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Abstract. We introduce Herz-Morrey-Orlicz spaces on the half space, and study the boundedness
of the Hardy-Littlewood maximal operator. As an application, we establish Sobolev’s inequality
for Riesz potentials of functions in such spaces, which is one of mixed norm type inequalities.

1. Introduction

Let R" be the Euclidean space. In harmonic analysis, the maximal operator is a
classical tool when studying Sobolev functions and partial differential equations. This
also plays a central role in the study of differentiation, singular integrals, smoothness
of functions and so on (see [4, 9, 18], etc.).

It is well known that the maximal operator is bounded on the Lebesgue space
LP(R") if p > 1 (see [18]). The boundedness of the maximal operator was stud-
ied on Morrey spaces in [7, 14], on Orlicz-Morrey spaces in [16], and also on non-
homogeneous Herz spaces in [10]. For Morrey spaces, which were introduced to esti-
mate solutions of partial differential equations, we refer to [13, 17].

Recently, the boundedness of the maximal operator was studied for non-homoge-
neous central Herz-Morrey-Orlicz spaces on the whole space R” (see [12]). Let Hy
denote the half plane :

H; ={x=(,x,) € R 'xR:x, > 0}.

Our first aim in this paper is to study the boundedness of the Hardy-Littlewood maxi-
mal operator on %4 (H, ) defined by a general function ® and a weight @ satis-
fying certain conditions and 0 < g < oo (see Theorems 3.4 and 3.5 below). The space
A ®4(H, ) is referred to as a Herz-Morrey-Orlicz space on the half space. See Sec-
tion 2 for the definitions of ®, ® and ##®®49(H, ). To prove Theorem 3.4, we need

Mathematics subject classification (2010): 31B15, 46E35.
Keywords and phrases: Herz-Morrey-Orlicz spaces, maximal functions, Riesz potentials, Sobolev’s
inequality.
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the boundedness of maximal operator on L® (see Lemma 3.1), and treat only the case
1 < g < oo, because the remaining case is easily settled.

One of the important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in classical Lebesgue spaces, we know Sobolev’s inequality:

Mol gy < €l Lo

for fe LP(R"), 0< o <n and 1 < p <n/a, where I, is the Riesz kernel of order
o and 1/p*=1/p—a/n (see, e.g. [2, Theorem 3.1.4]). Sobolev’s inequality for
Morrey spaces was given by D. R. Adams [1] (also [7, 14]), and then the result was
extended to Orlicz-Morrey spaces in [15]. For local Morrey-type spaces, we refer the
reader to [5, 6], for example. See also [10] for non-homogeneous Herz spaces and [8]
for non-homogeneous central Morrey spaces.

In [12], the boundedness of Riesz potential operators was studied for non-homo-
geneous central Herz-Morrey-Orlicz spaces on R”. Our second aim in this paper
is to give a general version of Sobolev’s inequality for Riesz potentials of functions
in ##®®4(H,) as an application of the boundedness of the maximal operator on
A ®®4(H, ) (see Theorem 4.7 below). This seems to be new even for the case
@(r) =rP and o(r) =r~" (see Corollary 4.8 and Remark 4.9 below). The key lemma
for our main Theorem 4.7 is Lemma 4.5 below.

2. Preliminaries

Throughout this paper, let C denote various positive constants independent of the
variables in question.
Let @ be a convex function on [0, ) such that

(@1) ®(0) =0 and &(r) >0 for r > 0;

(®2) for some py > 1, r~P2d(r) is almost decreasing, that is, there exists a constant
A1 > 0 such that

D(rt) <A P20(r) when r> 1 and ¢ > 0;

(®3) for some 1 < p; < pp, r"P1®(r) is almost increasing, that is, there exists a
constant A, > 0 such that

D(rt) = Ay’ (1) when r> 1 and 7 > 0.

Here note from (®2) that ® is doubling, that is, there exists a constant A > 0 such that
D(2r) <AD(r) for r > 0.
Further consider a weight @ such that

(wl) o(r) >0 for r>0;
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(w2) o is almost decreasing in (0,0);
(w3) o is doubling.

