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NOTES ON SOME BOUNDS FOR THE ZEROS OF POLYNOMIALS

AMER ABU-OMAR

(Communicated by I. Peri¢)

Abstract. We apply some spectral radius and norm inequalities to the Frobenius companion ma-
trix to present a simple proof of Kuniyeda’s bound for the zeros of polynomials. We then use
Kuniyeda’s bound to derive a new bound for the zeros of polynomials. A partial comparison
between the two bounds is given. Our new bound generalizes and refines classical bounds due
to Guggenheimer and Walsh.

1. Introduction

Let M, denote the algebra of all n X n complex matrices. A matrix norm |||-||| on
M,, is a norm satisfying the submultiplicativity property

HABI[| < [[|A[llI]BI]|

forall A and B. For A € M, let r(A) denote the spectral radius of A. It is well-known
that

r(A) < |[A]ll (1)
holds for every matrix norm |||-||| on M,.
Let
fQ="+ai " '+ +ap_1z+ay ()
be a monic polynomial of degree n > 1, where a;,as,...,a, are complex numbers with

a, # 0. Then the Frobenius companion matrix of f is given by

—a; —apz -+ —ap—1 —ap
1 0 -~ 0 0
Cr= o 1 --- 0 0
o o0 --- 1 0
It is well-known that the zeros of f coincide with the eigenvalues of Cy (see, e.g., [3,
p. 316]). Hence, if z is any zero of f and if |||-||| is any matrix norm on M,,, then
2| < r(Cr) <||ICr]I- 3)
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Throughout this paper, f will denote an arbitrary monic polynomial written in the form
2).

For p € [1,o], let ||-||,, denote the p-norm defined for every x = (x1,x2,...,%) €

C* by
k 1/17
Il = (z ;xJ-V’)

i=1
and
[l = max |x;].

Corresponding to each p-norm let |[|Al||, denote the norm defined for every A € M,
by
11A]l],, = max{||Ax], : x € C*, ||x|| , = 1}.

This norm is a matrix norm. It is sometimes called the (induced) p-norm. It can be
shown that if A = [a;;] € M,,, then

)

n
Al = max, 3 ai

I<isn =

n
I1A]]l.. = max 3" |ayj]
j=1

and
[|A[l], = /r(A*A), the largest singular value of A.

Here A* is the adjoint (conjugate transpose) of A. For proofs and more facts about the
spectral radius and matrix norms we refer the reader to [3].

Matrix analysis methods have been successfully utilized to derive several bounds
for the zeros of polynomials and to obtain new proofs of known bounds (see, e.g.,
[11, [2], [5], [6], [7], [8] and references therein). For instance, it is easily verified by

computing |}Cf| } }1 that if z is any zero of f, then
2 < [|[Cr[[], = max{L+]ar],.... 1+ [an1]lanl} )
and hence
|2/ <14 max |aj]. (3)
I<j<n

Similarly, by computing |||Cy|||... we have

A< llelll :max{l,i’a./’}. (©)

Also, it can be shown (see, e.g., [3, p. 317]) that

. 1/2
a<licll< 1+ o) o
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The bounds (5) and (6) are due to Cauchy and Montel, respectively, while the bound
(7) is due to Carmichael and Mason.

In [4], the singular values of the Frobenius companion matrix Cy were computed
and the following bound for the zeros of f (which is better than the bound (7)) was
given

1/2
Al =—5 (1+a+ (0+ar-4?) ) @

n 2
where o0 = ¥ |a;|”.
j=1
Kuniyeda [9] proved the following theorem which includes the bounds (5), (6) and
(7) as special cases.

THEOREM 1. If z is any zero of f and if p,q € [1,o] are suchthat 1 /p+1/g=1,
then

1/p

B p/q
2 < | 1+ (Z ]a,-|‘1> : )

J=1

Note that the bounds (5), (6) and (7) follow from Kuniyeda’s bound (9) by letting
p=1,p=vccand p =2, respectively. Kuniyeda’s bound and other bounds can be found
in the comprehensive study of the zeros of polynomials [10].

In this paper, by estimating |||C/|| ’p , we give a simple proof of Kuniyeda’s bound.
We then use Kuniyeda’s bound to derive a new bound for the zeros of polynomials, from
which several bounds follow as special cases. Finally, a partial comparison between
Kuniyeda’s bound and the new bound is given.

