = R2(r,∞,a,b;0,1)

= sup
0<x<1

‖b‖∞,(0,x)

∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′,(x,1)

� sup
0<x<1

‖b‖∞,(0,x) log 1
x .

From that we finally get

LHS(4.13) =
∥∥b(t) log 1

t

∥∥
∞,(0,1) �

∥∥∥‖b‖∞,(0,t) log 1
t

∥∥∥
∞,(0,1)

< ∞.

Now it remains to prove that, under condition (4.2), inequality (4.14) holds if and
only if R∞(r,s,a,b;A,B) < ∞ .
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Case 1 < r,s < ∞ . Note that, by the duality (or more precisely, by the sharp
Hölder’s inequality, cf. [2, Chapter 1, Theorem 2.5.]), inequality (4.14) holds if and
only if ∥∥∥∥t−

1
r′ a(t)

r
r′ V (t)−1

∫ t

A
g(u) log t

u du

∥∥∥∥
r′,(A,B)

�
∥∥∥t

1
s b(t)−1g(t)

∥∥∥
s′,(A,B)

(4.15)

holds for all g∈M +(A,B) . Now we apply Theorem 4.7 with w(t)= t−
1
r′ a(t)

r
r′ V (t)−1 ,

v(t) = t
1
s b(t)−1 , t ∈ (A,B) , with r,s replaced by s′,r′ and we use Lemma 2.3 to get

that (4.15) holds for every g ∈ M +(A,B) if and only if R∞ < ∞ .
Case r = 1 . We can rewrite (4.14) as∥∥∥∥

∫ B

A
k(t,u)g(u)du

∥∥∥∥
s,(A,B)

� ‖g‖1,(A,B) ∀g ∈ M +(A,B), (4.16)

where
k(t,u) = t−

1
s b(t)V (u)−1χ(t,B)(u) log u

t , t,u ∈ (A,B). (4.17)

We claim that (4.16) holds if and only if

sup
A<u<B

‖k(·,u)‖s,(A,B) < ∞. (4.18)

Indeed, the general result for arbitrary kernels [13, Chapter XI, Theorem 4] implies
that (4.16) is equivalent to esssupA<x<B ‖k(·,u)‖r′,(A,B) < ∞ , which, in our case, is
equivalent to (4.18). However, let us also give an explicit proof of this claim, using the
properties of k .

To prove the sufficiency of (4.18), we take g,h ∈ M +(A,B) and write∫ B

A

∫ B

A
k(t,u)g(u)du h(t)dt =

∫ B

A

∫ B

A
k(t,u)h(t)dt g(u)du

�
∫ B

A
‖k(·,u)‖s,(A,B)‖h‖s′,(A,B) g(u)du

� esssup
A<u<B

‖k(·,u)‖s,(A,B)‖h‖s′,(A,B)‖g‖1,(A,B) . (4.19)

Inequality (4.16) then follows from (4.19) by taking the supremum over all h such that
‖h‖s′,(A,B) � 1, using the sharp Hölder’s inequality and (4.18).

Conversely, suppose that (4.16) holds. Fix x ∈ (A,B) and test (4.16) with

gx,n = nχ(x,x+ 1
n ), n ∈ N,

to get ∥∥∥∥∥n
∫ x+ 1

n

x
k(·,u)du

∥∥∥∥∥
r′,(A,B)

� 1 ∀n ∈ N. (4.20)

We see from (4.17) that k is continuous in the second variable in (A,B) . Therefore,

lim
n→∞

n
∫ x+ 1

n

x
k(t,u)du = k(t,x) ∀t ∈ (A,B)
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by the fundamental theorem of calculus. Thus, using (4.20) and Fatou’s lemma, we
obtain

1 � liminf
n→∞

∥∥∥∥∥n
∫ x+ 1

n

x
k(·,u)du

∥∥∥∥∥
r′ ,(A,B)

� ‖k(·,x)‖r′,(A,B) . (4.21)

Since the multiplicative constant in (4.21) does not depend on x , we get (4.18).
It is easy to see that the condition (4.18) with k given by (4.17) coincides with

R∞ < ∞ , hence the proof of the case r = 1 is finished.
Case 1 = s < r < ∞ . Instead of (4.14), we will characterize its equivalent dual

version (4.15), which can be rewritten as∥∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1

∫ t

A
u−1b(u)g(u) log t

u du

∥∥∥∥
r′,(A,B)

� ‖g‖∞,(A,B) , (4.22)

for all g ∈ M +(A,B) . It is now obvious that the condition∥∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1

∫ t

A
u−1b(u) log t

u du

∥∥∥∥
r′,(A,B)

� 1

is both sufficient and necessary for (4.22) and also that it coincides with R∞ < ∞ in this
case.

Case 1 < r < s = ∞ . Now (4.15) can be rewritten as∥∥∥∥
∫ B

A
k(t,u)g(u)du

∥∥∥∥
r′,(A,B)

� ‖g‖1,(A,B) ∀g ∈ M +(A,B),

where
k(t,u) = t−

1
r′ a(t)

r
r′ V (t)−1b(u)χ(A,t)(u) log t

u , t,u ∈ (A,B), (4.23)

and we can use the same technique of proof as in the case r = 1. There is one slight
difference that instead of b itself we need to take its continuous representation (from
Lemma 2.2 (i)). This way, we obtain condition (4.18) again, only with r′ instead of s .
To see that this condition coincides with R∞ < ∞ , we use (4.23) to get

∞ > sup
A<x<B

‖k(·,x)‖r′,(A,B) = sup
A<x<B

b(x) f (x), (4.24)

where x �→ f (x) :=
∥∥∥t−

1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′ ,(x,B)

is a decreasing function in (A,B) .

Now observe that

b(x) f (x) � ‖b‖∞,(A,x) f (x) � ‖b f‖∞,(A,x) � ‖b f‖∞,(A,B) ∀x ∈ (A,B),

and hence, using (4.24), we obtain

∞ > sup
A<x<B

‖k(·,x)‖r′,(A,B) ≈ ‖b f‖∞,(A,B) ≈ sup
0<x<∞

‖b‖∞,(A,x) f (x),

which is precisely R∞ < ∞ . This finishes the proof of the case 1 < r < s = ∞ and of
the lemma. �
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5. The proofs of the main results

First we shall prove the following simple lemma.