We see that o(r) = r~V (log(e +r))? is almost decreasing when v >0 and 6 € R.
Note here that (®2) holds if and only if

(@2) D(rt) = A, 'rP2D(r) when 0 <r< 1 andt>0;
and (®3) holds if and only if
(@3') D(rt) <Ay P ad(r) when 0 <r<1and?>0.

Moreover, if @ is of the form r”(log(e+r))® for p > 1 and 6 € R, then (®2) and
(®3) hold when 1 < p; < p < p;. In particular, p; = p = p, if and only if 6 =0.
For r > 0, set

H(r)={x=(,x) eR"I'xR:0<x, <r}

and
A(r)=H(Q2r)\H(r).

For 0 < g < o0, we denote by #®®4(H, ) the class of measurable functions f on the
half space H satisfying

11 o0a,) = inf{?t ~0: [ L@ (@) oy

([ (oo (52 9) #)" e

when 0 < g < oo, S#®®>(H.) is the space of all measurable functions f on H such
that

11l 00, )

suefrsoc o () (o0 ] o () @) <1} <

The space #®®4(H,) is referred to as a non-homogeneous central Herz-Morrey-
Orlicz space on the half space H,, which is one of spaces with mixed norm. In
connection with #®®4(H, ), we consider the space £ ®®4(H, ) of all measurable
functions f on H, satisfying

L gwonn, =it =00 [ o2 ay

([ (o, o (51 0)' )" <1}

when 0 < g < oo; if ¢ = o, then we need necessary modifications. For these spaces,
see e.g. [3, 5, 6, 13].
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LEMMA 2.1. Suppose

(04) r®w(r) is almost decreasing on [1,00) for some & > 0.
Then #®®4(H,) = 2P?9(H,).

Proof. Let 0 < 6 < 8. First, we show the case 0 < g < . Let f be a measurable
function on Hy with

[ otronare ([ (o0 [, atrona) )"

In case 0 < g < oo, by Holder’s inequality, we obtain
Loy @O
<C/ (/ |)dy) dt
<e(f (a0 ) ) () (a0 | oo 4) "
SCr—tsw(r)—l (/lr (tgw(t)/A(t)q)qf(y))dy)q %>1/4

for r > 1 since

[ (o0 ) L <c(rdop)” [ia-ord

t
=C (r_‘soa)(r)_ly r(&=8)d" Cr_‘sqla)(r)_q,

N

1.

by (w4). For the case 0 < ¢ < 1, we use the fact that (a+b)7 < a?4 b7 for all a,b >0
instead of Holder’s inequality and use

o) <crlo(r)!

forall 1 <7< r by (w4). Hence we have by (w4)
[ (001 ], @)
/100 (w(r)/( ) O(|f(v)])d )q ?4_ lw <w(r)/1q(2)q)(|f()’))dy>q g}

{
<l (o0 [ owsoman) (['r5T) (], woma) y
C{/lw (a)(t)/Am(DUf(y))dy)q g_,_ (/Hc)q)(f(ymdy)q},

<C

N
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so that

N

C.

[ @i+ ([~ (o0 [ etrona)’ d—)/

Next, we deal with the case ¢ = e=. Let f be a measurable function on H; with

f o @y () [ @lroas) <1.

By (w4), we obtain

/( N\H(2) (| f(y )|)dy<C/1r </A(,)q)(f(y)|)dy) dt
<C</lrt‘5a)(t)—1%> 1S<I;I<)r (t ot / (| f(y) )dy)

<o ol s (o) |, q><|f<y>>dy)

1<<r

<colr)! sup (o0) [ allfo)ar)

for r > 1. Hence we have by (®2)

sup (o) [ @(lr0))ay)

<sp(o0) [ o)+ (o0) [ @lroay)
<l (o0 ] owona) ) [ o)
<c{sup (00 [ (t)ﬂb(lf(y))dy) +f (2)d>(f(y)l)dy},

