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Abstract. In the article, we find the best possible parameters p and q on the interval (7/5,(7π −
20)/(5π −15)) such that the double inequality√

1−λ(p)e−px2 − (1−λ(p))e−μ(p)x2 < erf(x) <

√
1−λ(q)e−qx2 − (1−λ(q))e−μ(q)x2

holds for all x > 0 , where erf(x) = 2√
π
∫ x
0 e−t2dt is the error function, λ(p) = 4[(7π − 20)−

5(π −3)p]/[π(15p2 −40p+28)] , μ(p) = 4(5p−7)/[5(3p−4)] .

1. Introduction

Let x > 0. Then the classical error function erf(x) is given by

erf(x) =
2√
π

∫ x

0
e−t2dt.

It is well known that the error function erf(x) is one of the most important special
functions, it has many important applications in probability, statistics and partial dif-
ferential equations theory. Recently, the special functions have attracted the attention
of many mathematicians [8, 10–16, 26–34, 38, 41–45]. In particular, many remarkable
inequalities for the error function can be found in the literature [1, 5, 6, 9, 17–23, 35,
36].

Pólya [25] proved that the inequality

erf(x) <
√

1− e−4x2/π

holds for all x > 0.
In [7], Chu proved that the double inequality√

1− e−px2 < erf(x) <
√

1− e−qx2

holds for all x > 0 if and only if p ∈ (0,1] and q ∈ [4/π ,∞) .
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Alzer [2] presented the double inequality

(
1− e−β (p)xp

)1/p
<

1

Γ
(
1+ 1

p

) ∫ x

0
e−t pdt <

(
1− e−α(p)xp

)1/p

for x > 0 and p > 0 with p �= 1, where Γ(x) =
∫ ∞
0 tx−1e−tdt is the classical gamma

function, and α(p) and β (p) are respectively given by

α(p) =
1

Γp
(
1+ 1

p

) (p > 1), α(p) = 1 (0 < p < 1)

and

β (p) =
1

Γp
(
1+ 1

p

) (0 < p < 1), β (p) = 1 (p > 1).

Let n � 2, and αn , βn , α∗
n , β ∗

n be respectively defined by

α2 = 0.90686 · · ·, αn = 1 (n � 3), βn = n−1,

α∗
n = n+1 (n = 2k), α∗

n = n−1 (n = 2k−1), β ∗
n = 1.

In [3, 4], Alzer proved that the double inequalities

λn erf

(
n

∑
i=1

xi

)
�

n

∑
i=1

erf(xi)−
n

∏
i=1

erf(xi) � μn erf

(
n

∑
i=1

xi

)
, (1.1)

λ erf(y+ erf(x)) < erf(x+ erf(y)) < μ erf(y+ erf(x)),

λ ∗ erf(yerf(x)) < erf(xerf(y)) � μ∗ erf(yerf(x))

hold for all xi � 0 and y � x > 0 if and only if λn � αn , μn � βn , λ � erf(1) =
0.8427 · · ·, μ � 2/

√
π = 1.1283 · · ·, λ ∗ � 0 and μ∗ � 1, and inequality (1.1) holds for

all xi � 0 if and only if λn � α∗
n and μn � β ∗

n .
Neuman [24] proved that the double inequality

2x√
π

e−
x2
3 � erf(x) � 2x√

π
e−x2

+2
3

holds for all x > 0.
Let α ∈ (0,1) , λ (p) , μ = μ(p) , η(p) and B(p,α;x) be defined by

λ (p) =
4[(7π −20)−5(π−3)p]

π(15p2−40p+28)
, (1.2)

μ(p) =
4(5p−7)
5(3p−4)

, (1.3)

η(p) =
16(5p−7)

(15p2−40p+28)(45p2−60p−4)
, (1.4)
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B(p,α;x) =
√

1−αe−px2 − (1−α)e−μ(p)x2
, (1.5)

respectively.
Very recently, Yang, Chu and Zhang [37] provide necessary and sufficient condi-

tions for the parameters r and s on the interval (7/5,∞) such that the double inequality

B(r,η(r);x) < erf(x) < B(s,η(s);x)

holds for all x > 0.
From (1.2) we clearly see that λ (p) ∈ (0,1) for p ∈ (7/5,(7π −20)/(5π−15)) .

