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ON CSISZÁR AND TSALLIS TYPE f –DIVERGENCES

INDUCED BY SUPERQUADRATIC AND CONVEX FUNCTIONS

PAWEŁ A. KLUZA AND MAREK NIEZGODA

(Communicated by M. Praljak)

Abstract. In this paper, Csiszár and Tsallis f -divergences are studied for superquadratic and
convex functions. Some comparison theorems for two divergences are provided. The obtained
results, when used for nonnegative superquadratic functions, give some refinements of the origi-
nal inequalities corresponding to nonnegative convex functions. Some majorization assumptions
for the involved matrix are simplified from column stochasticity to entrywise-nonnegativity.

1. Introduction

Throughout R+ and R++ denote the sets of nonnegative and positive numbers,
respectively, i.e., R+ = [0,∞) and R++ = (0,∞) .

Let f : R+ → R be a convex function, and p = (p1, . . . , pn) and q = (q1, . . . ,qn)
with pi,qi � 0, i = 1, . . . ,n . The Csiszár f -divergence is defined by

Cf (p,q) =
n

∑
i=1

pi f

(
qi

pi

)
(1)

with the conventions 0 f
(

0
0

)
= 0 and 0 f

(
c
0

)
= c lim

t→∞
f (t)
t , c > 0 (see [8, 9, 10]).

The Csiszár-Körner inequality asserts that

n

∑
i=1

pi f

(
∑n

i=1 qi

∑n
i=1 pi

)
� Cf (p,q) (2)

(see [9, 17]). If in addition ∑n
i=1 qi = ∑n

i=1 pi and f (1) = 0, then (2) implies

0 � Cf (p,q) . (3)

For other inequalities for f -divergence, consult [10, 12].
A function f : [0,∞)→R is said to be superquadratic provided that for each x � 0

there exists a constant c(x) ∈ R such that

f (y)− f (x)− f (|y− x|) � c(x)(y− x) (4)
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for all y ∈ [0,∞) (see [1, 3]). We say that f is subquadratic if − f is superquadratic.
As noted in [1, p. 3], the functions xp with p � 2, x2 logx and sinhx are su-

perquadratic. Moreover, if f (0) = f ′(0) = 0 and f ′ is convex, then f is superquadratic
(see [1, Lemma 2.2]).

The next result shows the Jensen type inequality for superquadratic functions.

THEOREM A. (Abramovich et al. [3]) Suppose that f is a superquadratic func-
tion on [0,∞) , xi ∈ [0,∞) , and ai � 0 , i = 1, . . . ,n, are such that An = ∑n

i=1 ai > 0 .
Then

f

(
1
An

n

∑
i=1

aixi

)
+

1
An

n

∑
i=1

ai f

(∣∣∣∣∣xi − 1
An

n

∑
i=1

aixi

∣∣∣∣∣
)

� 1
An

n

∑
i=1

ai f (xi). (5)

We say that an n×m real matrix S = (si j) is column stochastic (resp. row stochas-
tic) if si j � 0 for i = 1, . . . ,n , j = 1, . . . ,m , and all column sums (resp. row sums) of S

are equal to 1, i.e.,
n
∑
i=1

si j = 1 for j = 1, . . . ,m (resp.
m
∑
j=1

si j = 1 for i = 1, . . . ,n ).

As usual, by ST we denote the transpose matrix of S .
The following theorem describes Sherman’s inequality (6) for convex functions.

THEOREM B. (Sherman [20]) Let f : R+ → R be convex on R+ and x =
(x1, . . . ,xn)∈R

n
+ , y = (y1, . . . ,ym)∈R

m
+ , a = (a1, . . . ,an)∈R

n
+ and b = (b1, . . . ,bm)∈

R
m
+ .

Assume y = xS and a = bST for some n×m column stochastic matrix S = (si j) .
Then

m

∑
j=1

b j f (y j) �
n

∑
i=1

ai f (xi). (6)

THEOREM C. ([18]) Let f : R+ →R be superquadratic on R+ and x = (x1, . . . ,xn)
∈ R

n
+ , y = (y1, . . . ,ym) ∈ R

m
+ , a = (a1, . . . ,an) ∈ R

n
+ and b = (b1, . . . ,bm) ∈ R

m
+ .