LEMMA 5.1. Let r,s ∈ [1,∞] , a,b ∈ SV(A,B) and suppose that (2.6) is satisfied.
Then

N(r,s,a,b;A,B) � min(L(r,s,a,b;A,B),R(r,s,a,b;A,B),R∞(r,s,a,b;A,B)) .

Proof. The inequalities N � L and N � R follow easily from Lemma 2.2 (ii). The
inequality N � R∞ is a consequence of the estimates

∥∥∥t−
1
s b(t) log x

t

∥∥∥
s,(A,x)

�
∥∥∥t−

1
s b(t)

∥∥∥
s,(A,

x
2 )

log2 ∀x ∈ (2A,B),∥∥∥t−
1
r′ a(t)

r
r′ V (t)−1 log t

x

∥∥∥
r′,(x,B)

�
∥∥∥t−

1
r′ a(t)

r
r′ V (t)−1

∥∥∥
r′,(2x,B)

log2 ∀x ∈ (A, B
2 ),

Lemma 2.3, assumption (2.6) and of Lemma 2.2 (ii). �

Proof of Theorem 3.5. First of all, we are going to show that the assumptions

T ∈ JW(p1,q1; p2,q2) (5.1)

and

T ∈ LB1(p1,r1;m)∩LB2(p2,q2;m) (5.2)

imply that

‖(Tg)∗‖B � ‖g∗‖A ∀g ∈ M (R1,μ1) (5.3)

is equivalent to

‖Sσ f ‖B � ‖ f‖A ∀M +(0,∞;↓), (5.4)

where ‖·‖A and ‖·‖B are some rearrangement-invariant quasi-norms on M +(0,∞)
(that we specify later on). Indeed, using (5.2) and (5.3), we get

‖Sσ f ‖B � ‖(Tg)∗‖B � ‖g∗‖A = ‖ f‖A ∀ f ∈ M +(0,∞;↓),

where g ∈ M (R1,μ1) is equimeasurable with f . To prove the opposite implication,
use (5.1) and (5.4) to obtain

‖(Tg)∗‖B � ‖Sσ g∗‖B � ‖g∗‖A ∀g ∈ M (R1,μ1).

Thus, the question of the boundedness of T is reduced to the characterization of
(5.4).



406 M. BATHORY

Case (i). Now ‖·‖A = ‖·‖(p1,r1)+(p2,r2);a and ‖·‖B = ‖·‖(q1,s1)+(q2,s2);b . If we make
a temporary assumption that m > 0 (i.e. q1 < q2 ) and use the substitution τ = tm , then

‖Sσ f ‖(q1,s1)+(q2,s2);b =
∥∥∥∥t

1
q1

− 1
s1 b(t)Sσ f (t)

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
q2

− 1
s2 b(t)Sσ f (t)

∥∥∥∥
s2,(1,∞)

≈
∥∥∥∥t

− 1
s1 b(t)

∫ tm

0
u

1
p1

−1
f (u)du

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
q1

− 1
q2

− 1
s1 b(t)

∫ ∞

tm
u

1
p2

−1
f (u)du

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
q2

− 1
q1

− 1
s2 b(t)

∫ tm

0
u

1
p1

−1
f (u)du

∥∥∥∥
s2,(1,∞)

+
∥∥∥∥t

− 1
s2 b(t)

∫ ∞

tm
u

1
p2

−1
f (u)du

∥∥∥∥
s2,(1,∞)

≈
∥∥∥∥t

− 1
s1 b∗(t)

∫ t

0
u

1
p1

−1
f (u)du

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
p1

− 1
p2

− 1
s1 b∗(t)

∫ ∞

t
u

1
p2

−1
f (u)du

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
p2

− 1
p1

− 1
s2 b∗(t)

∫ t

0
u

1
p1

−1
f (u)du

∥∥∥∥
s2,(1,∞)

+
∥∥∥∥t

− 1
s2 b∗(t)

∫ ∞

t
u

1
p2

−1
f (u)du

∥∥∥∥
s2,(1,∞)

=: N1 +N2 +N3 +N4 (5.5)

for all f ∈M +(0,∞;↓) . Now observe that for m < 0, the role of the intervals (0,1) and
(1,∞) in the computation above is interchanged at the initial stage (cf. Definition 2.5),
but then the substitution swaps the intervals once more. Therefore, the resulting expres-
sion is the same and the assumption m > 0 can be removed. In the rest of the proof we
apply the weighted inequalities of Section 4 to show that

N1 +N2 +N3 +N4 �
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(0,1)

+
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(1,∞)

= ‖ f‖(p1,r1)+(p2,r2);a (5.6)

for every f ∈ M +(0,∞;↓) if and only if

L(r1,s1,a,b∗;0,1)+R(r2,s2,a,b∗;1,∞) < ∞. (5.7)

Lemma 4.2 with ν = 1
p1

implies that

N1 �
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(0,1)

� ‖ f‖(p1,r1)+(p2,r2);a ∀ f ∈ M +(0,∞;↓) (5.8)

if and only if L(r1,s1,a,b∗;0,1) < ∞ . Similarly, we get from Lemma 4.3 with ν = 1
p2

that

N4 �
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(1,∞)

� ‖ f‖(p1,r1)+(p2,r2);a ∀ f ∈ M +(0,∞;↓) (5.9)

if only if R(r2,s2,a,b∗;1,∞) < ∞ . Now we estimate the expressions N2 and N3 . By
Lemma 5.1, condition (5.7) implies

N(r1,s1,a,b∗;0,1)+N(r2,s2,a,b∗;1,∞) < ∞ (5.10)
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and also (using the properties of s.v. functions)∥∥∥∥t
− 1

r′1 a(t)−1

∥∥∥∥
r′1,(0,1)

+
∥∥∥∥t

− 1
r′2 a(t)−1

∥∥∥∥
r′2,(1,∞)

< ∞. (5.11)

Thus, using (5.10), Lemma 4.1 with μ = 1
p1

− 1
p2

,κ = 1
p2

, Lemma 2.2 (i), Hölder’s
inequality and (5.11), we obtain

N2 ≈
∥∥∥∥t

1
p1

− 1
p2

− 1
s1 b∗(t)

