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THE MULTI-PARAMETER HAUSDORFF OPERATORS ON H! AND L7

DUONG Quoc Huy AND LUONG DANG KY

(Communicated by I. Peric)

Abstract. In the present paper, we characterize the nonnegative functions ¢ for which the multi-
parameter Hausdorff operator .7, generated by ¢ is bounded on either the multi-parameter
Hardy space H'(R x --- x R) or LP(R"), p € [1,o0]. The corresponding operator norms are
also obtained. Our results improve some recent results in [4, 15, 16, 18] and give an answer to
an open question posted by Liflyand [12].

1. Introduction and main result

Let @ be a locally integrable function on (0,e). The classical one-parameter
Hausdorff operator .7, is defined for suitable functions f on R by

Ao = [ 1 (5) 2 a

t t

The Hausdorff operator .77, is an interesting operator in harmonic analysis. There are
many classical operators in analysis which are special cases of the Hausdorff operator
if one chooses suitable kernel functions ¢, such as the classical Hardy operator, its
adjoint operator, the Cesaro type operators, the Riemann-Liouville fractional integral
operator. See the survey article [13] and the references therein. In the recent years,
there is an increasing interest in the study of boundedness of the Hausdorff operator on
some function spaces, see for example [1, 2,4, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19].

When ¢ is a locally integrable function on (0,0)", there are several high-dimen-
sional extensions of 77, . One of them is the multi-parameter Hausdorff operator 3
defined for suitable functions f on R” by

°° * X Xn f,...ly
%f(xl,...,xn):/o /0 f(ﬁ,...,—)w(lit)dtl---dtn.

Iy ...1,

Let ®1) ... @ be C*-functions with compact support satisfying [ @) (x)dx
= = [ ®"(x)dx = 1. Then, for any (f1,...,t,) € (0,00)", we denote

. noq N x;
@@ (x) =] ;cpm (f) . x=(x1,...,0%) ER".
j=1% J
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Following Gundy and Stein [6], we define the multi-parameter Hardy space H' (R x
- x IR) as the set of all functions f € L'(R") such that

”fHH' Rx--xR) ||M<I>fHL1 %

where Mo f is the multi-parameter smooth maximal function of f defined by

Mof(x)=  sup  [f+(@1,®))(x), xeR"

(t15-5tn ) €(0,00)"
REMARK 1.

@ 1l s XR) defines a norm on H!(R x --- x R), whose size depends on the
choice of {®U) but the space H!(R x --- x R) does not depend on this
choice.

(ii) If f isin H!(R), then the function

Jl’

f®---®f(x foj X = (X1,...,%,) € R",

isin H'(R x --- x R). Moreover, there exist two positive constants C;,C, inde-
pendent of f such that

Cl”fH;l.]l(R) < ||f®"'®fHH1(R><--~><R) < CZHf”nHl(R)

In the setting of two-parameter, Liflyand and Méricz showed in [15] that 775 is
bounded on H'(R x R) provided ¢ € L'((0,%)?). In the setting of n-parameter, one
of Weisz’s important results (see [18, Theorem 7]) showed that 7, is bounded on
H'(R x---xR) provided ¢(t1,...,t,) = [T, ¢i(t;) with ¢; € L'(R) forall 1 <i<n.
Recently, in the setting of two-parameter, Fan and Zhao showed in [4] that the condition
¢ € L'((0,)?) is also a necessary condition for H!(R x R)-boundedness of /7, if
¢ is nonnegative valued. However, it seems that Fan-Zhao’s method can not be used
to obtain the exact norm of J7; on H '(R xR). So, in the setting of n-parameter, a
natural question arises: Can one find the exact norm of .7, on H 'R x---xR)? Very
recently, in the setting of one-parameter, this question was solved by Hung, Ky and
Quang [7].