/H(Z)CD(|f(y)\)dy+sup (w(r)/H(r)q)(|f(y))dy> <c. O

r>1

so that

3. The boundedness of the maximal operator

We define the maximal function of a locally integrable function f on H; by

Mf(x) = fO)ldy,

r>()|er|/xrﬁH+
where B(x,r) denotes the open ball centered at x € R” with radius r > 0.
In view of (®3), we have the boundedness of maximal operator in L®(H )

={f € Lpe(Hy) : [, DS ()])dy <o}
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LEMMA 3.1. ([11, Corollary 4.4]) There exists a constant C > 0 such that

QM) dr <C [ @(if0))dy

Hy

Let us start with the following lemma which will be useful in the sequel.
LEMMA 3.2. Let a < 1. Then there exists a constant C > 0 such that
o bl ray <l =,
where x = (X', x,) and y = (y/,y,)-
Proof. For x = (x',x,) and y = (Y, y,), set r = |x' —'| and b = |x,, — y,|. Then

/ l|x—y|‘“"d)c/:C/ (P +bp) @22 g, <op ! O
R 0

For a real number «, x € H(r) and r > 1, we define

Jer(x) = / —yF () d
e (%) M (0B x—y[* " f(y)dy

and set
fl,r = fl,r;x = fo+\(H(2r)uB(x,r))'

Next result is instrumental for the boundedness of the maximal operator.

LEMMA 3.3. Suppose
(05) P21 Pogy(r)~! is almost decreasing on [1,00) for some By > 0.
Let € >0 and B > 0 such that
kpr+e(pp—1)—1<0 and  g(pr—1)+p < Po.

Then there exists a constant C > 0 such that

e [ Q0 ) drs crPag) ( | <t—l3m(t) A(t)q)(f(y))dy)q ?)w

when 0 < g < o and

r e /( )dD(rSJK7r(x))dx < CriP2o(r) " Lsup < / O(f )
H(r

t>r

when q = oo, for all nonnegative measurable functions f on H..
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Proof. We show only the case 1 < g < eo. Let € be given as in the present lemma.
For a nonnegative measurable function f on Hy and x € H(r), we have

Jero) = | o=y dy

H\(H(2r)UB(x,r))

© 1
<o (G o, Sy} <.
r \IB1)] Jpn™
We obtain by Jensen’s inequality and (®2)
° 1
DT, (x) <CD [ r# / — / AL ()dy ) dr
' |B x t | x[ :

K+£ 78 1
<|th |/xt firy ))dy) d
((xrepzn ( q’(fl,r(y))dy) ey
B(xt)

O [ i 00y
+ r xr

Ccrf

N

Ccrf

N

J
i

N

since r > 1 and
Kpr+e(pr—1)—n<xpy+e(py—1)—1<0.
If x€ H(r) and y € H, \ B(x,r), then for X = (x', —x,)
X =¥ < 200+ [x =y <2r+|x—y| <3x—y.
Therefore, Lemma 3.2 gives
/ lx — y|<P2reP2= )= gy < / (|x —y|/3)Kp2tea=1=n gy
H(r) H(r)
-
< C/ (X + ) P2HEP2= D=1 g

<Cry KP2+8(P2 1)-1

forye H, \ (H(2r)UB(x,r)) since kpy+€(p2—1) < 1. Hence we obtain by Holder’s
inequality and (®5)

/ (e r(x)) dx < CrS/ (/ Jx —yl"”2+£(”2‘1)‘"dX> D(f(y))dy
H() wo\m2) \Jue)
< Cretl / P (f(y) dy
H\H(2r)

gCre+1Z(2./r)'fm+8<172*1>*1/ ~D(f(y)dy
= A(27r)
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w AKA
£+1 (Z < Kp2+£ pr—1)— 1+/3w(2jr)_1>f1>

x (i ((2fr)’3w(2~f r) A(z_/,>¢(f v Wy) ”)

J=1
< Cr(l(+£)p2+[3w(r)—l

oo ' ' g\ V4
x (z (@ oen [ etrona) ) 7

J=1

1/q

which gives

/, O I ds
cerorton ([7(to) [ otona) ) "

which proves the assertion. [J

Now we are ready to prove the boundedness of maximal operator on P04 (Hy).