2. Main results

Our first goal is to give a new proof of Kuniyeda’s bound. The proof contains a
simple application of Holder’s inequality.

Proof of Theorem 1. Let x = (x1,X2,...,X,) € C" be a unit vector in the p-norm
such that |[|C[|| = [|Csx|| ,. Then, by Holder’s inequality we have

n n l/q
$ lasss| < (z |a,->q) |
f=i =
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and hence

n
[CeII1) = lICelll = 10X, —aggxe, )15
j=1
n
= [ Y apxil? + i ]P e b |
j=1

" P n p/q
s+ ( |a,-x,-|> ST+ (2 |aj}q> :
=1 j=1

The result now follows from the previous inequality by recalling that if z is any zero of
f,then |z] < H|CfH|p O

Let B(aj,ay,...,a,) be a bound for the zeros of polynomials and let A be a pos-
itive real number. Note that if z is a zero of f, then % is a zero of the polynomial g
defined by

ar -1 an—1 a
glw) =w"+ —=w" +"'+x};—1w+x_};'

Thus, by applying the bound B to the zeros of g, we have

ay ap ay )

T7ﬁ,...,ﬁ

and hence
12| < /IB(

Applying the above argument to Kuniyeda’s bound, letting A = 211122( |a jll/ / and
I

noting that

|ay| |ag| 1/k
o S 1 |ay| /

T ] F
max |aj|
2<j<n

for k=2,3,...,n, we have the following theorem.

THEOREM 2. If z is any zero of f and if p,q € [1,o] are suchthat 1 /p+1/g=1,

then
" p/a\ /P
|z| < | max |a~,'}p/j+ (2 }ai,'|q/j> . (10

2<j<n =

The following bounds follow from the bound (10) by letting p = 1, p = and
p = 2, respectively.
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COROLLARY 1. If z is any zero of f, then

» .
< ax o]+ max o], an
n 1 .
< Y |ag]) ", (12)
=1
and
' " ' 1/2
‘Z| g <2T?§n|aj|2/l+ 2 |Clj’2/j> . (13)
YA j=1

The bound (11) is better than the bound given by Guggenheimer [1 1], who proved
that if z is any zero of f, then
|z| <2 max }aj|1/17
I<j<n
while the bound (12) was given by Walsh [12] using a completely different approach.
The bound (13) is new.

In the following theorem, we show that if p € [2,e0| then the bound (10) is bet-
ter than Kuniyeda’s for estimating the moduli of the zeros of any polynomial f with
max |aj’ > 1.
2<j<n

THEOREM 3. If p € [2,0| and if max ’aj| > 1, then
2<j<n

1/p 1/p

y n y rla n rla
p o+ (Shal”) ) < (10 (Blar) ) - o
Here, q is defined as in Theorem 2.

"
Proof. Assume that _max |ajl /7= |a|'/* for some k € {2,1,...,n} and let a =
<j<n

n
|ak\‘1/2 and s = ;1 |aj|?. Since 2121?§n|a,-} > 1 we have a@ > 1 and hence

j#k
pla
' " \ P4 n ,
Jnax a7+ (2 ’aj|q/j> = lal”*+ | a7+ Y |a;|"
I j=1 j=1
J#k
r/a

_ (az/k>”/’1+ az/k—i-i |aj’q/j
i=1
JFk

< a4 (a+5)P/.



486 A. ABU-OMAR

So, in order to prove the inequality (14), it is sufficient to show that

a9+ (a+5)"9 < 1+ (a® +5)""

b

which holds since the function
o(s) =1+ (a2+s)p/q—a1’/‘1— (a+s)P/4
is increasing on [0,0) (recall that p/g=p—1>1) and

@(0)=1+4a*/1—-2q"/1= (1 -a?/9?*>0. O

Finally, we remark that a bound B (ay,az,...,a,) for the zeros of polynomials can
be used to obtain a lower bound for the moduli of the zeros of f and hence determine
an annulus in the complex plane containing all of its zeros. To see this, note that if z is

1
azero of f,then — is a zero of the polynomial & defined by
b4

_ 1
h(W):Wn+MWn71+"'+a—1W—|——.

an dn an

Now, by applying the bound B to the zeros of &, we have

PR

L <B<an—1’an—2 i)

‘Z| b dap an dn
and hence
ap—1 Qp—2 1
1/3("_,"_,...,—) <o <Bla,az,...,an).
n ap dn
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