Motivated by the above question and an open question posted by Liflyand [12,
Problem 5], we characterize the nonnegative functions ¢ for which 77, is bounded on
H'(R x --- x R). More precisely, our main result is the following:

THEOREM 1. Let ¢ be a nonnegative function in L .((0,00)"). Then # is
bounded on H'(R x --- x R) if and only if

/ / Oty .. tp)dty -+ - dty < oo. (D)
Moreover, in that case,

”%||H1(R><~-><]R)HH'(Rx~-><R):/0 /0 ¢(t1,...,tn)dt1---dtn.
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Theorem 1 not only gives an affirmative answer to the above question, but also
gives an answer to [12, Problem 5]. It should be pointed out that the norm of the
Hausdorff operator ., ( f(;x’ Jo @(t1,. .. t,)dt; .. .dt,) does not depend on the choice
of the above functions {®{)}"_  moreover, it still holds when the above norm || -

=1
[ (R x...xw) 18 Teplaced by

”fHHl(Rxme) = 2 ”Hef”Ll(R");
ec{0,1}"

where Hef’s are the multi-parameter Hilbert transforms of f. See Theorem 8 for
details.

Also we characterize the nonnegative functions ¢ for which 7, is bounded on
LP(R"), p € [1,e0]. Our next result can be stated as follows.

THEOREM 2. Let p € [1,] and let ¢ be a nonnegative function in L] .((0,)").
Then s, is bounded on LP(R") if and only if

t17 )
/ /o tl 1/,7 11/ ———————dt; -+ dt, < oo. 2)

Moreover, in that case,

1‘1 )
|- = [ [ = T,

Throughout the whole article, we always assume that ¢ is a nonnegative function
in L} .((0,%0)") and denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. The symbol A < B means that A < CB.
If A< B and B S A, then we write A ~ B.

2. Norm of 77, on LP(R")

The main purpose of this section is to give the proof of Theorem 2. Let us first
consider the operator .7 defined by

%* xla <X / /ftlxla tnxn) (tla )dt1~~~dtn~

Studying this operator on the spaces L”(R") is useful in proving the main theorem
(Theorem 1) in the next section.

Remark that 77 = 75 with @(t) = M forall t=(rq,...,t,) € (0,00)".
Hence, by Theorems 1 and 2, we obtain:

THEOREM 3. (" is bounded on H' (R x --- xR) if and only if

/ / U dt1 -dt, < . 3)
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Moreover, in that case,

y Y ° Q(t1,. . tp)
|7 1| ot (R x R)—H (R xR) —/0 /0 ﬁdtl”'dtn.
THEOREM 4. Let p € [1,o0]. Then ¢y is bounded on LP(R") if and only if

(P t17
/ 1/,7 - l/p dt1 -dt, < oo. 4)

Moreover, in that case,
QD tla
H% HLp Rn —LP Rn / / l/p 1/ dtl dtn

By Theorems 2, 4 and the Fubini theorem, ijj‘ can be viewed as the Banach space
adjoint of J7;, and vice versa. More precisely, we have:

THEOREM 5. Let p € [1,00] and 1/p'+1/p=1.

(i) If (2) holds, then, for all f € LP(R") and all g € LV (R"),

| Horsax= [ 1o,

(ii) If (4) holds, then, for all f € LP(R") and all g € L” (R"),

Hy 1)dx = [ 1) A0

Rn
As a consequence of the above theorem, we get the following.

COROLLARY 1. Ler p €[1,2].

(i) If(2) holds, then, for all f € LP(R"),

Hol =],
(i) If(4) holds, then, for all f € LP(R"),

Kyt =Hof.

Proof. We prove only (i) since the proof of (ii) is similar. Moreover, from the
Hausdorff-Young theorem and the fact that L' (R") N LP(R") is dense in L”(R"), we
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consider only the case p = 1. For all y = (yi,...,y,) € R", by Theorem 5(i) and the
Fubini theorem, we get

,%”(,,f / Hop f(X)e XY gx
(x)dx/ / e’2”i27:1’fxfyfqo(t1,...,t,,)dn...dtn

= / / f nyi,.. tnyn) (tl, n)dtl...dln
— %*
This completes the proof of Corollary 1. [

Proof of Theorem 2. Since the case p = oo is trivial, we consider only the case
p € [1,00). Suppose that (2) holds. For any f € L”(R"), by the Minkowski inequality,

we obtain
. ooy
Vot < [ [ (2ot Sty g,
LP(R") tltn

o, )
= flercen |- Atum.lwﬁ i

This proves that .77, is bounded on L”(R"), moreover,

t17 )
|70l Lr (re)—Lr (R / /0 tl l/p. T l/pdtl -dty. (5)

Conversely, suppose that 7, is bounded on L”(IR"). For any € > 0, take

fex)=1] ‘xj‘71/1778%{yjeR:|y_,-\>1}(xj)

J=1

forall x = (x1,...,x,) € R". Then, it is easy to see that f; € LP(R") and

i bl @ty st)
1/p—¢ . oy, stn
Hofe(x II‘X = 0 /o dt"—l/o [A-1/pe tl—l/P—edt”
h ity

for all x = (x1,...,x,) € R". Some simple computations give

1/e 1/e th ot )
Aol > [ [ IWS i i
<+tn

" 1/p
x / x|~ PEdx;
(U (xjeRefx;|>1/e) !