∫ 1

t
u

1
p2

−1
f (u)du

∥∥∥∥
s1,(0,1)

+
∥∥∥∥t

1
p1

− 1
p2

− 1
s1 b∗(t)

∥∥∥∥
s1,(0,1)

∫ ∞

1
u

1
p2

−1
f (u)du

�
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(0,1)

+
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(1,∞)

∥∥∥∥t
− 1

r′2 a(t)−1

∥∥∥∥
r′2,(1,∞)

≈ ‖ f‖(p1,r1)+(p2,r2);a (5.12)

for all f ∈ M +(0,∞;↓) . Analogously, we can estimate N3 :

N3 ≈
∥∥∥∥t

1
p2

− 1
p1

− 1
s2 b∗(t)

∫ t

1
u

1
p1

−1
f (u)du

∥∥∥∥
s2,(1,∞)

+
∥∥∥∥t

1
p2

− 1
p1

− 1
s1 b∗(t)

∥∥∥∥
s2,(1,∞)

∫ 1

0
u

1
p1

−1
f (u)du

�
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(1,∞)

+
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(0,1)

∥∥∥∥t
− 1

r′1 a(t)−1

∥∥∥∥
r′1,(0,1)

≈ ‖ f‖(p1,r1)+(p2,r2);a (5.13)

for every f ∈ M +(0,∞;↓) . The inequality (5.6) then follows from (5.8), (5.9), (5.12)
and (5.13), hence the proof of part (i) is complete.

Case (ii). We can proceed in the same way as in the case (i) to obtain that

T : Lp1,r1;a∩Lp2,r2;a −→ Lq1,s1;b ∩Lq2,s2;b

holds if and only if the inequality

N1 +N2 +N3 +N4

:=
∥∥∥∥t

− 1
s1 b∗(t)

∫ t

0
u

1
p1

−1
f (u)du

∥∥∥∥
s1,(1,∞)

+
∥∥∥∥t

1
p1

− 1
p2

− 1
s1 b∗(t)

∫ ∞

t
u

1
p2

−1
f (u)du

∥∥∥∥
s1,(1,∞)

+
∥∥∥∥t

1
p2

− 1
p1

− 1
s2 b∗(t)

∫ t

0
u

1
p1

−1
f (u)du

∥∥∥∥
s2,(0,1)

+
∥∥∥∥t

− 1
s2 b∗(t)

∫ ∞

t
u

1
p2

−1
f (u)du

∥∥∥∥
s2,(0,1)

�
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(1,∞)

+
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(0,1)

= ‖ f‖(p1,r1)∩(p2,r2);a (5.14)
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holds for all f ∈ M +(0,∞;↓) (the only difference from the corresponding inequality
in the case (i) is that the intervals (0,1) and (1,∞) were interchanged, cf. Defini-
tion 2.5). As in the case (i), the (parts of) terms N1 and N4 represent the limiting case
of interpolation and hence, the Lemmas 4.2, 4.3 imply that the condition

L(r1,s1,a,b∗;1,∞)+R(r2,s2,a,b∗,0,1) < ∞ (5.15)

is necessary for (5.14) to hold for every f ∈M +(0,∞;↓) . Now, it remains to prove that
(5.15) is also sufficient to estimate all the remaining terms in LHS(5.14) by RHS(5.14) .

Note that (5.15) implies∥∥∥∥t
− 1

s1 b∗(t)
∥∥∥∥

s1,(1,∞)
+

∥∥∥∥t
− 1

s2 b∗(t)
∥∥∥∥

s2,(0,1)
< ∞. (5.16)

The expression N1 contains the following term, which, using (5.16), Hölder’s inequal-
ity and Lemma 2.2 (i), can be estimated as∥∥∥∥t

− 1
s1 b∗(t)

∫ 1

0
u

1
p1

−1
f (u)du

∥∥∥∥
s1,(1,∞)

�
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(0,1)

∥∥∥∥t
1
p1

− 1
p2

− 1
r′2 a(t)−1

∥∥∥∥
r′2,(0,1)

�
∥∥∥∥t

1
p2

− 1
r2 a(t) f (t)

∥∥∥∥
r2,(0,1)

.

The corresponding term in expression N4 can be estimated in the same way as∥∥∥∥t
− 1

s2 b∗(t)
∫ ∞

1
u

1
p2

−1
f (u)du

∥∥∥∥
s2,(0,1)

�
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(1,∞)

∥∥∥∥t
1
p2

− 1
p1

− 1
r′1 a(t)−1

∥∥∥∥
r′1,(1,∞)

�
∥∥∥∥t

1
p1

− 1
r1 a(t) f (t)

∥∥∥∥
r1,(1,∞)

.

By Lemma 5.1, (5.15) implies

N(r1,s1,a,b∗,1,∞)+N(r2,s2,a,b∗,0,1) < ∞

and hence, using Lemma 4.1, the remaining (non-limiting) terms N2 , N3 can be esti-
mated by RHS(5.14) as well. �

Proof of Theorem 3.6. One can repeat the proof of Theorem 3.5 with p2 = ∞ , the
only difference being that we use Lemma 4.4 instead of Lemma 4.3. �

The proofs of Theorems 3.5 and 3.6 contain all the possible difficulties which one
can encounter. More precisely, in the proofs of the remaining theorems of Section 3 the
inequality (5.5) (or (5.14)) will have just two terms - either N1 +N2 , or N3 +N4 . There-
fore, we can obtain the remaining proofs as fragments of the proof of Theorem 3.5.



JOINT WEAK TYPE INTERPOLATION ON LORENTZ-KARAMATA SPACES 409

6. The optimality of results

Let X ,Y,W,Z be LK spaces, or their sum, or intersection in the sense of Defini-
tion 2.5 and let T be a quasilinear operator acting between X and Y . We say that the
result

T : X −→ Y

is optimal in the scale of LK spaces if

Y ↪→ Z for every Z satisfying T : X −→ Z

and
W ↪→ X for every W satisfying T : W −→ Y.

Embeddings of LK spaces are characterized by the following lemma.