The main purpose of this paper is to present the best possible parameters p and q on
the interval (7/5,(7π −20)/(5π−15)) such that the double inequality

B(p,λ (p);x) < erf(x) < B(q,λ (q);x)

holds for all x > 0.

2. Lemmas

In order to prove our main results, we need to introduce an auxiliary function at
first.

Let −∞ � a < b � ∞ , f and g be differentiable on (a,b) , and g′ �= 0 on (a,b) .
Then the function Hf ,g [40] is defined by

Hf ,g ≡ f ′

g′
g− f . (2.1)

LEMMA 2.1. (See [37, Lemma 2.1]) Let −∞ � a < b � ∞ , f and g be differ-
entiable on (a,b) with f (a+) = g(a+) = 0 , g′(x) �= 0 and g′(x)Hf ,g(b−) < (>)0 . If
there exists λ0 ∈ (a,b) such that f ′/g′ is strictly increasing (decreasing) on (a,λ0)
and strictly decreasing (increasing) on (λ0,b) , then there exists μ0 ∈ (a,b) such that
f/g is strictly increasing (decreasing) on (a,μ0) and strictly decreasing (increasing)
on (μ0,b) .

LEMMA 2.2. (See [39, Lemma 7]) Let ai � 0 for all i = 0,1,2, · · · with ∑m
i=0 ai >

0 and ∑∞
i=m+1 ai > 0 , and

P(t) =
m

∑
i=0

ait
i−

∞

∑
i=m+1

ait
i

be a convergent power series on the interval (0,∞) . Then there exists t0 ∈ (0,∞) such
that P(t0) = 0 , P(t) > 0 for t ∈ (0,t0) and P(t) < 0 for t ∈ (t0,∞) .

LEMMA 2.3. (See [37, Lemma 2.2 (2)]) Let un = (5p− 6)(5p− 8)n− (15p2−
40p+28) . Then un < 0 for all n � 2 if p ∈ (7/5,8/5] .
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LEMMA 2.4. See [37, Theorem 3.2]) Let η(p) and B(p,α;x) be defined by (1.4)
and (1.5), respectively. Then the inequality

erf(x) < B(p0,η(p0);x)

holds for x > 0 , where p0 = (21π − 60+
√

3(147π2−920π +1440))/[30(π − 3)] =
1.713 · · · .

LEMMA 2.5. Let x ∈ (0,∞) , λ (p) , μ(p) , B(p,α;x) and Hf ,g(x) be respectively
defined by (1.2), (1.3), (1.5) and (2.1), and f1(x) , g1(x) , f2(x) and g2(x) be respec-
tively defined by

f1(x)= B2(p,λ (p);x) = 1−λ (p)e−px2 −(1−λ (p))e−μ(p)x2
, g1(x) = erf2(x), (2.2)

f2(x) =
[
pλ (p)e(1−p)x2

+ μ(p)(1−λ (p))e(1−μ(p))x2
]
x, g2(x) =

2√
π

erf(x). (2.3)

Then

Hf1,g1(∞) = lim
x→∞

(
f ′1(x)
g′1(x)

g1(x)− f1(x)
)

= ∞,

Hf2,g2(∞) = lim
x→∞

(
f ′2(x)
g′2(x)

g2(x)− f2(x)
)

= ∞

for p ∈ (7/5,8/5] .

Proof. Let t = (p− μ(p))x2 and

h1(t) = pλ (p)(p− μ(p))−2pλ (p)(p−1)t (2.4)

+μ(p)(p− μ(p))(1−λ (p))et −2μ(p)(μ(p)−1)(1−λ (p))tet.

Then (2.1)–(2.4) lead to

Hf1,g1(x) =
√

π
2

xerf(x)
[
pλ (p)e(1−p)x2

+ μ(p)(1−λ (p))e(1−μ(p))x2
]

(2.5)

−
[
1−λ (p)e−px2 − (1−λ (p))e−μ(p)x2

]
,

Hf2,g2(x) = te
1−μ(p)
p−μ(p) t

⎡
⎣ √

πe
2−p

p−μ(p) t

2(p− μ(p))
erf(x)

h1(t)

te
1−μ(p)
p−μ(p) t

− pλ (p)e−t + μ(p)(1−λ (p))√
(p− μ(p))t

⎤
⎦ .