Assume y = xS and a = bST for some n×m column stochastic matrix S = (si j) .
Then

m

∑
j=1

b j f (y j)+
n

∑
i=1

m

∑
j=1

b jsi j f (|xi − y j|) �
n

∑
i=1

ai f (xi). (7)

Csiszár f -divergence (1) has various applications in statistical physics, biology,
economics, Markov processes, population dynamics etc. (see [5, 7]). In particular,
specifications of (1) for some functions f lead to some physical notions [7]. For
instance, the case f (t) = − ln t gives the Kullback-Leibler divergence, which can be
viewed as the free energy difference [7]. Likewise, the Rényi entropy for f (t) =
t1−α − 1, α ∈ (0,1) , is connected with the free energy change [4]. Furthermore, the

function f (t) = t1−α−1
α−1 , α � 0, α �= 1, induces the Tsallis entropy [19].

In recent years there has been a variety of research on bounding a given divergence
[6, 10, 13]. In this paper our aim is to present some comparison results for Csiszár and
Tsallis type f -divergences induced by superquadratic and/or convex functions f .

Taking into account some additional leading coefficients in the definition of f -
divergence leads to the new notion of generalized f -divergence. By making use of
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Theorems A, B, C, we construct a transformation of a given generalized f -divergence
to obtain a smaller one. It turns that the provided coefficients play an important role
in the transformation. Likewise, an involved matrix in the Sherman type condition is
essential, too.

In contrast to the standard approach, we do not assume that the matrix is column
stochastic. We relax that property to the usual entrywise-nonnegativity of the matrix.
Thus the demonstrated theory is simplified.

In Section 2 we obtain some estimations for an f -divergencewith a superquadratic
function f . Section 3 is devoted to corresponding results for convex f . In general, the
convex case is simpler than the superquadratic one. However, the bounds derived for su-
perquadratic functions are more delicate. In fact, if f is nonnegative and superquadratic
then it must be convex. In this situation, the obtained estimations are refinements of
those obtained for the convex case.

In Section 4, by following some ideas from [11], we introduce a parametrized
family of functions fu and define a Tsallis type entropy (divergence) Tfu . Next, we
apply the results of the previous sections to Tfu . Thus we get some estimations for a
Tsallis type entropy from a general point of view. Here we also consider two cases: for
convex fu and for superquadratic fu .

In summary, the present work uses both superquadratic functions and convex func-
tions to produce some comparison theorems for generalized Csiszár and Tsallis type
divergences.

2. Results for superquadratic functions

We extend definition (1) as follows.
Let f : R+ → R be a superquadratic function on R+ , and p = (p1, . . . , pn) ∈

R
n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ . Then the generalized Csiszár

f -divergence is defined by

Cf (p,q;r) =
n

∑
i=1

ripi f

(
qi

pi

)
. (8)

It is clear that Cf (p,q;e) = Cf (p,q) , where e = (1, . . . ,1) ∈ R
n .

As usual, the notation 〈·, ·〉 means the standard inner product on R
n .

THEOREM 1. Let f : R+ → R be a superquadratic function on R+ . Let p =
(p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r j = (r1 j, . . . ,rn j) ∈ R

n
+ , j = 1, . . . ,m,

b = (b1, . . . ,bm) ∈ R
m
+ . Then

m

∑
j=1

b j f

( 〈q,r j〉
〈p,r j〉

)
+

n

∑
i=1

m

∑
j=1

b j
piri j

〈p,r j〉 f

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)�

n

∑
i=1

ai f

(
qi

pi

)
, (9)

where ai =
m
∑
j=1

b j
piri j
〈p,r j〉 , i = 1, . . . ,n.

If f is subquadratic then the inequality (9) is reversed.
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Proof. We introduce the matrix

R = (ri j)i=1,...,n; j=1,...,m (10)

with columns r j for j = 1, . . . ,m . The following equality holds

〈q,r j〉
〈p,r j〉 =

p1r1 j
n
∑
i=1

piri j

q1

p1
+ . . .+

pnrn j
n
∑
i=1

piri j

qn

pn
for j = 1, . . . ,m . (11)

Hence the following identity is valid

[ 〈q,r1〉
〈p,r1〉 , . . . ,

〈q,rm〉
〈p,rm〉

]
=
[

q1

p1
, . . . ,

qn

pn

]⎡⎢⎣
p1r11
〈p,r1〉 . . . p1r1m

〈p,rm〉
...

