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Abstract. A theorem of Pompeiu states that the distances from the vertices of an equilateral
triangle to an arbitrary point in its plane can serve as the side lengths of a triangle. A similar the-
orem holds for the medians of any triangle. Generalizations to higher dimensions of Pompeiu’s
theorem are established by M. Fiedler in 1977 and by Gh. Al-Afifi et al in a forthcoming paper.
This paper is concerned with similar possible higher dimensional theorems for the medians.
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