1/8 1/8 t17 ‘7t}’1)
_/ / 1 l/p € tr}—l/p—sdtl.“dt" (SnngeHLP(R"))~
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Therefore,

|7 fe |l Lo(wn)
(| fell o ()

1/e 1/e ety
e [ [ )y,
0 0

1-1/p— 1-1/p—
f /p=e 4 l=1/p=e

70 || Lo gy — L0 (mr) =

Letting € — 0, we obtain

1‘1 )
|- > [ [ i

This, together (5), implies that

tl )
|yl = [ [ = P i S

and thus ends the proof of Theorem 2. [

3. Norm of 7%, on H'(R x - xRR)

The main purpose of this section is to give the proof of Theorem | and to show
that the norm of the Hausdorff operator 7, in Theorem 1 still holds when one replaces
the norm || - [| 1 (g...xg) by the norm || - [|. (see (12) and Theorem 8 below).

Let C' be the upper half-plan in C", that is,

Ct =[I{zj=x;+iy;€C:y; >0}
=1

Following Gundy-Stein [6] and Lacey [9], a function F : C'} — C is said to be in the
Hardy space 7! (C1) if it is holomorphic in each variable separately and

HF||%1(C1) = sup / / F(x1+iy1,...,Xq+iyn)|dxr ... dx, < eo.
(V15--2¥n) € )y =

Let j € {1,...,n}. Forany f € L'(R"), the Hilbert transform H;f computed in
the j variable is defined by

——pV / f'x17 ’ ’ e )dy.

For any e = (ey,...,e,) € E:={0,1}", denote
n o
He:HlH.fl
j=

with H;/ =1 for e; =0 while H;' = H; for e; = 1.
The following two theorems are well-known, see for example [6, 9, 10, 18].
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THEOREM 6. A function f isin H'(R x --- x R) if and only if Hef is in L' (R")

forall e € E. Moreover, in that case,

11l () ~ 2 [Hef Il @n)-
ecE

THEOREM 7. Let F € ! (C%). Then the boundary value function f of F,
which is defined by

St x) = li)m F(x14+iy1,- . %0 +iyn),

a. e x=(xi,...,x,) €ER", isin H'(R x --- x R). Moreover;

11171 (R xry ~ 1l ey = IF 1Ly oy

and, for all X+1iy = (x; +iy1,...,x, +iy,) € C1,
F(x+iy) —/ /f(x —u Xn—U )ﬁLPCA—j)du du
y R - 1 Ly--yitn n v yj 1--- n

j=1
=t f*(®=1P;)(x),
u € R, is the Poisson kernel on R.

where P(u) = 1+17,
In order to prove Theorem 1, we also need the following two lemmas.

LEMMA 1. Let ¢ be such that 5 is boundedfrom H' (R x ---xR) into L' (R")

Then (1) holds.
LEMMA 2. Let ¢ be such that (1) holds. Then:

(i) ¢ is bounded on H' (R x --- x R), moreover,

120l g1 (Rox-. xR) - H1 (R xR) </O /o @1, tn)dty ... diy.
(i) If supp @ C [0,1]", then
1 1
H%HHI(RX.“XR)*)HI(RX.“XR) :/0 /0 (P(l‘l,...,tn)dtl...dtn.
Proof of Lemma 1. Since the function
X
=— R
isin H'(R) (see [7, Theorem 3.3]), Remark 1(ii) yields that
n .
al X = (x1,...,%,) € R,

f®---®f(x>=1'[m7

J=1
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isin H'(R x --- x R). Hence, the function

Xj

Ay (f® -0 f) (x / /°° - 5 2¢(t1""’t")dt1---dtn,

{ >z] t ...ty

X = (x1,...,x,) € R", is in L'(R") since %, is bounded from H!(R x --- x R) into
L'(R"). As a consequence,

t w)dty - dty
|:‘/0 1+y 2 y:l / / (P 15 1
w n 5
:/ dx/ / I1 t G "’t")dt1~~~dzn
) Jo 0 o \2 2 .ty
()