. . .
...

pnrn1
〈p,r1〉 . . . pnrnm

〈p,rm〉

⎤⎥⎦
with the column stochastic n×m matrix S = (si j) , where si j = piri j

〈p,r j〉 . That is, y = xS ,

where x = (x1, . . . ,xn) , y = (y1, . . . ,yn) , xi = qi
pi

and y j = 〈q,r j〉
〈p,r j〉 , i = 1, . . . ,n , j =

1, . . . ,m . Also, a = bST , where ai =
m
∑
j=1

b j
piri j
〈p,r j〉 , i = 1, . . . ,n , is satisfied.

So, taking into account above and applying Theorem C, we get the inequality

m

∑
j=1

b j f

( 〈q,r j〉
〈p,r j〉

)
+

m

∑
j=1

b j

n

∑
i=1

piri j

〈p,r j〉 f

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)�

n

∑
i=1

ai f

(
qi

pi

)
, (12)

what we need to prove. �
The forthcoming corollary includes the comparison result for two f -divergences

(see (13) and (14)).

COROLLARY 1. Let the assumptions of Theorem 1 be satisfied. Let us denote

p̃ = pR , q̃ = qR and R = (R1, . . . ,Rn),

where the n×m matrix R = (ri j) is given by (10), and Ri =
m
∑
j=1

ri j is the i th row sum

of R, i = 1, . . . ,n. Then

Cf (p̃, q̃)+
n

∑
i=1

m

∑
j=1

ri j pi f

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)� Cf (p,q;R) . (13)

In particular, if the matrix R is row stochastic, then

Cf (p̃, q̃)+
n

∑
i=1

m

∑
j=1

ri j pi f

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)� Cf (p,q) . (14)

If f is subquadratic then the inequalities (13)–(14) are reversed.
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Proof. If we substitute b j := 〈p,r j〉 for j = 1, . . . ,m in Theorem 1, then ai =

pi

m
∑
j=1

ri j = Ripi for i = 1, . . . ,n . In this case, inequality (9) takes the form

m

∑
j=1

〈p,r j〉 f
( 〈q,r j〉
〈p,r j〉

)
+

n

∑
i=1

m

∑
j=1

ri j pi f

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)�

n

∑
i=1

m

∑
j=1

ri j pi f

(
qi

pi

)
(15)

with
m

∑
j=1

ri j pi f

(
qi

pi

)
= pi f

(
qi

pi

) m

∑
j=1

ri j = pi f

(
qi

pi

)
Ri,

which is equivalent to (13).
If in addition the matrix R is row stochastic, then R = (1, . . . ,1) . For this reason

(13) reduces to (14). �

COROLLARY 2. Let f : R+ → R be a superquadratic function on R+ . Let p =
(p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ . Then

〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
+

n

∑
i=1

ripi f

(∣∣∣∣ qi

pi
− 〈q,r〉

〈p,r〉
∣∣∣∣)� Cf (p,q;r) , (16)

where 〈p,r〉 =
n
∑
i=1

piri > 0 and 〈q,r〉 =
n
∑
i=1

qiri .

If f is subquadratic then the inequality (16) is reversed.

Proof. Taking m = 1 in Corollary 1 and r1 = (r1, . . . ,rn) , we obtain Ri = ri for
i = 1, . . . ,n , and therefore inequality (15) becomes (16). �

As a special case of the previous result, choosing r = (1, . . . ,1) we get the follow-
ing result.

COROLLARY 3. Let f : R+ → R be a superquadratic function on R+ and p =
(p1, . . . , pn) ∈ R

n
++ and q = (q1, . . . ,qn) ∈ R

n
+ . Then

n

∑
i=1

pi f

⎛⎜⎜⎝
n
∑
i=1

qi

n
∑
i=1

pi

⎞⎟⎟⎠+
n

∑
i=1

pi f

⎛⎜⎜⎝
∣∣∣∣∣∣∣∣
qi

pi
−

n
∑
i=1

qi

n
∑
i=1

pi

∣∣∣∣∣∣∣∣
⎞⎟⎟⎠� Cf (p,q). (17)

If f is subquadratic then the inequality (17) is reversed.