(2.6)
If p ∈ (7/5,8/5] , then it is not difficult to verify that

p > μ(p), 0 < λ (p) < 1, 0 < μ(p) � 1, (2.7)



ON APPROXIMATING THE ERROR FUNCTION 473

lim
t→∞

h1(t)

te
1−μ(p)
p−μ(p) t

= lim
t→∞

[
pλ (p)(p− μ(p))

t
e

μ(p)−1
p−μ(p) t −2pλ (p)(p−1)e

μ(p)−1
p−μ(p) t

]
(2.8)

+ lim
t→∞

[
μ(p)(1−λ (p))(p− μ(p))

t
e

p−1
p−μ(p) t

+2μ(p)(1−λ (p))(1− μ(p))e
p−1

p−μ(p) t
]

= ∞.

Therefore, Lemma 2.5 follows easily from (2.4)–(2.8). �

LEMMA 2.6. Let x > 0 , and λ (p) and B(p,α;x) be respectively defined by (1.2)
and (1.5). Then the function p 	→ B(p,λ (p);x) is strictly increasing on (7/5,(7π −
20)/(5π −15))

Proof. Let μ(p) be defined by (1.3), t = (p− μ(p))x2 and f (t) be defined by

f (t) = −[p− μ(p)]λ ′(p)+ λ (p)t +[p− μ(p)]λ ′(p)et + μ ′(p)[1−λ (p)]tet.

Then elaborated computations lead to

2B(p,λ (p);x)
∂B(p,λ (p);x)

∂ p
=

e−px2

p− μ(p)
f (t), (2.9)

f (0) = 0, (2.10)

f ′(t) = λ (p)+ [p− μ(p)]λ ′(p)et + μ ′(p)[1−λ (p)]et + μ ′(p)[1−λ (p)]tet,

f ′(0) = 0, (2.11)

f ′′(t) =
4(π −3)
(3p−4)π

et +
4(π p−4)

(3p−4)(15p2−40p+28)
tet > 0 (2.12)

for t > 0 and p ∈ (7/5,(7π −20)/(5π−15)) .
Therefore, Lemma 2.6 follows easily from (2.9)–(2.12) and p > μ(p) for p ∈

(7/5,(7π −20)/(5π −15)) . �

3. Main results

THEOREM 3.1. Let α ∈ (0,1) , p ∈ (7/5,8/5] , and λ (p) and B(p,α;x) be de-
fined by (1.2) and (1.5), respectively. Then the inequality

erf(x) > B(p,α;x) (3.1)

holds for all x > 0 if and only if α � λ (p) .
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Proof. If inequality (3.1) holds for all x > 0, then we clearly see that

lim
x→0+

erf(x)−B(p,α;x)
x

=
2√
π
−
√

α p+(1−α)μ(p) � 0,

α � 4−πμ(p)
π(p− μ(p))

= λ (p).

Next, we prove that inequality (3.1) holds for all x > 0 if α � λ (p) . We only need
to prove that the inequality

erf(x) > B(p,λ (p);x) (3.2)

holds for all x > 0 due to the function α 	→ B(p,α;x) is strictly increasing on (0,1) .
Let t = (p− μ(p))x2 , μ(p) , η(p) , un , f1(x) , g1(x) , f2(x) , g2(x) and h1(t) be

respectively defined by (1.3), (1.4), Lemma 2.3, (2.2), (2.3) and (2.4), and h2(t) be
defined by

h2(t) = 2μ(p)(1−λ (p))(μ(p)−1)(μ(p)−2)tet− μ(p)(1−λ (p))(3μ(p)−4)
×(p− μ(p))et +2pλ (p)(p−1)(p−2)t− pλ (p)(3p−4)(p− μ(p)),

Then elaborated computations lead to

f ′1(x)
g′1(x)

=
f2(x)
g2(x)

, (3.3)

f ′2(x)
g′2(x)

=
π

4(p− μ(p))
e

2−p
p−μ(p) t h1(t),

(
f ′2(x)
g′2(x)

)′
=

π
4(p− μ(p))

d
dt

[
e

2−p
p−μ(p) t h1(t)

]
dt
dx

=
πx

2(p− μ(p))
e

2−p
p−μ(p) t h2(t), (3.4)

h2(t) = 2μ(p)(1−λ (p))(μ(p)−1)(μ(p)−2)
∞

∑
n=1

tn

(n−1)!
(3.5)

−μ(p)(1−λ (p))(3μ(p)−4)(p− μ(p))
∞

∑
n=0

tn

n!