LEMMA 6.1. Let p,q,r,s ∈ (0,∞] and a,b ∈ SV(A,B) . Then∥∥∥t
1
q− 1

s b(t) f (t)
∥∥∥

s,(A,B)
�

∥∥∥t
1
p− 1

r a(t) f (t)
∥∥∥

r,(A,B)
∀ f ∈ M +(A,B;↓), (6.1)

if and only if one of the following conditions hold :

(i) (A,B) = (0,1) , p > q ;

(ii) p = q, 0 < r � s � ∞ ,

sup
A<x<B

∥∥∥t
1
p− 1

s b(t)
∥∥∥

s,(A,x)

∥∥∥t
1
p− 1

r a(t)
∥∥∥−1

r,(A,x)
< ∞; (6.2)

(iii) p = q, 0 < s < r � ∞ ,∥∥∥∥x
s
ρ

1
p− 1

ρ b(x)
s
ρ
∥∥∥t

1
p− 1

s b(t)
∥∥∥ s

r

s,(A,x)

∥∥∥t
1
p− 1

r a(t)
∥∥∥−1

r,(A,x)

∥∥∥∥
ρ ,(A,B)

< ∞. (6.3)

When p < ∞ , conditions (6.2) and (6.3) can be simplified to

N(r,s,a,b;A,B) < ∞. (6.4)

Proof. The simplification of (6.2) and (6.3) in the case p < ∞ follows easily from
Lemma 2.2 (i).

Case p > q. See [14, Theorem 3.4].
Case p = q, 0 < r,s < ∞ . The inequality (6.1) can be further rewritten as

sup
f∈M +(A,B;↓)

‖wf ‖s,(A,B)

‖v f‖r,(A,B)
< ∞, (6.5)

where v(t) = t
1
p− 1

r a(t) and w(t) = t
1
p− 1

s b(t) , t ∈ (A,B) . The problem of characteriza-
tion of (6.5) with general weights is fully resolved for 0 < r,s < ∞ and leads directly
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to conditions (6.2) and (6.3). The first result of this kind is due to E. Sawyer for the
range 1 < r,s < ∞ (he applied his reduction theorem for the identity operator – see [16,
p. 148]). This result was extended to 0 < r,s < ∞ by, for example, M. Carro and J. So-
ria, or V. D. Stepanov in [19, Proposition 1], who also provided estimates (independent
of v,w) for LHS(6.5). However, Stepanov’s proof relies on the approximation of non-
increasing functions by absolutely continuous functions, which was left unjustified. For
a rigorous and yet very elegant treatment of this topic, we refer to [17, Section 2].

We are going to prove the cases which are missing in the literature cited above,
that is, cases where r = ∞ or s = ∞ .

Case p = q, 0 < r � s = ∞ . To prove the necessity of (6.2) for (6.1), it is enough
to test (6.1) with f = χ(A,x) , where x ∈ (A,B) .

Now we prove the sufficiency of (6.2) for (6.1). Using the estimate

t
1
p b(t) �

∥∥∥u
1
p b(u)

∥∥∥
∞,(A,t)

∀t ∈ (A,B)

together with (6.2) and the monotonicity of f , we obtain

∥∥∥t
1
p b(t) f (t)

∥∥∥
∞,(A,B)

�
∥∥∥∥∥∥∥u

1
p b(u)

∥∥∥
∞,(A,t)

f (t)
∥∥∥∥

∞,(A,B)
�

∥∥∥∥∥∥∥u
1
p− 1

r a(u)
∥∥∥

r,(A,t)
f (t)

∥∥∥∥
∞,(A,B)

�
∥∥∥∥∥∥∥u

1
p− 1

r a(u) f (u)
∥∥∥

r,(A,t)

∥∥∥∥
∞,(A,B)

= RHS(6.1)

for every f ∈ M +(A,B;↓) , which proves (6.1).
Case p = q < ∞ , 0 < s < r = ∞ . The necessity of (6.4) follows by testing (6.1)

with f (t) = t−
1
p a(t)−1 , t ∈ (A,B) . For the sufficiency, we use (6.4) to obtain

LHS(6.1) =
∥∥∥t

1
p− 1

s b(t) f (t)
∥∥∥

s,(A,B)
=

∥∥∥t−
1
s b(t)a(t)−1 t

1
p a(t) f (t)

∥∥∥
s,(A,B)

�
∥∥∥t−

1
s b(t)a(t)−1

∥∥∥
s,(A,B)

∥∥∥t
1
p a(t) f (t)

∥∥∥
∞,(A,B)

� RHS(6.1)

for every f ∈ M +(A,B;↓) .
Case p = q = ∞ , 0 < s < r = ∞ . To prove the necessity of (6.3) for (6.1), we test

(6.1) with f (t) = ‖a‖−1
∞,(A,t) , t ∈ (A,B) . In this way, we get

∥∥∥t−
1
s b(t)‖a‖−1

∞,(A,t)

∥∥∥
s,(A,B)

�
∥∥∥a(t)‖a‖−1

∞,(A,t)

∥∥∥
∞,(A,B)

� 1, (6.6)

which is indeed (6.3) with p = r = ∞ .
To show the sufficiency, we use (6.6) and the monotonicity of f to obtain∥∥∥t−

1
s b(t) f (t)

∥∥∥
s,(A,B)

�
∥∥∥t−

1
s b(t)‖a‖−1

∞,(A,t)

∥∥∥
s,(A,B)

∥∥∥‖a‖∞,(A,t) f (t)
∥∥∥

∞,(A,B)

�
∥∥∥‖a f ‖∞,(A,t)

∥∥∥
∞,(A,B)

= RHS(6.1)
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for every f ∈ M +(A,B;↓) and thus, the proof is finished. �
Since every non-increasing function on (A,B) arises as a (restriction of) decreas-

ing rearrangement of a function from M (R1,μ1) (see [2, p. 86, Corollary 7.8.]), the
Lemma 6.1 characterizes the embedding Lp,r;a ↪→ Lq,s;b . For the embeddings of the
sums and intersections of the LK spaces in the sense of Definition 2.5, we apply
Lemma 6.1 on the two parts of the corresponding quasi-norm separately.

Now we turn our attention to the optimality itself, which, in the non-limiting case,
is simple to describe. To save some space, we illustrate the idea only in the setting
μ1(R1) = μ2(R2) = ∞ without considering sums and intersections of spaces. For the
other settings analogous assertions to the following one hold as well and proofs are
similar.