REMARK 1. Inequality (16) includes Jensen inequality and Csiszár–Körner in-
equality for superquadratic functions as special cases. Namely, the substitution p = e =
(1, . . . ,1) into (16) leads to Jensen inequality for superquadratic functions (see Theo-
rem A with xi = qi , ai = ri , i = 1, . . . ,n ). Likewise, the substitution r = (1, . . . ,1) into
(16) presents the Csiszár–Körner inequality for superquadratic functions (see Corol-
lary 3, cf. also (2)).
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3. Results for convex functions

In this section we compare two generalized Csiszár f -divergences with convex
function f .

THEOREM 2. Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)∈
R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , p̃ = (p̃1, . . . , p̃m) ∈ R

m
++ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , c =

(c1, . . . ,cn) ∈ R
n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R = (ri j) be an n×m matrix with nonnegative entries such that

p̃ = pR , q̃ = qR and c = dRT (18)

is satisfied. Then
Cf (p̃, q̃;d) � Cf (p,q;c) . (19)

If f is concave then the inequality (19) is reversed.

Proof. According to (8) we have to prove that

m

∑
j=1

d j p̃ j f

(
q̃ j

p̃ j

)
�

n

∑
i=1

cipi f

(
qi

pi

)
. (20)

We denote r j = (r1 j, . . . ,rn j) ∈ R
n
+ . It follows from (18) that p̃ j = 〈p,r j〉 =

n
∑
i=1

piri j and q̃ j = 〈q,r j〉 =
n
∑
i=1

qiri j for j = 1, . . . ,m , where 〈·, ·〉 is the standard in-

ner product in R
n . Moreover, ci =

m
∑
j=1

d jri j for i = 1, . . . ,n (see (18)). Hence

ai =
m

∑
j=1

b j
piri j

〈p,r j〉 , (21)

where ai = cipi and b j = d j〈p,r j〉 for i = 1, . . . ,n , j = 1, . . . ,m .
In a similar manner as in the proof of Theorem 1 we obtain the identity

[ 〈q,r1〉
〈p,r1〉 , . . . ,

〈q,rm〉
〈p,rm〉

]
=
[

q1

p1
, . . . ,

qn

pn

]⎡⎢⎣
p1r11
〈p,r1〉 . . . p1r1m

〈p,rm〉
...

. . .
...

pnrn1
〈p,r1〉 . . . pnrnm

〈p,rm〉

⎤⎥⎦ . (22)

The matrix S = (si j) , with si j = piri j
〈p,r j〉 , is column stochastic and with x = (x1, . . . ,xn) ,

y = (y1, . . . ,ym) , xi = qi
pi

and y j = 〈q,r j〉
〈p,r j〉 , i = 1, . . . ,n , j = 1, . . . ,m , satisfies condition

y = xS (see (22)). Furthermore, a = bST for a = (a1, . . . ,an) and b = (b1, . . . ,bm) (see
(21)).

Now, applying Theorem B, we get

m

∑
j=1

b j f

( 〈q,r j〉
〈p,r j〉

)
�

n

∑
i=1

ai f

(
qi

pi

)
, (23)
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where ai = ci pi and b j = d j〈p,r j〉 , which is equivalent to (20). This completes the
proof. �

REMARK 2. In contrast to Theorem B, we do not assume in Theorem 2 that the
matrix R is column stochastic. Instead of that, the matrix S =

(
piri j
〈p,r j〉

)
in equation (22)

is column stochastic.

COROLLARY 4. Let the assumptions of Theorem 2 be satisfied. Let R = (R1, . . . ,Rn) ,

where Ri =
m
∑
j=1

ri j , i = 1, . . . ,n, is the i th row sum of R. Then

Cf (p̃, q̃) � Cf (p,q;R) . (24)

In particular, if the matrix R is row stochastic, then

Cf (p̃, q̃) � Cf (p,q) . (25)

If f is concave then the inequalities (24) and (25) are reversed.