+2pλ (p)(p−1)(p−2)t− pλ (p)(3p−4)(p− μ(p))

= − (15p2−40p+28)2(45p2−60p−4)
125(3p−4)3 (λ (p)−η(p))

−2(p−1)(2− p)
25(3p−4)3 (λ (p)−η(p))t− 4μ(p)(1−λ (p))

25(3p−4)2

∞

∑
n=2

un

n!
tn,

λ (p)−η(p) =
20(3p−4)(p0− p)(p− p1)

π(15p2−40p+28)(45p2−60p−4)
, (3.6)

where

p0 =
21π −60+

√
3(147π2−920π +1440)
30(π −3)

= 1.713 · · · , (3.7)
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p1 =
21π −60−√3(147π2−920π +1440)

30(π −3)
= 1.099 · · · . (3.8)

From (2.7) and (3.4)–(3.8) together with Lemmas 2.2 and 2.3 we clearly see
that there exists x0 ∈ (0,∞) such that f ′2(x)/g′2(x) is strictly decreasing on (0,x0)
and strictly increasing on (x0,∞) . Then Lemmas 2.1 and 2.5 together with (3.3),
f2(0) = g2(0) = 0 and g′2(x) > 0 lead to the conclusion that there exists x1 ∈ (0,∞)
such that f ′1(x)/g′1(x) is strictly decreasing on (0,x1) and strictly increasing on (x1,∞) .

It follows from Lemma 2.1, f1(0) = g1(0) = 0 and g′1(x) > 0 together with the
piecewise monotonicity of f ′1(x)/g′1(x) that there exists x2 ∈ (0,∞) such that f1(x)/g1(x)
is strictly decreasing on (0,x2) and strictly increasing on (x2,∞) .

Note that

lim
x→0+

f1(x)
g1(x)

= lim
x→0+

f ′2(x)
g′2(x)

=
π [pλ (p)+ μ(p)(1−λ (p))]

4
= 1, lim

x→∞

f1(x)
g1(x)

= 1. (3.9)

Therefore, inequality (3.2) follows easily from (2.2) and (3.9) together with the
piecewise monotonicity of f1(x)/g1(x) . �

THEOREM 3.2. Let p0 =(21π−60+
√

3(147π2−920π +1440))/[30(π−3)]=
1.713 · · · , α ∈ (0,1) , p ∈ [p0,(7π −20)/(5π −15)) , and λ (p) and B(p,α;x) be de-
fined by (1.2) and (1.5), respectively. Then the inequality

erf(x) < B(p,α;x) (3.10)

holds for all x > 0 if and only if α � λ (p) .

Proof. If inequality (3.10) holds for all x > 0, then we clearly see that

lim
x→0+

erf(x)−B(p,α;x)
x

=
2√
π
−
√

α p+(1−α)μ(p) � 0,

α � 4−πμ(p)
π(p− μ(p))

= λ (p).

Next, we prove that inequality (3.10) holds for all x > 0 if α � λ (p) . We only
need to prove that the inequality

erf(x) < B(p,λ (p);x) (3.11)

holds for all x > 0 due to the function α 	→ B(p,α;x) is strictly increasing on (0,1) .
Inequality (3.11) follows easily from Lemma 2.4, Lemma 2.6, (3.6) and p � p0 .

Indeed, we have

erf(x) < B(p0,η(p0);x) = B(p0,λ (p0);x) � B(p,λ (p);x)

for all x > 0. �
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THEOREM 3.3. Let p0 =(21π−60+
√

3(147π2−920π +1440))/[30(π−3)]=
1.713 · · · , α ∈ (0,1) , p ∈ (7/5,(7π−20)/(5π−15)) , and λ (p) , μ(p) and B(p,α;x)
be respectively defined by (1.2), (1.3) and (1.5). Then the inequality

erf(x) > B(p,λ (p);x) (3.12)

holds for all x > 0 if and only if p ∈ (7/5,8/5] , and the inequality

erf(x) < B(p,λ (p);x) (3.13)

holds for all x > 0 if and only if p ∈ [p0,(7π −20)/(5π −15)) .

Proof. From Theorems 3.1 and 3.2 we clearly see that inequality (3.12) holds for
all x > 0 if p ∈ (7/5,8/5] , and inequality (3.13) holds for all x > 0 if p ∈ [p0,(7π −
20)/(5π −15)) .