THEOREM 6.2. Let the assumptions of Theorem 3.1 be satisfied. Then

T : Lp,s;b∗ −→ Lq,s;b (6.7)

is an optimal result in the scale of LK spaces.

Proof. It follows immediately from Theorem 3.1 that (6.7) holds. Next we shall
prove that the choice of the target space Lq,s;b is optimal in the scale of LK spaces (the
optimality of the source space can be proved analogously). Suppose that

T : Lp,s;b∗ −→ LQ,R;λ (6.8)

for some Q,R ∈ [1,∞] and λ ∈ SV. This together with T ∈ LB1(p1,q1;m) gives, for
all f ∈ M +(0,∞;↓) , that∥∥∥∥t

( 1
Q− 1

q )+( 1
q− 1

q1
)− 1

R λ (t)
∫ tm

0
u

1
p1

−1
f (u)du

∥∥∥∥
R,(0,∞)

�
∥∥∥t

1
p− 1

s b∗(t) f (t)
∥∥∥

s,(0,∞)
,

which can be rewritten (using the change of variables) as∥∥∥∥t
γ+ 1

p− 1
p1

− 1
R λ∗(t)

∫ t

0
u

1
p1

−1
f (u)du

∥∥∥∥
R,(0,∞)

�
∥∥∥t

1
p− 1

s b∗(t) f (t)
∥∥∥

s,(0,∞)
, (6.9)

where γ = 1
m( 1

Q − 1
q) . First we are going to show that (6.9) implies γ = 0, i.e. Q = q .

Suppose to the contrary that γ 
= 0 and choose ε satisfying

0 < ε < min( 1
p , 1

p1
− 1

p , |γ|). (6.10)

Case γ < 0 . Put

f (t) = tε− 1
p χ(0,1)(t), t ∈ (0,∞).

Then f ∈ M +(0,∞;↓) and, using (6.10), we obtain

LHS(6.9) �
∥∥∥∥t

γ+ 1
p− 1

p1
− 1

R λ∗(t)
∫ t

0
u

ε+ 1
p1

− 1
p−1 du

∥∥∥∥
R,(0,1)

≈
∥∥∥tγ+ε− 1

R λ∗(t)
∥∥∥

R,(0,1)
= ∞,



412 M. BATHORY

while
RHS(6.9) =

∥∥∥tε− 1
s b∗(t)

∥∥∥
s,(0,1)

� 1,

which gives the contradiction.
Case γ > 0 . Now put

f (t) = χ(0,1)(t)+ t−ε− 1
p χ[1,∞)(t), t ∈ (0,∞).

Then f ∈ M +(0,∞;↓) and, using (6.10), we obtain

LHS(6.9) �
∥∥∥∥t

γ+ 1
p− 1

p1
− 1

R λ∗(t)
∫ t

1
u
−ε+ 1

p1
− 1

p−1 du

∥∥∥∥
R,(1,∞)

≈
∥∥∥tγ−ε− 1

R λ∗(t)
∥∥∥

R,(1,∞)
= ∞,

while
RHS(6.9) ≈

∥∥∥t
1
p− 1

s b∗(t)
∥∥∥

s,(0,1)
+

∥∥∥t−ε− 1
s b∗(t)

∥∥∥
s,(1,∞)

� 1,

which is the contradiction.
Thus, under the assumption T ∈ LB1(p1,q1;m) , we have proved Q = q . When

T ∈ LB2(p2,q2;m) , one can proceed analogously.
Now, using Theorem 3.1 on (6.8) with Q = q , we obtain N(s,R,λ∗,b∗;0,∞) < ∞,

which, by Lemma 6.1 (q < ∞), implies that Lq,s;b ↪→ Lq,R;λ , and the proof is com-
plete. �

In the limiting cases one can prove the optimality in the sense mentioned above
only in some special cases. This is caused by the fact that, in general, the optimal target
or source spaces lie outside the scale of LK spaces (cf. [10, Section 5]). However, we
shall mention at least some partial (sharp) results in this direction. Similar results for
the sharp embeddings of Bessel-potential-type spaces into LK spaces appeared in [9],
for example. For brevity, we shall state the following results only in the case where
μ1(R1) = μ2(R2) = 1. The next theorem describes the limiting case θ = 0.

THEOREM 6.3. Let T ∈ JW(p1,q1; p2,q2)∩LB1(p1,q1;m) be a quasilinear op-
erator.

(i) Let 1 < r � s � ∞ and suppose a ∈ SV(0,1) is such that

∫ 1

0
t−1a(t)−r′ dt < ∞. (6.11)

Define

β (t) = a(tm)−
r′
s

(∫ tm

0
u−1a(u)−r′ du

)− 1
r′ −

1
s

, t ∈ (0,1). (6.12)

Then β ∈ SV(0,1) and
T : Lp1,r;a −→ Lq1,s;β . (6.13)
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Moreover, if λ ∈ SV (0,1) is such that

T : Lp1,r;a −→ Lq1,s;λ (6.14)

and the limit

lim
x→0+

λ∗(x)
β∗(x)

(6.15)

exists when s < ∞ , then
Lq1,s;β ↪→ Lq1,s;λ . (6.16)

(ii) Let 1 � r � s < ∞ and suppose b ∈ SV(0,1) is such that

∫ 1

0
t−1b∗(t)s dt = ∞.

Define

α(t) = b∗(t)−
s
r′

(
1+

∫ 1

t
u−1b∗(u)s du

) 1
r′ +

1
s

, t ∈ (0,1). (6.17)

Then α ∈ SV(0,1) and
T : Lp1,r;α −→ Lq1,s;b.

Moreover, if λ ∈ SV(0,1) is such that

T : Lp1,r;λ −→ Lq1,s;b

and the limit

lim
x→0+

α(x)
λ (x)

exists when r > 1 , then
Lp1,r;λ ↪→ Lp1,r;α .

Proof. We prove part (i) here; the proof of part (ii) is analogous.
Case s < ∞ . By Lemma 2.3 (ii) (r > 1), the function β defined by (6.12) satisfies∥∥∥t−

1
s β∗(t)

∥∥∥
s,(x,1)

≈
∥∥∥t−

1
r′ a(t)−1

∥∥∥−1

r′ ,(0,x)
∀x ∈ (0, 1

2 ). (6.18)

Therefore, Theorem 3.2 (and Remark 3.7 (i)) yields (6.13). Moreover, Theorem 3.2 and
(6.14) implies that∥∥∥t−

1
s λ∗(t)

∥∥∥
s,(x,1)

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′,(0,x)

� 1 ∀x ∈ (0, 1
2 ).