Proof. By making use of Theorem 2, we take d = (d1, . . . ,dm) = (1, . . . ,1) , i.e.,

d j = 1 for j = 1, . . . ,m . Then ci =
m
∑
j=1

ri j = Ri for i = 1, . . . ,n (see (18)). Therefore

inequalities (19)–(20) imply

m

∑
j=1

〈p,r j〉 f
( 〈q,r j〉
〈p,r j〉

)
�

n

∑
i=1

Ripi f

(
qi

pi

)
, (26)

which is equivalent to (24).
If in addition the matrix R is row stochastic, then R = (1, . . . ,1)∈ R

n . In this case
(24) becomes (25). �

COROLLARY 5. Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)
∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ . Then

〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
� Cf (p,q;r) , (27)

where 〈p,r〉 =
n
∑
i=1

piri > 0 and 〈q,r〉 =
n
∑
i=1

qiri .

If f is concave then the inequality (27) is reversed.

Proof. It is sufficient to apply Corollary 4 for m = 1, r1 = (r1, . . . ,rn) and R = rT
1 .

Then Ri = ri for i = 1, . . . ,n . So, inequality (26) leads to (27). �

We finish this section with some concluding remarks.
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REMARK 3. Inequality (27) includes the classical Csiszár–Körner inequality (see
(2)) and Jensen inequality for convex functions as special cases. To see the former, use
the substitution r = (1, . . . ,1) in (27). For the latter case, set r = (1, . . . ,1) , 〈p,r〉 =
n
∑
i=1

pi > 0, xi =
qi
pi

, λi = pi
n
∑
i=1

pi

, i = 1, . . . ,n .

REMARK 4. It follows from [1, Lemma 2.1] that nonnegative superquadratic func-
tions must be convex. Thus the results demonstrated in Section 2, when applied to
nonnegative superquadratic functions, give refinements of the corresponding inequali-
ties obtained for nonnegative convex functions in Section 3. For instance, compare the
Jensen inequalities for both convex functions and nonnegative superquadratic functions
(see (5)). Similarly, see Csiszár–Körner type inequalities (2) and (17).

4. Results for Tsallis type entropy

Throughout this section we consider a one parameter family of functions

fu(t) : [0,∞) → R, u ∈ [0,∞).

For a given fu , a function gu : [0,∞) → R is defined by

gu(t) =
fu(t)− f0(t)

u
for u > 0, (28)

g0(t) = lim
u→0+

fu(t)− f0(t)
u

(29)

(see [11, p. 854]).

EXAMPLE 1. Let fu : [0,∞) be defined by fu(t) = −tu , u � 0. Then gu(t) =
− tu−1

u for u > 0, and g0(t) = lim
u→0+

(
− tu−1

u

)
= − lnt .

LEMMA 1. Let f0 be a constant function on R+ . Let u > 0 .

(i) If fu is superquadratic (resp. subquadratic) on [0,∞) and f0 � 0 (resp. f0 � 0 )
then gu is superquadratic (resp. subquadratic) on [0,∞) .

(ii) If fu is convex (resp. concave) on [0,∞) then gu is convex (resp. concave) on
[0,∞) .

Proof. (i). Fix any x � 0. Since fu is superquadratic, then by definition there
exists a real constant cu(x) such that

fu(y)− fu(x) � cu(x)(y− x)+ fu(|y− x|) for all y � 0.
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Simultaneously f0(x) = f0(y) , because f0 is a constant function. Therefore, by
the nonnegativity of f0 , we get

( fu(y)− f0(y))−( fu(x)− f0(x)) � cu(x)(y−x)+ fu(|y−x|)
� cu(x)(y−x)+ fu(|y−x|)− f0(|y−x|) for all y � 0.

Hence

fu(y)− f0(y)
u

− fu(x)− f0(x)
u

� cu(x)
u

(y− x)+
fu(|y− x|)− f0(|y− x|)

u
,

which means

gu(y)−gu(x) � cu(x)
u

(y− x)+gu(|y− x|) for all y � 0.

Thus gu is superquadratic (with the constant cu(x)
u ), as claimed.

The case when fu is subquadratic and f0 � 0 requires an analogous proof, and
therefore is left for the reader.