<Ay (f &+ )l gy < o

which proves (1), and thus ends the proof of Lemma 1. [J

Proof of Lemma 2. (i) For any f € H'(R x --- x R), by the Fubini theorem,
Mo (Ao f)(x)

/Rn y/ / " o)) (x— Y)f<y1 - y")%qq)dtl...dzn

X1 Xn (p(ll, Z)
J 1 r]/tj)>< .. )ﬁdh'“dZn

n n

rl7 Jn

for all x = (x1,...,x,) € R". Hence, by Theorem 2,

[ f1l it (rx-xr) = Mo (Ao f)|| L1 (mr)
< o (Mo f)|| 11 ey

< [ [ttty | Mo f s
= [ [ttt f
This proves that /7, is bounded on H! (R x ---x R), moreover,

10| g1 (Rox-. xR) - H1 (R xR) </0 /o @ty tn)dty ... diy. (6)

(ii) Let 6 € (0, 1) be arbitrary. Set @5(t) := @(t)x(s,1»(t) forall t € (0,0)". Then, by
(6), we see that

705 | 1 (R xR)— ! (R xR) / / Qs(t1,.. ty)dty ... d1y,

—/ /(ptl, th)dty ...dty < oo
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and
H’%pfp_%sHH' Rx--xR)—H! (Rx--xR) (7
/ / (t1y. .o tn) — Qg (t1,- .- tn))dty ... dty
= P(t)dt < oo
(0,1]\[8,1]"

For any € > 0, we define the function F; : C'} — C by

L 1
F(er"azl’l): oL N\l+te
€ 1131 (zj+i)l+e

where {11¢ = |¢|1*€ei(1+e)ael for all ¢ e C. Denote by fe the boundary value func-
tion of F, thatis, f¢(x) = limy_oF¢(x+1y). Then, by Theorem 7,

n
i 1
I fell i @) ~ I Fell gy oy = [/ p— s dx] <o, ®)
o /x2+ 1

where the constants are independent of €.
For all z = x+41iy = (x| +iy1,...,X; +iys) = (21,...,22) € C', by the Fubini
theorem and Theorem 7, we get

(Hastsr—1e [ 00t) = (@2, )
By e

+l 1+8 -In

H Z +l 1+8/ / (0F] tl: dtl dtn

j=1

1 1
:/5 /‘; [‘Ps.,z(th...,tn)_¢g,z(l7...,1)](p(t1,...,t,,)dt1...dtn,

€ .
where Q¢ (11,...,t,) = o1 W For any t = (¢1,...,t,) € [0,1]", a simple
calculus gives

|¢87Z(t1"' ’ >_¢€Z( 71)|

n
<mxaﬂ%wmm
s€[0,1] j=1

n -2 -2 n -1
< 2 €d N (I+¢)o 0

- 3 I+e 2 2+4€ H l+e”
j=1 /Xt /X1 llg#l x,%—i—l
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Therefore, by Theorem 7 again,

g1 [ oston

H!'(Rx--xR)

sup oy (%s (fs) —fe /(0700)" (0 (t)dt) * (®?:1Pyj)

(yl,...,y,,)e(O,

1 1
g/ e (. ty)dt L dly X
8 B

86*2 (14—8)5*2 n 5!
2/ [ 11 dy . d.

2+¢€
1/x+ ,/x?—i—l P RVETE

This, together with (8), yields

Hf%pfpa(fs)_fef n Qs (t t’

I el (R r)

N/ /<pr17 b)dty .. diy %

§l-n 85_2fj,<, L e
= 1
£ o ——dx;
j=1 f \/)%IJ% J
1 1
5/ / O(t1,... tp)dty ...dty X
4 1)

0 (1+e)6 1=, 2+1
x Y |ed "+ _ —0
= f—oo 1+Sd'x./

2
,/ijrl

LY (Rm)

H'(Rx-xR)

€))

o + (14 €)572 7, —sdy;

i

as € — 0. As a consequence,

/ /(Pth th)dt ...dty, = / ps(t)dt
(0,02)"