Next, we prove that p � 8/5 if inequality (3.12) holds for all x > 0. Indeed,

lim
x→∞

erf2(x)−B2(p,λ (p);x)
e−μ(p)x2

= − lim
x→∞

4√
π e−x2

erf(x)−2x
(
pλ (p)e−px2

+ μ(p)(1−λ (p))e−μ(p)x2
)

2μ(p)xe−μ(p)x2

= lim
x→∞

(
−2erf(x)e(μ(p)−1)x2

√
πμ(p)

+
pλ (p)
μ(p)

e−(p−μ(p))x2
+1−λ (p)

)
= −∞

due to p > μ(p) and μ(p) > 1 if p > 8/5.
Finally, we prove that p � p0 if inequality (3.13) holds for all x > 0. Let x→ 0+ ,

then making use of Taylor formula we get

erf(x) =
2√
π

x− 2

3
√

π
x3 +o

(
x3) , (3.14)

B(p,λ (p);x)=
√

pλ (p)+ μ(p)(1−λ (p))x− p2λ (p)+ μ2(p)(1−λ (p))
4
√

pλ (p)+ μ(p)(1−λ (p))
x3+o

(
x3) .

(3.15)
Note that √

pλ (p)+ μ(p)(1−λ (p)) =
2√
π

. (3.16)

If inequality (3.13) holds for all x > 0, then (1.2), (1.3) and (3.14)–(3.16) lead to

lim
x→0+

erf(x)−B(p,λ (p);x)
x3 = −15(π −3)p2−3(7π −20)p+4

30
√

π(3p−4)
� 0. (3.17)

Therefore, p � p0 follows easily from (3.17) and p > 7/5. �
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Let λ (p) , μ(p) and B(p,α;x) be respectively defined by (1.2), (1.3) and (1.5).
Then simple computations lead to

λ
(

8
5

)
=

5(4−π)
3π

, μ
(

8
5

)
= 1, (3.18)

λ
(

3
2

)
=

8(5−π)
7π

, μ
(

3
2

)
=

4
5
, (3.19)

λ
(

7
5

)
=

20
7π

, μ
(

7
5

)
= 0, (3.20)

λ (2) =
10−3π

2π
, μ (2) =

6
5
, (3.21)

λ
(

7π −20
5π −15

)
= 0, μ

(
7π −20
5π −15

)
=

4
π

. (3.22)

From Lemma 2.6, Theorem 3.1, Theorem 3.2 and (3.18)–(3.22) together with
7/5 < 3/2 < 8/5 and (21π−60+

√
3(147π2−920π +1440))/[30(π−3)] = 1.713 · · ·

< 2 < (7π −20)/(5π −15) = 2.181 · · · , we get Corollary 3.4 immediately.

COROLLARY 3.4. Let p0 = (21π − 60 +
√

3(147π2−920π +1440))/[30(π −
3)] , and λ (p) and μ(p) be respctviely defined by (1.2) and (1.3). Then the inequalities√

20
7π
(
1− e−7x2/5

)
<

√
1− 8(5−π)

7π
e−3x2/2− 5(3π −8)

7π
e−4x2/5

<

√
1− 5(4−π)

3π
e−8x2/5− 4(2π −5)

3π
e−x2

< erf(x) <

√
1−λ (p0)e−p0x2 − (1−λ (p0))e−μ(p0)x2

<

√
1− 10−3π

2π
e−2x2 − 5(π −2)

2π
e−6x2/5 <

√
1− e−4x2/π

hold for all x > 0 .

REMARK 3.5. Let λ (p) , η(p) and B(p,α;x) be respectively defined by (1.2),
(1.4) and (1.5), and p0 = (21π − 60 +

√
3(147π2−920π +1440))/[30(π − 3)] =

1.713 · · · . Then from (3.6) we clearly see that λ (p) > η(p) for p ∈ (7/5,8/5] and
λ (p) < η(p) for p ∈ (p0,(7π − 20)/(5π − 15)) . Therefore, Theorems 3.1 and 3.2
together with the monotonicity of the function α → B(p,α;x) lead to the conclusion
that

erf(x) > B(p,λ (p);x) > B(p,η(p);x)

for all x > 0 and p ∈ (7/5,8/5] , and

erf(x) < B(p,λ (p);x) < B(p,η(p);x)

for all x > 0 and p ∈ (p0,(7π −20)/(5π−15)) .
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