(ii). The proof of the part (ii) is straightforward, and therefore omitted. �
Let p = (p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ be n -

tuples of nonnegativenumbers. According to (8), the generalized Csiszár fu -divergence
is given by

Cfu (p,q;r) =
n

∑
i=1

ri pi fu

(
qi

pi

)
. (30)

We now update (30) by providing the generalized Tsallis fu -divergence defined
by

Tfu (p,q;r) = Cgu (p,q;r) =
n

∑
i=1

ripigu

(
qi

pi

)
=

n

∑
i=1

ri pi

fu
(

qi
pi

)
− f0

(
qi
pi

)
u

. (31)

For example, for fu(t) = −tu for u � 0, we get gu(t) = − tu−1
u for u > 0, and

g0(t) = lim
u→0+

(
− tu−1

u

)
= − ln t . Therefore the generalized Tsallis fu -divergence re-

duces to the generalized Tsallis relative entropy as follows:

Tu (p,q;r) = −
n

∑
i=1

ri pi

(
qi
pi

)u−1

u
. (32)

The case r = (1, . . . ,1) ∈ R
n of (32) gives the Tsallis relative entropy [6, p. 12]:

Tu (p,q) = −
n

∑
i=1

pi

(
qi
pi

)u−1

u
. (33)

In the sequel we utilize the results of the previous sections for the Tsallis type
divergences (entropies).
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THEOREM 3. Let fu : R+ → R be a convex function on R+ for some u > 0 . Let
f0 : R+ → R be a constant function. Let p = (p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈

R
n
+ , p̃ = (p̃1, . . . , p̃m) ∈ R

m
++ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , c = (c1, . . . ,cn) ∈ R

n
+ and d =

(d1, . . . ,dm) ∈ R
m
+ .

Let R = (ri j) be an n×m matrix with nonnegative entries such that

p̃ = pR , q̃ = qR and c = dRT (34)

is satisfied. Then
Tfu (p̃, q̃;d) � Tfu (p,q;c) . (35)

If fu is concave then the inequality (35) is reversed.

Proof. Since the function gu is convex on I = [0,∞) (see Lemma 1), applying
Theorem 2 we get the inequality

Tfu (p̃, q̃;d) = Cgu (p̃, q̃;d) � Cgu (p,q;c) = Tfu (p,q;c) , (36)

what we need to prove.
The case of concave fu is analogous. �

COROLLARY 6. Let p = (p1, . . . , pn)∈R
n
++ , q = (q1, . . . ,qn)∈R

n
+ , p̃ = (p̃1, . . . ,

p̃m) ∈ R
m
++ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , c = (c1, . . . ,cn) ∈ R

n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R = (ri j) be an n×m matrix with nonnegative entries and

p̃ = pR , q̃ = qR and c = dRT (37)

is satisfied. Then for u � 1

Tu (p̃, q̃;d) � Tu (p,q;c) . (38)

If 0 < u < 1 then the inequality (38) is reversed.

Proof. We consider fu(t) = −tu for t � 0 with u � 1. Then fu is concave. We
also take f0(t) = −1 for t � 0. On account of Theorem 3 we obtain

Tu (p̃, q̃;d) = Tfu (p̃, q̃;d) � Tfu (p,q;c) = Tu (p,q;c) , (39)

completing the proof of (38).
If 0 < u < 1 then the function fu(t) = −tu , t � 0, is convex, and therefore the

inequality (38) is reversed (see Theorem 3). �
We now study Tsallis type divergences induced by superquadratic functions.

THEOREM 4. Let fu : R+ → R be a superquadratic function on R+ for some
u > 0 . Let f0 : R+ → R be a nonnegative constant function. Let p = (p1, . . . , pn) ∈
R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , p̃ = (p̃1, . . . , p̃m) ∈ R

m
++ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , c =

(c1, . . . ,cn) ∈ R
n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .
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Let R = (ri j) be an n×m matrix with nonnegative entries such that

p̃ = pR , q̃ = qR and c = dRT (40)

is satisfied. Then

Tfu (p̃, q̃;d)+
n

∑
i=1

m

∑
j=1

d j piri j gu

(∣∣∣∣ qi

pi
− q̃ j

p̃ j

∣∣∣∣)� Tfu (p,q;c) . (41)

If fu is subquadratic on R+ and f0 is nonpositive constant function on R+ then
the inequality (41) is reversed.

