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LÉVY–KHINTCHINE REPRESENTATION OF TOADER–QI MEAN

FENG QI AND BAI-NI GUO

Abstract. In the paper, by virtue of a Lévy-Khintchine representation and an alternative inte-
gral representation for the weighted geometric mean, the authors establish a Lévy-Khintchine
representation and an alternative integral representation for the Toader-Qi mean, verify that the
Toader-Qi mean is a Bernstein function and that the divided difference of the Toader-Qi mean is
a Stieltjes function, and collect a probabilistic interpretation and an application in engineering of
the Toader-Qi mean.
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