< A | (R xR)— ! (R xR)-

This, together with (7), allows us to conclude that

1 1
||%||H1(RX'~'XR)—>H1(RX'~'XR) 2/0 /0 q)(tlv"'vtn)dtl"-dtn

since limgs_g [ 1jm (5,1 @(t)dt = 0. Hence, by (6),

1 1
H’%pfpHH'(Rx~~xR)—>H1(R><wa) :/O /0 @t tp)dty ... dty.
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This completes the proof of Lemma 2. [J

Now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. By Lemma 2(i), it suffices to prove that

/ / @1, ta)dty .. dty < || A || g1 (R xR)— H (R xR) (10)

provided .77, is bounded on H I(R x -+ x R). Indeed, by Lemma 1, we have

/ /(ptl, ty)dty . ..dty < oo.

For any m > 0, set @, (t) := @(mt)x(,1)2(t). Then, by Lemma 2(i), we see that

_ _ 11
H% jf‘P’”(ﬁ) H'(Rx-xR)—H! (Rx - xR) (i
- H%*‘Pm(%) H!(Rx--xR)—H! (Rx--xR)

g/owu-/om oty,... ty) — (pm<t—l,...,£)}dt1...dtn

Noting that

I

forall f € H'(R x --- x R), Lemma 2(ii) gives

=) oy a0d Ay (g = S f ()

H! (Rx-xR)

= m"(| A, |

| o)

HL(Rx--xR)—H! (Rx--xR)

m/ /qom oo ty)dy .. dty,
:/ /(ptl, ty)dty ... dty,.

Combining this with (11) allow us to conclude that

||%||H1(RX"'XR)—’HI(RXWXR) 2/0 /0 O(t1,...,tp)dty ... dty,

since 1imy—e [ coym (0,mn @(t)dt = 0. This proves (10), and thus ends the proof of
Theorem 1. D

H' (Rx--xR)—H!(Rx--xR)

From Theorem 6, one can define H'(R x --- x R) as the space of functions f €
L'(R™) such that

1£1l = IHef || 1 gy < . (12)

ecE
Our last result is the following:
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THEOREM 8. ., is bounded on (H' (R x ---xR),||-|.) if and only if (1) holds.
Moreover, in that case,

10| (Bt (R xR), ) (! (R xR), 1) / /‘Pfh Stn)dty - diy

and, for any e € E, 5, commutes with He on H'Rx---xR).

In order to prove Theorem 8, we need the following two lemmas.

LEMMA 3. Let ¢ be such that (1) holds. Then, for any e € E, 57, commutes
with the Hilbert transform He on H'(R x --- x R).

LEMMA 4. Let ¢ be such that (1) holds. Then:
(i) H is bounded on (H'(R x ---x R), || - ||+), moreover,

0| (Bt (R xR), )= (! (R xR, 1) / / Q(t1,... tn)dty ... diy.
(i) If supp @ C [0,1]", then
20| (Bt (R xR), )= (! (R xR, 1) / / Q(t1,... tn)dty ... diy.

Proof of Lemma 3. Since Theorem 1 and the fact that H;’s are bounded on H YR x
-+ x R), it suffices to prove
HoHif = Hj Ay f (13)

forall j€ {1,...,n} and all f € H'(R x --- xR). Indeed, thanks to the ideas from
[1, 15, 16] and Lemma (i), for almost every y = (y1,...,yn) € R,

Hgif0) = [ [THF Oty ) .
—/ /—mgntm NSOyt tayn) (11, ta)diy - diy

= (—isigny)) Ao f (y) = Hi Aog f(¥):

This proves (13), and thus ends proof of Lemma 3, since the uniqueness of the Fourier
transform. [J

Proof of Lemma 4. (i) For all f € H'(R x --- x R) and all e € E, by Lemma 3
and Theorem 2, we get

||Hef%p<prLl(R" = ||%HefHLl R")
/ / 0] l‘], dll dtn||Hef||Ll(Rn)~
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This proves that

70 || (b1 (Rt xR), ]2 )— (HT (R xR, ) </O /o Q(t1,... tn)dty ... diy.

(i1) The proof is similar to that of Lemma 2(ii) and will be omitted. The key point

is the estimate (9) and the fact that || - [l ~ || [ g1 (rx..xr) - O

Proof of Theorem 8. The proof is similar to that of Theorem 1 by Lemma 4. We

leave the details to the interested readers. [
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