Proof. We denote r j = (r1 j, . . . ,rn j) . By (40), p̃ j = 〈p,r j〉 =
n
∑
i=1

piri j and q̃ j =

〈q,r j〉 =
n
∑
i=1

qiri j for j = 1, . . . ,m . Additionally, ci =
m
∑
j=1

d jri j for i = 1, . . . ,n . By

denoting ai = cipi and b j = d j〈p,r j〉 for i = 1, . . . ,n , j = 1, . . . ,m , we get ai =
m
∑
j=1

b j
piri j
〈p,r j〉 .

Let us consider the function fu defined on R+ . Since fu is superquadratic (see
[1, p. 1]), then, by Lemma 1, gu is also superquadratic. Applying Theorem 1 we get

m

∑
j=1

b jgu

( 〈q,r j〉
〈p,r j〉

)
+

n

∑
i=1

m

∑
j=1

b j
piri j

〈p,r j〉 gu

(∣∣∣∣ qi

pi
− 〈q,r j〉

〈p,r j〉
∣∣∣∣)�

n

∑
i=1

aigu

(
qi

pi

)
. (42)

More precisely, we get

m

∑
j=1

d j p̃ jgu

(
q̃ j

p̃ j

)
+

n

∑
i=1

m

∑
j=1

d j piri j gu

(∣∣∣∣ qi

pi
− q̃ j

p̃ j

∣∣∣∣)�
n

∑
i=1

cipigu

(
qi

pi

)
, (43)

that is

Cgu (p̃, q̃;d)+
n

∑
i=1

m

∑
j=1

d j piri j gu

(∣∣∣∣ qi

pi
− q̃ j

p̃ j

∣∣∣∣)� Cgu (p,q;c) . (44)

Thus we establish the inequality (41). �

COROLLARY 7. Let p = (p1, . . . , pn)∈R
n
++ , q = (q1, . . . ,qn)∈R

n
+ , p̃ = (p̃1, . . . ,

p̃m) ∈ R
m
++ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , c = (c1, . . . ,cn) ∈ R

n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R = (ri j) be an n×m matrix with nonnegative entries such that

p̃ = pR , q̃ = qR and c = dRT (45)

is satisfied. Then for u � 2

Tu (p̃, q̃;d)−
n

∑
i=1

m

∑
j=1

d j piri j

∣∣∣ qi
pi
− q̃ j

p̃ j

∣∣∣u −1

u
� Tu (p,q;c) . (46)
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Proof. We set fu(t) = −tu , f0(t) = −1 and gu(t) = − tu−1
u for t � 0 with u � 2.

Then fu is subquadratic on R+ . By virtue of Theorem 4 we get

Tu (p̃, q̃;d)−
n

∑
i=1

m

∑
j=1

d j piri j

∣∣∣ qi
pi
− q̃ j

p̃ j

∣∣∣u −1

u

= Tfu (p̃, q̃;d)−
n

∑
i=1

m

∑
j=1

d j piri j

∣∣∣ qi
pi
− q̃ j

p̃ j

∣∣∣u −1

u
, (47)

� Tfu (p,q;c) = Tu (p,q;c) ,

as required. �
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[4] J. C. BAEZ, Rényi entropy and free energy, J. Stat. Mech. Theory E. (2011), arXiv:1102.2098.
[5] J. C. BAEZ AND B. S. POLLARD, Relative entropy in biological systems, Entropy 18, 2 46 (2016),

doi:10.3390/e18020046.
[6] G. E. CROOKS, On measures of entropy and information, Tech. Note 009, v0.5, (2016), 2016-08-16,

http://threeplusone.com/info.
[7] G. E. CROOKS AND D. A. SIVAK, Measures of trajectory ensemble disparsity in nonequilibrium

statistical dynamics, J. Stat. Mech. Theory E., (2011) P06003.
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37 (1957), 826–831.

(Received May 11, 2017) Paweł A. Kluza
Department of Applied Mathematics and Computer Science

University of Life Sciences in Lublin
Akademicka 13, 20-950 Lublin, Poland
e-mail: pawel.kluza@up.lublin.pl

Marek Niezgoda
Department of Applied Mathematics and Computer Science

University of Life Sciences in Lublin
Akademicka 13, 20-950 Lublin, Poland

e-mail: marek.niezgoda@up.lublin.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