Together with (6.18), this gives

∫ 1
x t−1λ∗(t)s dt∫ 1
x t−1β∗(t)s dt

� 1 ∀x ∈ (0, 1
2 ). (6.19)
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Since the denominator of LHS(6.19) tends to infinity as x→ 0+ (see (6.18) and (6.11))
and we assume that limit (6.15) exists, we can apply L’Hospital’s rule to LHS(6.19) to
get

1 � lim
x→0+

∫ 1
x t−1λ∗(t)s dt∫ 1
x t−1β∗(t)s dt

= lim
x→0+

λ∗(x)s

β∗(x)s .

Thus, by Lemma 6.1, we obtain (6.16).

Case s = ∞ . Now (6.12) reads as β∗(x) =
∥∥∥t−

1
r′ a(t)−1

∥∥∥−1

r′,(0,x)
, x ∈ (0,1) . This,

(6.14) and Theorem 3.2 yield

1 � ‖λ∗‖∞,(x,1)

∥∥∥t−
1
r′ a(t)−1

∥∥∥
r′,(0,x)

� λ∗(x)β∗(x)−1

for all x ∈ (0,1) , which, by Lemma 6.1, implies (6.16). �

It is obvious that the requirement about the existence of the limit in Theorem 6.3
may be dropped in many situations. For example, this assumption is redundant if a and
b are products of composite logarithmic functions.

Next we consider the limiting case θ = 1 that is analogous to the previous theo-
rem, except for the case p2 = ∞ (thus we shall prove only this case). In order to keep
the presentation brief, let us make a convention that if we say that some result is sharp,
then we mean it in the sense of the previous theorem (assuming the existence of the
corresponding limits when needed).

THEOREM 6.4. Let T ∈ JW(p1,q1; p2,q2)∩LB2(p2,q2;m) be a quasilinear op-
erator.

(i) Let p2 < ∞ , 1 < r � s � ∞ , a∈ SV(0,1) and suppose that
∫ 1
0 t−1a(t)−r′ dt = ∞ .

Then
T : Lp2,r;a −→ Lq2,s;β ,

where

β (t) = a(tm)−
r′
s

(
1+

∫ 1

tm
u−1a(u)−r′ du

)− 1
r′ −

1
s

, t ∈ (0,1), (6.20)

is a sharp result.

(ii) Let p2 < ∞ , 1 � r � s < ∞ , b ∈ SV(0,1) and suppose that
∫ 1
0 t−1b∗(t)s dt < ∞ .

Then
T : Lp2,r;α −→ Lq2,s;b,

where

α(t) = b∗(t)−
s
r′

(∫ t

0
u−1b∗(u)s du

) 1
r′ +

1
s

, t ∈ (0,1),

is a sharp result.
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(iii) Suppose that (2.6) holds. The assertions in (i) and (ii) remain true if p2 = ∞ ,
provided that r = s = ∞ and r = s = 1 , respectively.

Proof.
Case r = s = ∞ . By Theorem 3.4 and (2.6), the result T : L∞,∞;a −→ Lq2,∞;λ

implies
‖λ∗‖∞,(0,x)

∥∥t−1a(t)−1
∥∥

1,(x,1) � 1 ∀x ∈ (0,1),

and then we can argue similarly as in the case s = ∞ of the proof of Lemma 6.3 (i).
Case r = s = 1 . In this case we can write∥∥∥t−

1
s b∗(t) log x

t

∥∥∥
s,(0,x)

=
∫ x

0
t−1b∗(t)

∫ x

t
u−1 dudt =

∫ x

0
u−1

∫ u

0
t−1b∗(t)dt du

=
∥∥t−1α(t)

∥∥
1,(0,x) (6.21)

for all x ∈ (0,1) , hence, by Theorem 3.4, the result

L∞,1;α −→ L∞,1;b

holds. Now if λ ∈ SV(0,1) is such that L∞,1;λ −→ L∞,1;b , then Theorem 3.4 and (6.21)
imply

1 �
∥∥∥t−

1
s b∗(t) log x

t

∥∥∥
s,(0,x)

∥∥t−1λ (t)
∥∥−1

1,(0,x) =
∥∥t−1α(t)

∥∥
1,(0,x)

∥∥t−1λ (t)
∥∥−1

1,(0,x) ,

for all x ∈ (0,1) , therefore, by Lemma 6.1, we get L∞,1;λ ↪→ L∞,1;α . �
Analogous assertions can be formulated on the interval (0,∞) (i.e. if μ1(R1) =

μ2(R2) = ∞) for the sums and intersections of the LK spaces. However, since there are
many possible configurations to cover and the formulas connecting the s.v. functions
remain essentially the same, we shall skip this. When needed, we can extract the sharp
results directly from the conditions of our interpolation theorems by assuming that the
functions appearing under the supremum in N , L , R , R∞ are equivalent to 1 and by
using Lemma 2.3.

REMARK 6.5. There are situations in which the sharp results of Theorem 6.4 are
also optimal. For example, suppose that the assumptions of Theorem 6.4 (i) are satisfied
and let bs = β , where β is defined by (6.20). Furthermore, suppose that q2 = ∞ .
Then, from Lemmas 2.3 and 6.1, we deduce that L∞,s;bs ↪→ L∞,S,bS whenever s � S � ∞ .
Therefore, in this situation, the target space L∞,r,br is optimal (cf. [9, Remark 3.2. (iii)]).

7. Applications of the results

Our main results can be applied to many familiar operators - we will now give
several examples. We shall mention the sharp (or optimal) results only.

In the following, the symbol M (Ω) stands for the set of all Lebesgue measurable
functions on Ω ⊆ Rn , n ∈ N , and |Q| for the Lebesgue measure of the set Q ⊆ Rn .

In the next lemma we recall the definitions of several familiar operators and cor-
responding well known estimates that are required by our interpolation theorems.
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LEMMA 7.1.

