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REMARKS ON SOME SINGULAR VALUE INEQUALITIES

JIANGUO ZHAO

(Communicated by J.-C. Bourin)

Abstract. In this short note, we present new proofs for some singular value inequalities for ma-
trices obtained by I. Garg and J. Aulja.

1. Introduction

Throughout this paper, let Mn be the space of n× n complex matrices. In de-
notes the identity matrix in Mn . For two Hermitian matrices A , B ∈ Mn , A � B
(B � A) means that A−B is a positive semidefinite matrix. We shall always denote
the singular values of A ∈ Mn by s1(A) � s2(A) � · · · � sn(A) � 0, i.e., the eigen-

values of the positive semidefinite matrix |A| = (A∗A)
1
2 , arranged in decreasing or-

der and repeated according to multiplicity. If A ∈ Mn has real eigenvalues, we la-
bel them as λ1(A) � λ2(A) � · · · � λn(A) . Let s(A) := (s1(A),s2(A), · · · ,sn(A)) and
λ (A) := (λ1(A),λ2(A), · · · ,λn(A)) , where si(A) , λi(A)( i = 1,2, · · · ,n ) are the singular
values and the eigenvalues of A ∈ Mn , respectively. Let f be a real valued continuous
function on an interval I and A = Udiag(λ1(A),λ2(A), · · · ,λn(A))U∗ be the spectral
decomposition of an Hermitian matrix A ∈ Mn , if λ (A) ⊂ I , then f (A) is defined as
the matrix f (A) := Udiag( f (λ1(A)), f (λ2(A)), · · · , f (λn(A)))U∗ . Some of the impor-
tant properties of singular values are that

s j(A∗A) = s j(AA∗) (1)

and the singular values of matrices are unitarily invariance, that is

s j(UAV ) = s j(A), (2)

for j = 1,2, · · · ,n , where A , U , V ∈ Mn with U and V are unitary matrices.
A real valued continuous function f on an interval I is called matrix monotone

of order n if for two Hermitian matrices A , B with spectrum in I , A � B implies
f (A) � f (B) . Further, f is called operator monotone if f is matrix monotone for all
n . A function f : I →R is called matrix convex on I of order n if f (αA+(1−α)B) �
α f (A)+ (1−α) f (B) for all Hermitian matrices A , B ∈ Mn with spectrum in I and
0 < α < 1. If − f is matrix convex, then f is called matrix concave. It is well known
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that a function f : [0,+∞) → [0,+∞) is operator monotone if and only if it is operator
concave.

Very recently, I. Garg and J. Aujla [5, Theorem 2.10] presented the following
singular value inequality for matrices:

k

∏
j=1

s j(In + f (|A+B|)) �
k

∏
j=1

s j(In + f (|A|))s j(In + f (|B|)), (3)

where 1 � k � n and A , B ∈ Mn and f : [0,+∞) → [0,+∞) is an operator concave
function. Inequality (3) is a refinement of the Rotfel’d [6] result

det(In + μ |A+B|p) � det(In + μ |A|p)det(In + μ |B|p),
where A , B ∈ Mn , μ > 0 and 0 < p � 1.

They also proved that for A , B ∈ Mn and 1 � r � 2,

k

∏
j=1

s j(|A+B|r) �
k

∏
j=1

s j(In + |A|r)s j(In + |B|r) (4)

holds for 1 � k � n [5, Theorem 2.8].
As a continuation, in this short note, we give new proofs for inequalities (3) and

(4).

2. Main results

Let us recall some definitions of majorization. Given a real vector x = (x1,x2, · · · ,xn)
∈ Rn , we rearrange its components as x[1] � x[2] � · · · � x[n] . For two real vectors
x = (x1,x2, · · · ,xn) , y = (y1,y2, · · · ,yn) ∈ Rn , if

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1,2, · · · ,n,

then we say that x is weakly majorized by y and denotes by x ≺w y . If x ≺w y and
n
∑
i=1

xi =
n
∑
i=1

yi , then we say that x is majorized by y and denotes by x ≺ y . Further, if

x = (x1,x2, · · · ,xn) , y = (y1,y2, · · · ,yn) ∈ Rn
+ are two real vectors and

k

∏
i=1

x[i] �
k

∏
i=1

y[i], k = 1,2, · · · ,n,

then we say that x is weakly log-majorized by y and denotes by x≺w log y . If x≺w log y

and
n
∏
i=1

xi =
n
∏
i=1

yi , then we say that x is log-majorized by y and denotes by x ≺log y . It

is well-known that if x ≺w log y , then x ≺w y .
Now, we present some lemmas. The following well-known matrix inequality in-

volving unitarily orbits is due to Thompson [7] (or [2, Theorem III.5.6]).
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LEMMA 1. Let A, B∈ Mn . Then there exists two unitary matrices U and V such
that

|A+B|� U |A|U∗+V |B|V ∗.