THEOREM 3.4. Suppose
(05") r~"HPow(r) ! is almost decreasing on [1,%0) for some By >0 .
Let € > 0 be given such that
e(pr—1)—1<0  and  €(pr—1)<Po.

Then there exists a constant C > 0 such that

/H(2)q)(Mf(X))dx+ (/100 (rgl’zw(r) /H(r)q)("ng(X))dx>q g) v <C

when 0 < g < oo and

/H ) PO dxsup <r81’2a)(r) H(r)d)(rng(x))dx) <C

r=1

when q= oo’for all f c %‘Dawﬂ(H_}r) with Hf”id)’w’q(HJr) < 1.

Proof. We show only the case 1 < g < . Let f be a nonnegative measurable
function on H. such that

futronar(f (ot0 /H(r)d%f(y))dy)q?)l/qgl.
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For r > 1 write
f=rxaue)+ ey = frt+ G

First note by (®2) and Lemma 3.1 that

P2 /H (r)d)(rngM(x))dxg c /H (r)ﬂD(Mfs,r(y))dy

<C @ 0Ny
=c [ o)y,
H(2r)
so that
[ empaax<c [ am)ay<c
H(2) H(4)
and

/. (r_s”zw(w L ¢(r£Mf3,r(x))dx)q Teef (“’(r) i q’(f(y»dy)q T
<c (o [, @uma)

For x € H(r), note that

Mfz’r(x) < CJQ,(X) .

Take B > 0 such that
e(p2—1)+B < Po-

Then we obtain by Lemma 3.3 and (@3')

so that
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and again by Lemma 3.3

[ (rmon [ ermpmia) &
<cf ([ (fﬁwm A(Z)q)(f(y))dyy 2)
<c [ (ot [, ouonar) ([ #) ¢
<cf (o0 (t)cb(f(y))dy> &

< C{ H(2)(D(f(y))dy+ (/IN (a)(t) H(I)q)(f(y))dy)q ?)1/4}

<C.

Consequently,

/H o D(Mf(x))dx < C
/1 ) <r81’2w(r) /H (r)d)(rer(x))dx)q ? <C,

and the proof of the theorem is completed. [l

and

In view of Theorem 3.4 and Lemma 2.1, we present the boundedness of maximal
operator on @4 (H,).

THEOREM 3.5. Suppose (04) and (®5') hold. Let € > 0 be given such that
g(pp—1)—1<0 and e(pr—1) < Po.

Then there exists a constant C > 0 such that

/H(z) e </1m <r_£p2w(r)/A(,)q)(l’ng(x))dxy ?) v <C

when 0 < g < o and

r=1

/ O(M(x))dx+ sup <r8mm(r) / (I)(rer(x))dx) <C
H(2) A(r)
when q = oo, for all f € A#®®4(H,) with 1l ooam,) < 1.

COROLLARY 3.6. Let 0 < v < 1. If p> 1, then there exists a constant C > 0
such that

( g, MFra +xn)_vdx> " <C (/m FO)IP( +yn)‘vdy>

1/p
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4. Sobolev inequality

The Riesz potential of order o (0 < & < n) of f is defined by
laf ()= [ =y ()dy
Hy

with fe L} (H.).

loc

For x = (¥',x,) € H} and r > 0, write

Il,rf(x) :/B(
hf(x) = — Y@ (y) dy,
2= [ e )y

: x—y[*"f () dy,

Bof(0)= [ =31 )
B(x,x,/2)\B(x,r)
lof@= [ )" ) dy
H\B(x,r)
In order to get our aims we shall need some lemmas.

LEMMA 4.1. There exists a constant C > 0 such that
1, f () < CreMf(x)
for all nonnegative measurable function f on H.

As in the proof of Lemma 3.3, we show the following result.

443

LEMMA 4.2. Let € > 0 be a number such that opy + €(p1 — 1) —n < 0. Then

there exists a constant C > 0 such that

O(r° L . f(x)) < Cropiten—n / O(f(y))dy
/ B(x,1)\B(x,r)

Sor all nonnegative measurable functions f on Hy, xe Hy and 0 <r < 1/2.