(i) Let |Ω|= 1 . The Hardy-Littlewood maximal operator MΩ is defined for a locally
integrable function f ∈ M (Ω) by

MΩ f (x) = sup
Q�x

1
|Q|

∫
Q∩Ω

| f |, x ∈ Ω,

where the supremum extends over all cubes containing x which have sides par-
allel to coordinate axes. The operator MΩ satisfies

(MΩ f )∗(t) ≈ 1
t

∫ t

0
f ∗(u)du ∀loc. int. f ∈ M (Ω) ∀t ∈ (0,1), (7.1)

and thus MΩ ∈ JW(1,1;∞,∞)∩LB1(1,1;1) .

(ii) The conjugate function, defined for a locally integrable and 2π -periodic function
f ∈ M (R) by

C f (x) =
1
π

lim
ε→0+

∫
ε<|t|�π

(2cot t
2 ) f (x− t)dt, x ∈ R,

satisfies C ∈ JW(1,1;∞,∞)∩C ∈ LB1(1,1;1)∩LB2(∞,∞;1) .

(iii) The Riesz potential Iγ , 0 < γ < n, defined for a locally integrable function f ∈
M (Rn) by

Iγ f (x) = c(n,γ)
∫

Rn
|t|γ−n f (x− t)dt, x ∈ R

n,

satisfies Iγ ∈ JW(1, n
n−γ ; n

γ ,∞)∩LB1(1, n
n−γ ;1)∩LB2( n

γ ,∞;1) .

(iv) The Hilbert transform, defined for every function f ∈ M (R) such that f ∈ L1 +
L∞,1 by

H f (x) =
1
π

lim
ε→0+

∫
ε<|t|

t−1 f (x− t)dt, x ∈ R,

satisfies H ∈ JW(1,1;∞,∞)∩LB1(1,1;1)∩LB2(∞,∞;1) .

(v) The Riesz transforms Ri , 1 � i � n, defined for all functions f ∈ M (Rn) such
that f ∈ L1 +L∞,1 by

Ri f (x) = c(n) lim
ε→0+

∫
ε<|t|

ti
|t|n+1 f (x− t)dt, x ∈ R

n,

satisfy Ri ∈ JW(1,1;∞,∞)∩LB1(1,1;1)∩LB2(∞,∞;1) .
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Proof.
Case (i). See [2, Chapter 3, Theorem 3.8].
Cases (ii), (iv). That C,H ∈ JW(1,1;∞,∞) follows from [2, Chapter 3, Theo-

rem 6.8] and [2, Chapter 3, Theorem 4.8.]. The corresponding lower bound for H is
proved in [2, Proposition 4.10.] and this proof works as well for C (cf. also [7, Theo-
rem 10.2. (ii)]).

Case (iii). See [16, p. 150] and references there.
Case (v). The Riesz transforms satisfy essentially the same rearrangement in-

equality as H does (cf. [16, p. 150]). �

The following theorem concerns the boundedness of operators MΩ and C , which
are acting between function spaces over finite measure spaces.

THEOREM 7.2. Let T be MΩ or C . Then

T : Lp,s;b −→ Lp,s;b, 1 < p < ∞, 1 � s � ∞, b ∈ SV(0,1); (7.2)

T : L1,1;b −→ L1,∞;b, b ∈ SV(0,1)∩M +(0,1;↓); (7.3)

T : L1,r; 1
r′ ,

1
r′ ,

1
r′ +α −→ L1,s;− 1

s ,− 1
s ,− 1

s +α , 1 � r � s � ∞, α > 0; (7.4)

MΩ : L∞ −→ L∞; (7.5)

C : L∞ −→ L∞,∞;�−1
1

; (7.6)

C : L∞,1;−1,−1,−1−α −→ L∞,1;0,0,−α , α > 0; (7.7)

C : L∞,∞; exp(−√
�1) −→ L∞,∞; exp(−√

�1)/
√

�1
. (7.8)

Proof. Result (7.2) is a consequence of Theorem 6.2.
Result (7.3) follows easily from Theorem 3.2 (and Remark 3.7 (i)), since, in this

case, one has
L(1,∞,a,b;0,1) = ‖b‖∞,(x,1)

∥∥a−1
∥∥

∞,(0,x) .

Result (7.4) follow from Theorem 6.3. Indeed, observe that β and α from (6.12)
and (6.17) now take the form

β (t) = �1(t)−
1
s �2(t)−

1
s �3(t)−

1
s −α r′

s

(∫ t

0
u−1�1(u)−1�2(u)−1�3(u)−1−αr′ du

)− 1
r′ −

1
s

≈ �1(t)−
1
s �2(t)−

1
s �3(t)−

1
s −α r′

s �3(t)α+α r′
s = �1(t)−

1
s �2(t)−

1
s �3(t)−

1
s +α

and

α(t) = �1(t)
1
r′ �2(t)

1
r′ �3(t)

1
r′ −α s

r′
(

1+
∫ 1

t
u−1�1(u)−1�2(u)−1�3(u)−1+αs du

) 1
r′ +

1
s

≈ �1(t)
1
r′ �2(t)

1
r′ �3(t)

1
r′ −α s

r′ �3(t)
α s

r′ +α = �1(t)
1
r′ �2(t)

1
r′ �3(t)

1
r′ +α

for all t ∈ (0,1) .
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Result (7.5) follows either from the definition of MΩ , or from (7.1) and Lemma 4.1
with μ = κ = 1, r = s = ∞ , a = b .

Results (7.6) and (7.8) follow from Theorem 6.4 (iii) with r = s = ∞ . Indeed,
this is obvious for (7.6) and for (7.8) we set a(t) = exp

√−�1(t) , t ∈ (0,1) , use the
substitution τ =

√
�1(u) and integration by parts to get

∫ 1

t
u−1a(u)−r′ du = 2

∫ √
�1(t)

1
τ exp(τ)dτ ≈

√
�1(t)exp

√
�1(t) ∀t ∈ (0, 1

2 ).

Result (7.7) is a consequence of Theorem 6.4 (iii) with r = s = 1. �

REMARK 7.3. It is obvious from the proof above that results (7.4) and (7.7) hold
analogously for arbitrary tier of logarithms.