The next lemma was obtained by J. Aujla and J. Bourin [1, Theorem 2.1].

LEMMA 2. Let f be monotone concave function on [0,+∞) with f (0) � 0 and
A, B∈Mn be two positive semidefinite matrices. Then there exists two unitary matrices
U and V such that

f (A+B) � U f (A)U∗ +V f (B)V ∗.

The next two lemmas are the Proposition 1.3.2 in [3] and Theorem IX 2.10 in [2],
respectively.

LEMMA 3. Let A, B ∈ Mn be two positive semidefinite matrices. Then the matrix(
A X
X∗ B

)
∈ M2n is a positive semidefinite matrix if and only if X = A

1
2WB

1
2 for some

contraction W .

LEMMA 4. Let A, B ∈ Mn be two positive definite matrices. Then for every uni-
tarily invariant norm |‖ · ‖| , the following inequalities

|‖BtAtBt‖| � |‖(BAB)t‖|, f or 0 � t � 1,

and
|‖(BAB)t‖| � |‖BtAtBt‖|, f or t � 1,

hold.

In fact, the Lemma 4’s proof [2, Theorem IX 2.10] proved that

s(BtAtBt) ≺w log s((BAB)t), 0 � t � 1, (5)

and
s((BAB)t) ≺w log s(BtAtBt), 1 � t, (6)

where A , B ∈ Mn are two positive definite matrices. By continuity, inequalities (5) and
(6) hold for positive semidefinite matrices A , B ∈ Mn .

The following lemma is the famous Horn’s inequality [8, Theorem 4.6].

LEMMA 5. Let A, B ∈ Mn . Then

s(AB) ≺log {si(A)si(B)}n
i=1. (7)

To prove inequality (3), the following result play an important role.
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LEMMA 6. Let A, B ∈ Mn be two positive semidefinite matrices. Then

s(In +A+B)≺w log {si(In +A)si(In +B)}n
i=1,

equivalently,
k

∏
i=1

si(In +A+B) �
k

∏
i=1

si(In +A)si(In +B), (8)

for k = 1,2, · · · ,n.

Proof. By (1) and noting that (In +A)−1 � In , we have

λi((In +A)−
1
2 (In + A+B)(In +A)−

1
2 )

= si((In +A)−
1
2 (In +A+B)(In +A)−

1
2 )

= si(In +(In +A)−
1
2 B(In +A)−

1
2 )

= 1+ si((In +A)−
1
2 B(In +A)−

1
2 )

= 1+ si(B
1
2 (In +A)−1B

1
2 )

� 1+ si(B)
= λi(In +B), (9)

for i = 1,2, · · · ,n .
According to inequality (9), there exists an unitary matrix U such that

(In +A)−
1
2 (In +A+B)(In +A)−

1
2 � U∗(In +B)U,

or equivalently,

In +A+B � (In +A)
1
2 [U∗(In +B)U ](In +A)

1
2 . (10)

By Lemma 5 and equality (2), inequality (10) gives

k

∏
i=1

si(In +A+B) �
k

∏
i=1

si((In +A)
1
2 [U∗(In +B)U ](In +A)

1
2 )

�
k

∏
i=1

si((In +A)
1
2 )si(U∗(In +B)U)si((In +A)

1
2 )

=
k

∏
i=1

si((In +A))si(In +B),

for k = 1,2, · · · ,n .
This completes the proof. �
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REMARK 1. Using Lemma 2, we can obtain another different proof of Lemma 6.
Indeed, taking f (t) = log(1+ t) , we get

log(In +A+B) � U log(In +A)U∗+V log(In +B)V ∗

for some unitary matrices U and V . so for each Ky Fan k−norm, the above inequality
gives

‖ log(In +A+B)‖(k) � ‖ log(In +A)‖(k) +‖ log(In +B)‖(k),

which is exactly inequality (8).

Utilizing Lemma 6, we have the following theorem.

