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POMPEIU-LIKE THEOREMS FOR THE MEDIANS OF A SIMPLEX

GHADA AL-AFIFI, MOWAFFAQ HAJJA, AHMAD HAMDAN
AND PANAGIOTIS T. KRASOPOULOS

(Communicated by H. Martini)

Abstract. A theorem of Pompeiu states that the distances from the vertices of an equilateral
triangle to an arbitrary point in its plane can serve as the side lengths of a triangle. A similar the-
orem holds for the medians of any triangle. Generalizations to higher dimensions of Pompeiu’s
theorem are established by M. Fiedler in 1977 and by Gh. Al-Afifi et al in a forthcoming paper.
This paper is concerned with similar possible higher dimensional theorems for the medians.

1. Introduction

A beautiful theorem of Pompeiu states that the distances from the vertices of a
regular triangle to an arbitrary point in its plane form a triangle (in the sense that they
can serve as the side lengths of a triangle). Another beautiful Pompeiu-like theorem
states that the medians of an arbitrary triangle form a triangle. Visual elegant proofs of
these two theorems are depicted in Figures 1 and 2 below. Figure 1, taken from [15,
pp- 89-90] and [10, pp. 5-6], describes a proof of Pompeiu’s theorem when the point P
is inside the triangle. In the figure, A’B”, B'C", and C'A” are parallel to AB, BC, and
CA, respectively, resulting in isosceles trapezoids C"AA"P, A”BB"P, B"CC"P, and
hence in PA = C"A”, PB=A"B", and PC = B"C". Figure 2, taken from [12, §473,
p. 282], describes a proof of the Pompeiu-like medians theorem. In the figure, CX and
B'X are parallel to BA and BC respectively, resulting in parallelograms BB’XA’ and
C'AXC, and hence in BB’ = A’X and CC' = AX .

As shown in [5] and [6], the same proof applies to what are referred to as general-
ized or s-medians; see Figure 3 in Section 3.

This paper is concerned with higher dimensional analogues of these results. In
Section 2, we consider the n-dimensional Pompeiu’s configuration consisting of a reg-
ular n-simplex S of edge length a and an arbitrary point P in its affine hull, and we
describe, in Theorem 1, the two known generalizations of Pompeiu’s theorem pertain-
ing to the distances by,...,b,+1 from P to the vertices of §. We also show, in The-
orem 2, that these two generalizations are equivalent to two inequalities involving the
n+ 1 positive numbers by,...,b, 1. In Section 3, we explore the possibility of obtain-
ing similar generalizations for the medians (and the generalized medians) cy,...,cu+1

Mathematics subject classification (2010): 51M04, 51M16, SIM15, 51M25, 51M20.
Keywords and phrases: Content, facet, generalized medians, simplex, isodynamic simplex, medians,
Pompeiu’s theorem.
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B B’ c C

A’ C

Figure 1: The Pompeiu triangle
(A’,B',C"). Here A’B" || AB,

B'C" || BC, C'A" || CA, Here

A'B", B'C", C'A" are parallel

to AB, BC, CA, resulting in
isosceles trapezoids C"AA"P,
A"BB"P, B'CC"P, and hence in
(PA,PB,PC) = (C"A" ,A"B",B"C").

Figure 2: The median triangle (X,A,A"). Here
CX || BA, B'X || BA, resulting in parallelo-
grams BB'XA’', C'AXC, and hence in BB =
A'X, CC' = AX.

of an arbitrary n-simplex, and we show that one of these generalizations holds, while
the other does not. In Section 4, we investigate the relation between the two general-
izations in Theorem 2, and we prove that one is strictly stronger than the other. We
do this by proving that one of the two inequalities mentioned earlier is strictly stronger
than the other one. We then consider other closely related inequalities, and we establish
relations among them that we expect to be useful in similar contexts. In Section 6, we
consider the question whether other cevians, such as altitudes and angle bisectors, of an
arbitrary triangle form a triangle, and we give references that imply negative answers.

2. Pompeiu’s theorem

As mentioned above, the distances b,by, b3 from the vertices of a regular triangle
T = A1AA3 to a point B in its affine hull form a possibly degenerate triangle 7p, and
that 7y is degenerate if and only if B lies on the circumcircle of 7. To generalize this
to higher dimensions, one would take a regular n-simplex, and consider the distances
bi,...,b,y1 from its vertices to an arbitrary point in its affine hull. Unfortunately,
when n > 2, these distances, being only n+ 1 in number, can in no way serve as the
n(n+1)/2 edge lengths of an n-simplex. To circumvent this dead end, M. Fiedler
came up with a brilliant idea based on the observation that

the three numbers a;, ay, a3 form a triangle

1 1 1
<= the three numbers , , do. (D)
ards aszd; dapap
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Thus letting by,...,b,11 be as above, Fiedler considered the possibility of finding an
n-simplex [By,...,B,1] having the property that

1

B —B:ll =
1B — B/ bib;

forl<i<j<n+l, 2)

and amazingly, he was able to prove that this is the case indeed, i.e., that there exists an
n-simplex [By,...,B,+1] whose edge lengths satisfy (2).