Result (7.4) together with Remark 7.3 yield many particular results (in fact, also
the result (7.3) with b ≡ 1 can be seen as the limiting case α → 0 of (7.4) with r = 1,
s = ∞). Some of these are stated in the following corollary.

COROLLARY 7.4. Let T be MΩ or C . Then

T : L(logL) −→ L1;

T : L(log loglogL) −→ L(logL)−1(loglogL)−1;

T : L1,∞;1,1,1+α −→ L1,1;0,0,α , α > 0.

The result (7.2) for MΩ with b ≡ 1 is a well known result of Hardy, Littlewood.
The non-limiting case for operator C was resolved by F. Riesz. The limiting cases with
single logarithm for operator C are due to Zygmund. Analogous results for GLZ spaces
with second tier of logarithms were proven in [7]. The results (7.4), (7.7), (7.8) (and
their versions for higher tiers of logarithms) are new. The spaces in (7.8) are not GLZ
spaces.

Now we shall present some results for operators Iγ , H and Ri , acting between
function spaces over R or Rn . We start with Iγ , since its behaviour near the right
endpoint is easier to describe than for the other two operators ( p2 = n

γ < ∞).

THEOREM 7.5. Let Γ = n
n−γ . The operator Iγ satisfies

Iγ : Lp,s;b −→ Lq,s;b, 1 < p < n
n−γ , 1

p = 1
q + γ

n , b ∈ SV(0,∞); (7.9)

Iγ : L1 +Ln
γ ,1 −→ L n

n−γ ,∞ +L∞; (7.10)

Iγ : L1∩Ln
γ ,1 −→ L n

n−γ ,∞ ∩L∞; (7.11)

Iγ : L1,r1;
1
r′1

, 1
r′1

+α +Ln
γ ,r2;

1
r′2

, 1
r′2

+β −→ L n
n−γ ,s1;− 1

s1
,− 1

s1
+α +L∞,s2;− 1

s2
,− 1

s2
+β ,

1 � r1 � s1 � ∞, 1 � r2 � s2 � ∞, α,β > 0; (7.12)

Iγ : L1,r1;
1
r′1

, 1
r′1
−α ∩Ln

γ ,r2;
1
r′2

, 1
r′2
−β −→ L n

n−γ ,s1;− 1
s1

,− 1
s1
−α ∩L∞,s2;− 1

s2
,− 1

s2
−β ,

1 � r1 � s1 � ∞, 1 � r2 � s2 � ∞, α,β > 0; (7.13)
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Proof. The non-limiting case (7.9) follows from Theorem 6.2. Result (7.12) fol-
lows from Theorem 3.5 (i). Indeed, we know from this theorem that (7.12) holds if and
only if

∞ > L(r1,s1,a,b;0,1)+R(r2,s2,a,b;1,∞)

=
∥∥∥∥t

− 1
s1 �1(t)

− 1
s1 �2(t)

− 1
s1

+α
∥∥∥∥

s1,(x,1)

∥∥∥∥t
− 1

r′1 �1(t)
− 1

r′1 �2(t)
− 1

r′1
−α

∥∥∥∥
r′1,(0,x)

+
∥∥∥∥t

− 1
s2 �1(t)

− 1
s2 �2(t)

− 1
s2

+β
∥∥∥∥

s2,(1,x)

∥∥∥∥t
− 1

r′2 �1(t)
− 1

r′2 �2(t)
− 1

r′2
−β

∥∥∥∥
r′2,(x,∞)

≈ �2(x)α�2(x)−α + �2(x)β �2(x)−β ≈ 1

for all x ∈ (0,∞) . The proof of (7.13) is analogous (use Theorem 3.5 (ii)). Results
(7.10), (7.11) can be seen as the limiting cases α,β → 0 of (7.12), (7.13), respectively,
and their proof is similar to the proof of (7.3). �

Similarly as for Theorem 7.2, results (7.12) and (7.13) (and their versions for other
tiers of logarithms) yield many particular results. These generalize some of those given
in [7] to measure spaces with μ1(R1) = μ2(R2) = ∞ .

COROLLARY 7.6. Let Γ = n
n−γ . The operator Iγ satisfies

Iγ : L1,1;1,0 +LΓ′,Γ′;1,0 −→ LΓ,Γ; 1
Γ′ ,0

+L∞,∞; 1
Γ′ ,0

;

Iγ : L1,1; 1
Γ ,0 +LΓ′,Γ′;1,0 −→ LΓ +L∞,Γ′ ;

Iγ : L1,1;−1,0∩LΓ′,Γ′; 1
Γ ,0 −→ LΓ,∞;−1,0∩L∞,∞;0,− 1

Γ
;

Iγ : L1,1;0, 1
Γ

+LΓ′,Γ′; 1
Γ ,1 −→ LΓ,Γ;− 1

Γ ,0 +L∞,∞;0, 1
Γ′

;

Iγ : L1,1;0,− 1
Γ′
∩LΓ′,Γ′; 1

Γ ,0 −→ LΓ,Γ;− 1
Γ ,−1∩L∞,∞;0,− 1

Γ
.

We shall conclude the paper with the application to the operators H and Ri .

THEOREM 7.7. Let T be one of the operators H , Ri . Then

T : Lp,s;b −→ Lp,s;b 1 < p < ∞, b ∈ SV(0,∞);
T : L1 +L∞,1 −→ L1,∞ +L∞;

T : L1,1;1,0 +L∞,1 −→ L1 +L∞;

T : L1,1;1,0 +L∞,1;1,0 −→ L1 +L∞,1;

T : L1,1;0,1 +L∞,1;0,1 −→ L1,1;−1,0 +L∞,1;−1,0;

T : L1,1;1,0∩L∞,1;0,−α −→ L1 ∩L∞,1;−1,−1−α α > 0;

T : L1,1;1,0 +L∞,∞;1,1+α −→ L1 +L∞,∞;0,α α > 0;

T : L1 ∩L∞ −→ L1,∞ ∩L∞,∞;−1,0;

T : L1∩L∞,∞;1,0 −→ L1,∞ ∩L∞,∞;0,−1.
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Proof. The proof can be done using similar ideas as in the proof of Theorem 7.5.
Instead of Theorem 3.5, we use Theorem 3.6. �

The results contained in Theorem 7.7 again generalize some of the results of [7]
and extend those of [1].
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