THEOREM 1. Let A, B ∈ Mn and f : [0,+∞) → [0,+∞) is a concave function.
Then

k

∏
j=1

s j(In + f (|A+B|)) �
k

∏
j=1

s j(In + f (|A|))s j(In + f (|B|)), (11)

holds for 1 � k � n.

Proof. By Lemma 1, there exists two unitary matrices U and V such that

|A+B|� U∗|A|U +V ∗|B|V.

Since f is a nonnegative concave function, then it is a nondecreasing function. Hence
by the above inequality, there exists an unitary matrix U1 with

f (|A+B|) � U1 f (U∗|A|U +V ∗|B|V )U∗
1 . (12)

By Lemma 2, there exists two unitary matrices U2 and V1 such that

f (U∗|A|U +V ∗|B|V ) � U∗
2U∗ f (|A|)UU2 +V ∗

1 V f (|B|)VV1. (13)

Inequalities (12) and (13) imply

f (|A+B|) � U1U
∗
2U∗ f (|A|)UU2U

∗
1 +U1V

∗
1 V f (|B|)VV1U

∗
1 . (14)

Noting that UU2U∗
1 and VV1U∗

1 are unitary matrices, the desired inequality (11) fol-
lows from the eigenvalue’s monotone theorem for Hermitian matrices and inequalities
(8) and (14).

This completes the proof. �

REMARK 2. It is not necessary to assume that f (t) is operator concave in I. Garg
and J. Aujla’s result [5, Theorem 2.10].

We end this section by giving a new proof to inequality (4).



494 J. ZHAO

THEOREM 2. Let A, B ∈ Mn . Then

k

∏
j=1

s j(|A+B|r) �
k

∏
j=1

s j(In + |A|r)s j(In + |B|r) (15)

holds for 1 � k � n and 1 � r � 2 .

Proof. Since
(

In +AA∗ A+B
(A+B)∗ In +B∗B

)
=

(
In A
B∗ In

)(
In B
A∗ In

)
� 0,

by Lemma 3, there exists a contraction W with

A+B = (In +AA∗)
1
2W (In +B∗B)

1
2

= (In + |A∗|2) 1
2W (In + |B|2) 1

2 .

Thus,
|A+B|2r = [(In + |B|2) 1

2W ∗(In + |A∗|2)W (In + |B|2) 1
2 ]r, (16)

for 1 � r � 2. By equality (16) and inequalities (6) and (7), we obtain

k

∏
i=1

s j(|A + B|2r)

�
k

∏
i=1

si((In + |B|2) r
2 (W ∗(In + |A∗|2)W )r(In + |B|2) r

2 )

�
k

∏
i=1

si((In + |B|2) r
2 )si((W ∗(In + |A∗|2)W )r)si((In + |B|2) r

2 )

=
k

∏
i=1

si(In + |B|2)rsi(W ∗(In + |A∗|2)W )r, (17)

for 1 � k � n .
Since W is a contraction, then

si(W ∗(In + |A∗|2)W ) � si(In + |A∗|2), (18)

i = 1,2, · · · ,n .
Inequalities (17) and (18) imply

k

∏
i=1

si(|A+B|2r) �
k

∏
i=1

si(In + |B|2)rsi(In + |A∗|2)r

=
k

∏
i=1

si(In + |B|2)rsi(In + |A|2)r, (19)
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for 1 � k � n , the above equality holds due to the unitarily equivalent of |A|2 and |A∗|2 .
When r = 2, by inequality (19), we have

k

∏
i=1

si(|A+B|2) �
k

∏
i=1

si(In + |B|2)si(In + |A|2). (20)

for 1 � k � n .
On the other hand, f (x) = x

r
2 (1 � r < 2) is a concave function on [0,+∞) , then

f (x)+ f (y) � f (x+ y) , for x , y ∈ [0,+∞) . It follows that

(1+ s2
i (|X |)) r

2 � 1+ sr
i (|X |), (21)

for X ∈ Mn and i = 1,2, · · · ,n .
Combining inequalities (19) with (21) and noting that si(In + |X |2) = 1+ s2

i (|X |)
( i = 1,2, · · · ,n ) for X ∈ Mn , we get

k

∏
i=1

si(|A+B|2r) �
k

∏
i=1

si(In + |B|r)2si(In + |A|r)2,

or equivalently,
k

∏
i=1

si(|A+B|r) �
k

∏
i=1

si(In + |B|r)si(In + |A|r), (22)

for 1 � k � n and 1 � r < 2.
Thus, the desired inequality (15) follows from inequalities (20) and (22).
This completes the proof. �
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