Proof. Let f be a nonnegative measurable function on H; and x € Hy. For

0<r<1/2,wewrite

J2r = FXB(x1)\B(xr)-
Then we have by Jensen’s inequality and (®3')

2

2 1 ~
< £ o+€ —e—1
~ Cr /r <|B(X7Z)| /B(x,t) q)(t f27r(y))dy)t dt
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2
< Crg/ e (/B( t)@(fz’,(y))dy) 5 dr

L N e L T

<crmren [ a(f()dy
B(x,1)\B(x,r)

since ap; +&(p1—1)—n<0. O

LEMMA 4.3. If € > 0 and apy +€(p2 — 1) —n <0, then there exists a constant
C > 0 such that

OUehf () <cremrenn | a(p(y)dy

B(x,xn/2)

for all nonnegative measurable functions f on Hy, x= (x',x,) € Hy and r > 1/2.

Proof. Let f be a nonnegative measurable function on H. . It is sufficient to
prove the result for 1/2 < r < x,/2. We write

Paor = F B /2)\B(xr)-

Then

Lf(x)= / —y[* " f(y)d
3,f (%) o2\ 80 = y|[*"f () dy

Xn 1 -
<cf (— / fa,r(y)dy>t°‘1dt-
r \|B(x,1)| JB(xa)

We have by Jensen’s inequality and (P2)

( 813 rf C‘D( (ﬁt'/ Bus ta+£f~3,r(y)dy> t_g_ldt>
€ (OFE —8—1

o [ (sz|/“ RN )

CrS/ Otpz-'r{:‘pz n (/ q) f3r )) ) —E—ldt

SO [ T ) dy

N

<creen | o) dy
B(x,x,/2)

which gives the assertion. [
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LEMMA 4.4. Suppose
(w6) roP2+er2=1)=10 (1) =1 s almost decreasing on [1,0) for some g > 0.
If 0 < € < &), then there exists a constant C > 0 such that
Ly, f(x) < CO ! (roP2tEn ()t
forall r >1/2, x=(X',x,) € Hy with r > x,/2 and nonnegative measurable functions

f on H+ with Hf”iqh’w’q(HJr) < 1.

Proof. We show only the case 1 < g < e. Let f be a nonnegative measurable
function on H; such that

[ ouonas ([ (o0 [ atrona) @) <

Let € such that 0 < € < &. For x = (', x,) € Hy with r >x,/2 and r > 1/2, we
write

Far = Fa0BG)-
Then

Iy, rf C/ <|B x t Bur .f4,r(y)dy> ﬂx_ldf-

Note from (@6) that
opy+e(pr—1)—n<0
since @(r) is almost decreasing on [1,0), so that

apr+e(pr—1)—n=ap>+&(p>—1)—n+(e—&)(p2—1) <0.
We have by Jensen’s inequality and (P2)

oo 1 N
(L, < CO 8/ <7/ 19TEf d)t‘g‘ldt)
oetsi) <co (st [ (g [ e, 0
o0 1 N
<C8/ 7/ O(OTEfy, d)z“dz
g (BM [ @)y
<o [T ([ ot )ay )t
r B(x,t

<o [ ey e p(y)) dy
H,\B(x,r)
Since y, > 4x,/2 = 2x, when y € H \ (H(r)UB(x,r)) and y, > 4r, |x—y| > |x, —

Yul = yn/2. When y € Hy \ (H(r) UB(x,r)) and r <y, < 4r, |x—y| > r >y, /4.
Therefore,

rs/ o — y[ 0P EP2m = (£ (y)) dy
L, \(H(r)UB(x))

<o [y e () dy
H\H(r)
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since apy +&(p2 — 1) —n < 0. Hence
D(rfly f(x))

< C{ré‘/ ygp2+€(172*1)*nq)(f(y))dy+rap2+8p27n/ q)(f(y))dy} )
H, \H(r) H(r)