We mention here that an n-simplex [By,...,B, 1] whose edge lengths satisfy (2)
for some positive numbers by,... b, is said to be isodynamic. These simplices are
studied in [3], and are descibed in [8].

Pompeiu’s theorem was also generalized in a different way in [1]. It is proved
there that the distances by, ...,b, 1 can serve as the contents (or (n — 1)-dimensional
Lebesgue measures) of the facets of an n-simplex, This is motivated by the feeling that
both edge lengths and facet contents (or “volumes”) of an n-simplex, n > 3, correspond
naturally to the side lengths of a triangle: Like a side of a triangle, an edge of an n-
simplex is the convex hull of two vertices, and a facet of an n-simplex is the convex hull
of any n of its vertices. For ease of reference, we record the results described above in
the following theorem.

THEOREM 1. Let n > 2, and let S = [Ay,...,Ap1] be a regular n-simplex. Let
ai,...,any1 be the distances from the vertices of S to an arbitrary point P in its affine
hull, and suppose that P is not a vertex of S.

(i) There is a possibly degenerate n-simplex T whose facet contents are ay,...,a,+|.
Also, T is degenerate if and only if n =2 and P lies on the circumcircle of S.

(ii) There is an n-simplex By, ...,B,1] whose edge lengths are given by

1
||B,‘—Bj|| = —forl <l<]<l’l+1
aa;

Proof. Part (i) is proved in [1], and Part (ii) is proved by M. Fiedler in [3]. [

Tests for deciding whether given positive numbers by,...,b,41 satisfy conditions
(1) and (ii) in Theorem 1 above are given in the next theorem.

THEOREM 2. Let ay,...,ay+1, 1 =2, be given positive numbers, and let

L=a1+ - +apt1, ///za%—l—---—f—airl, ﬂza‘f—l—---—f—aﬁﬂ. 3)
(i) There is an n-simplex whose facet contents are ay,...,a, if and only if
n+1

H(.i” —2a;) > 0, or equivalently £ > 2a; for | <i<n+ 1. 4
i=1
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(ii) There is an n-simplex By, ...,B,.1] whose edge lengths are given by
1 .
|Bi —Bj|| = forl<i<j<n+l1
a;a;
if and only if
M —n N > 0. (5)

Proof. The first statement (i) was proved by L. Gerber in [4], and was later re-
proved by S. Izumi in [11]. The second statement (ii) was proved by M. Fiedler in [3].
It also appears as the middle statement of [7, Theorem 7.1 (b)] in a slightly altered form,
namely, there exists a d-simplex [By,Ba,...,Bay1] such that |B; — B,||> = B;B; if and

only if
1 1\’ 1 1
— it —) —d|l =+ |>0. O
(Bl Bas1 ) (Bf Bi. )

Finally we find it convenient to introduce concise terms to describe properties (i)
and (ii) of Theorem 2.

DEFINITION 1. We say that the positive numbers by,...,b,+1 have the Fiedler
property if there exists an n-simplex [Bi,...,B,41] for which (2) holds. We say that
they have the Gerber property if there exists an n-simplex whose facet contents are
bl,...,bn+1.

Thus the results in [3] and in [ 1] say that the distances from the vertices of a regular
n-simplex, n > 2, to an arbitrary point in its affine hull have both the Fiedler and Gerber
properties. Notice that when n = 2, then the two properties are equivalent by (1).

3. Pompeiu-like theorems for the medians of an n-simplex

As mentioned earlier, and referring to Definition 1, the lengths of the medians of
an arbitrary triangle have the Gerber property, i.e., can serve as the side lengths of a
triangle. This is true of what have been referred to as the s-medians (or generalized
medians). These are defined for triangle ABC and s € R to be the cevians AAs, BBy,
and CCy, where Ag, By, and C; are the points on the sidelines BC, CA, and AB that
divide the sides BC, CA, and AB in the ratio s : 1 —s. A proof of the fact that the
lengths of the s-medians form a triangle is depicted in Figure 3 below. Notice that
when s = 1/2, the s-medians are nothing but the medians.