Here we find by Holder’s inequality and (@6)

apy+e(pa—1)—n ) h+e(pa—1)—n

[ /() dy <CZ [,y 2P0y
oo q/ l/q oo q 1/q
-\ op2+e(pa—1)—n - j

gc(jgo ((Zfr) m+e(p w(2'r) ) ) (Zo ((D(ZJr) /A (2jr)d>(f(y))dy) )

— . g\ /4

opr+€(pa—

<cr (Z( 0 [, 2U00D) ) .
Further,

prtern [ o(p(y)dy < Cromen o)
H(r
Hence
O1* 14 (1) < Crm e o(r)

which gives the assertion. [J

LEMMA 4.5. Suppose (w6) holds. Let 0 < € < &. Let f be a nonnegative
measurable function on . such that || f Hﬂq:,w,q(}h) <.

(1) Let Ny g =n+ (oo+¢€)(p2—p1). If opr+epr—n <0, then there exists a
constant C > 0 such that

Iof(x) <CMf(x) (a)(xn)q)(Mf(x)))—a/Nl.e
forall x= (x',x,) € Hy with x, > 1 and (a)(xn)q)(Mf(x)))—l/NLs <1.

(2) Let Nog =n—(o0+¢€)(p2—p1). If opr+epr—n <0, then there exists a
constant C > 0 such that

Iof(x) <CMf(x) (a)(xn)q)(Mf(x)))—a/Nz.e
forall x=(x',x,) € Hy with x, >2 and 1 < (a)(xn)q)(Mf(x)))—l/Nz.e <xn)2.
(3) Suppose

(w7) there exist a real number N3 ¢ and a constant A > 0 such that 0 < N3 ¢ <
N ¢ and
MNe <A (1)

forallt > 1
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Then there exists a constant C > 0 such that
Lo f(x) < CMf(x)D(Mf(x))~“/Me
forall x= (x',x,) € Hy with x, > 1 and (a)(xn)q)(Mf(x)))fl/N“ > xn/2.

Proof. First we show the case (1). By Lemmas 4.1-4.4, we have for 0 < < 1
and x = (¥',x,) € H, with x, > 1

laf@)= [ sy [ eyl ) dy
B(x,r) B(x,1)\B(x.t)

+/ eyl “ )y + e =y1% 7 (3) dy
B(x,xn/2)\B(x,1) H \B(x,x,/2)

<C{t°‘Mf(x)+t"3d>‘1 <t°"’1+8”1‘” /H(ZX )d>(f(y))dy>

ot ([ U ) e (g, )
H(3x,/2)
< C{t“Mf(x) +t‘SCI)‘l(t“p1+8p1‘”a)(xn)_l)
+ O (@) ") x5, 507 (k2T o (x,) ) }
< C{tO‘Mf(x) —|—t*£d>*l(t“m*‘gm*”w(xn)*l)}
since
api1+epr—n<apy+eEpr—n<opy+epr—n<0

and
api+e(pi—1)—n<ap,+e(py—1)—n<0.

If 1 = (0(x) @M f(x)))""/Ne < 1, then
D1 %D (1PIHEPI g ()T )) < A (O EPOPIFEP R gy (1 )
=Air Mew(x,) !
by (®2), so that

Iof (x) < C{t“Mf(x) +190~ (A e oo(x,) )}
< Cl‘aMf(x)
— CMf(x) (0 (x,) DM f(x))) %/ Me |

which gives Assertion (1).
Next we show the case (2). We have for x = (x',x,) € Hy and 1 <7< x,/2

I = _ylo—n d / _ yla—n d
W= [ s [ el ) dy

+ / e = y[*"f(v) dy
H\B(x,x,/2)
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SC{t"Mf(x)+1 2@ (1222 g (x,) 1) o, ED T (x@P2HER g (x,) ) }
SC{t"Mf(x)+17 5@ (1 *P2T e g (x,) 1)}
by Lemmas 4.1, 43 and 4.4. If 1 <1 = (0 (x,)®(Mf(x))) "/V2¢ < x,/2, then
D10 E P (1OPER gy ()T 1)) < A7V (COEP PR gy ()7
=AM w(x,) !
by (®3'), so that
Inf(x) SC{t"Mf(x) + 1@ (At e 0(x,) 1)}
< Ct"Mf(x)
= CMf (x) (@(x,) (M [(x))) ="M,

which gives Assertion (2).
Finally we show the case (3). Let x = (X', x,) € Hy with x,, > 1.

If (@) ®Mf(x) ™€ > x,/2 > 1/2, then we take ¢ = ®(Mf(x))/Nse
Since x, > 1, we see that

O < AN @ (xy) < A2V D(MF(x)) ! = A2V Noe
so that 1 > A~1/Nsep~N2e/Nsey, > C. We find
af@= [ ey 0y [ eyl ) dy
B(x,t)ﬂH+ H+\B(X,t)
<C{MF(x) +1 @ (1@Pem ()~ 1))

by Lemmas 4.1 and 4.4. Since

q)(tfafsq)fl (tOszJrszfnw(t)*l)) Ct(fafe)pltocp2+£p27nw(t)fl

N

=Ct ™Mep(t) ™ <Cr e
by (®3'), we have
Iof(x) SC{t"Mf(x)+1 f@ L (gor2ter ()~ 1)}
SC{t"Mf(x)+1%D7 (1 Me) )
< Ct"Mf(x)
= CMf () (M [ (x)~ /M,
which gives Assertion (3). U
Suppose there exist convex functions ;¢ (i =1,2,3) on [0,0) such that

(W) there exists a constant A3 > 0 such that
¥, (t(D(t)_a/N’FS> < A3D(1)

forr > 0.
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In view of previous results we have the following.

LEMMA 4.6. Suppose (06) and (w7) hold for apy+epry—n<0. Let 0 < e <
&y. Then there exists a constant C > O such that

—¢ o/Nie ¢
/A(r) (lpl’g (720 ™ ke () X = ) M (00 ()M <1)
—& OC/Nz,s €
+¥2e < Po(x Xnlof (x)> X{x:(x’,x,1)€H+:1g(w(xn)(l)(Mf(x)))fl/Nzﬁfgx,l /2}

— O(/N3 £
+ Wi ( (x,572) Xlo f (x )> X fem (¢ o) €M 20 () DM F ()~ N2 2x,1/2}) dx

<C /A QM) ax

forall r > 1 and nonnegative measurable functions f on H, such that || f ||jf¢,w,q(H+)
<1 -
< 1.

Proof. Let x = (x',x,) € A(r) with r > 1.

If (0(x,)®(Mf(x))) "/ Me < 1 with Ny ¢ = n+ (0 +€)(p2 — p1)., then we have
by Lemma 4.5 (1) and (®2)

Inf(x) <CMf(x) (w(xn)d)(Mf(x)))—a/Nl‘g
< CMF(x) (@(u)x, P@(M ()M

so that in view of (W ¢)
e (5 7000) M il f (4)) < e (HMFODEMF (1)1 )
< CO(x, Mf(x)).

If I < (a)(xn)d)(Mf(x)))fl/N“ < xp/2 with Nag =n— (ot +€)(p2 — p1), then
we have by Lemma 4.5 (2) and (D2)

Lo f (x) < CMF(x) (0(x)D(Mf(x))) "%/ N2
< CMF(x) (@ (x)x, P DEEMF (x))) ¥/ e

and hence, in view of (V5 ¢),
P (52 0(0)) ™ Kol f (1)) < COMEMF ().

Finally, if (o (x,)®(Mf(x))) “HNoe > Xn/2, then we obtain by Lemma 4.5 (3) and
(®2)

Iof(x) < CMF(R)DMS(x)"4Nse < CMF(x) (x, P DEEMF(x)))~“/,
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so that in view of (W3 ¢)

e ((672) "™ 3810 f () ) < COLEMF (),
as required. [

Now we establish our main result.

THEOREM 4.7. Suppose (04), (®5'), (06) and (®7) hold for aps+ gyps —
n<0. If0<e<eg, €(pp—1)—1<0 and €(pr — 1) < Po, then there exists a
constant C > 0 such that

/(r_gpza)(r)
1
—& a/Nig g
X//ur)(ql“(( Po(u) x"'I"‘f(’“”)x{x=<v,xn>eH+:(w@@@(Mf(x)))*””hf<1}

- /N2 e
+¥2, ((xn szw(xn))a X, |Iaf(x)|> X fem (¢ o) M1 < (@) DM F(x))) ™ V2 < 12}

q
— /N3 e dr
+¥se ((xn )R L f (X>|> A= ) M () (01 ()2 >xn/2}) dx) r

<C

when 0 < g < e and

sup (r_sma)(r)

r>1

—€p2 a/Nie e
X /A(r) (‘Pl,e ((xn (D(Xn)) Xn |Iocf(x)|> x{x*(x X)EH 1 (0(x, )@ (Mf(x)))il/NL5<1}

— 0/Ny ¢
+¥2e <(x" Prao() " g o f (’“)|> X e (¢ ) €L 1< () DM (x)) V28 <3,/2)

—epy\ /N3 e
e (07 s 9] x{x=<v.,x,1)eH+:<w(x.1><1><Mf<x>>>1/”2‘%1/2}) dx)

<C

when q = e, for all measurable functions f on H.. such that || f| yo0qm,) < 1.

Proof. We show only the case 1 < g < . In view of Lemma 4.6 and Theorem
3.5, we obtain

/w (r_gpza)(r)
1
—epy a/Nig g
. /A(r) (T“ <(x" )" e f (’“)')x{x:w,xn)em:<w<xn)<1><Mf<x)))*””l~f<1}

_ Noe
926 (05 72000) el 091) Xy et 1< ot 0t700) 20 2
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q
- /N3¢ dr
e (07 s 9] om0 o) B Lo ()7 N2 %/2}) dx) T

oo 44
<C / <r—€1’2w(r) / q)(rng(x))dx> a
1 A(r) r
<C,
as required. [
When @(r) = rP and o(r) =r~", we obtain the following corollary.
COROLLARY 4.8. Let
= {x= (¥, x,) €Hy : Mf(x) > (2", )7}

and
Ey={x=(¥,x,) € Hy : Mf(x) < (2"x)")"/P}.

Let 1/p*=1/p—a/n>0and 1/py=1/p—o/(n—v)>0.Ifp>land 0<v <1,
then there exists a constant C > 0 such that

[y (@14 ) e [ e e c
E|\H(1
for all measurable functions f on H such that

[ Oy <,

Hy

In order to prove Corollary 4.8, it is enough to notice that for ®(r) = r” and
o(r)=r"" wehave N; ¢ =N, =n and N3 ; =n— v and then we may take ¥ ¢(r) =
Wae(r)=r"" and W3 ¢(r) = rP in view of (Vi) (i=1,2,3).

REMARK 4.9. We shall show that the exponent p, in Corollary 4.8 is needed.
To show this, consider the function

FO) =" g ) ()

for0<v<land 0<e<n—(n—v)/p.Then,in view of Lemma 3.2, we have

/ JOY A+ 3m) vdy</1 ' (/R1 |y|””"dy’> dyn

<C/ Y P dyy < oo,
1

We find
Mf(x) < Clx|"mV)/p=¢ < Cx, "VIPE (2"xV—m)1/p
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for x € Hy \ H(c) with some ¢ > 1. Note that

Iof(x) > lx—y|* 7" f(v)dy

/H+OB(x,\x\/2)

> Cla~ire | e[ dy
H{NB(x,|x|/2)

> C|x|7(n7v)/p7£+a

forx € Hy \ H(1). Let s > 0 such that

l/s<((n=v)/p—a+e)/(n=1)=(1/py+e/(n=V))(n=v)/(n-1).

Hence it follows from Lemma 3.2 that

/EZ\H T f () (1 +3,) " dx > / O (1)

C/ </ |x| (= (1= v)/p=eta)s dx') dxy,

>C/ x;v+(—(n—v)/p—8+oc)s+n—1dx”

since (—(n—vVv)/p—e+a)s+n<l.
It

1/s>1/py+e/(n—v),
then
/ Lo f () (1 +x) " dx = oo,
Ep\H(1)

This implies that s > p, by letting € — 0.
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