In view of the above and in view of Theorem 1, it is natural to ask whether the
medians of an n-simplex, n > 2, have the Fiedler and/or Gerber properties. It is also
natural to define higher dimensional analogues of the notion of s-medians, and to de-
cide whether these analogues have the Fiedler and/or the Gerber properties. All of these
questions are answered below. Analogues to triangles’ s-medians are the u-medians
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A

DA

B A C

Figure 3: The s-median triangle (X,A,Ay).

defined for n-simplices for all n > 2 in definition 2, and Theorem 3 proves that the

u-medians, and hence the medians, of any n-simplex, n > 2, have the Gerber property.
Example 1 shows that the medians of an n-simplex, n > 2, do not necessarily have the
Fiedler property.

DEFINITION 2. Let u = (uy,...,u,), where uy,...,u, >0 and u; +---+u, = L.
For an n-simplex S =[Ay,...,Ayt1],and any 1 < j<n+1, we let

n
A=Y wAj, (6)
k=1

where indices are significant up to their values mod n + 1. The cevians A jA’j, 1<j<
n+1, are called the u-medians of S. When n =2, and when u = (s,7) = (s,1 — ),
the u-medians of S were studied in [5] and [6], where they were called s-medians, and
where they were proved to qualify as the side lengths of a triangle.

THEOREM 3. The lengths of the u-medians of any n-simplex, n > 2, can serve
as the facet contents of an n-simplex.

Proof. 1t follows from (6) that

n

n n
Uj=Aj=A; = Youdj— Y wmA; = Y u(Aji—A;).
k=1 k=1 k=1
Adding over j, we obtain

};iUf:}il(iuk(Aﬁk— )) i(ifAHk §A>

=1 \k=1 k=1

O)Mk =0.

=~
HM:
—_

Therefore
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and hence
[Unall = 11 X Ul < X103,
j=1 j=1
where the inequality here is strict because Uy, ...,U, are not collinear. Thus
n+1
20| Unsall < X UG-
j=1
Similarly
n+1
20Ul < X 11l
j=1

forevery k =1,...,n+ 1. Therefore the lengths ||[A; — A, 1 <k <n-+1, can serve
as the facet contents of an n-simplex, as desired. [

COROLLARY 1. The lengths of the medians of any n-simplex, n > 2, can serve
as the facet contents of an n-simplex.

Thus the medians (and the generalized medians) of an n-simplex satisfy the Ger-
ber property. The next example shows that they do not necessarily satisfy the Fiedler

property.

EXAMPLE 1. We now give an example of an n-simplex having medians of lengths
ajy,...,ap+1 such that there does not exist an n-simplex [By,...,B,+1] whose edge
lengths are given by

|B:— Bj|| = forl<i<j<n+1l (7)

a;a;

Let eyq,...,e, be the standard basis of the Euclidean space R", i.e., ¢; is the vector
whose i-th coordinate is 1 and whose other coordinates are 0. Let x be a positive
number, and let the n-simplex T = [A},...,A,+] be defined by

Aj=xeifor 1 <i<n, Apr1=—-A1—---—A,.

Thus the centroid of T is the origin, and the centroid M;, 1 <i< n+ 1, of the i-th

facet is given by
1 n+1 —A:
M,-:—( D Aj> = 1 (8)

J=Lj#

Also ||A;|| =x if 1 <i<n,and ||A,11]| = Vnx?. Therefore the lengths a;, 1 <i<
n+ 1, of the medians A;M; are given by
x(n+1) . .
nl —— if1<i<n,
Al = 9
Mot DV i — oy 1.

ai = [|Ai —Mi|| = "
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Hence we have

n? n

Mi=d A+ tad, = (

Hn+1)* xn+1)
ﬂ::a?+...+ai+1:<¥> (n+n2) — ( ) )

n n3

xz(n+1)2>(n+n) 2x2(n+1)2.

Wk — 4x4(n—|—1)4_x4(n+1)5 B *n+1)*3—n)

n2 n2 n2

Thus .#% —n.# <0 for n >3, and therefore there does not exist an n-simplex
[Bi,...,Byt+1] whose edge lengths satisfy (7).

4. Relation between the Fiedler and Gerber properties

It is natural to ask whether any of the Fiedler and Gerber properties implies the
other. We know from Corollary 1 and Example 1 that the Gerber property does not
imply the Fiedler property, and therefore we ask whether the Fiedler property implies
the Gerber property. In view of Theorem 2, this is equivalent to asking whether the
inequality (5) implies inequality (4). An affirmative answer is given in Theorem 4
below.

THEOREM 4. Let ay,...,a,+1, h =2, be positive numbers, and let L, M ,. NV be
defined as in (3), i.e., by

L=ai+ - tan, #=ai++ai,, N=d+ - +dl., (10)

Consider the inequalities (4) and (5), i.e., the inequalities

n+1
H($—2ai) > 0, orequivalently & > 2a;for1 <i<n+1, (11)
i=1

M*—n N > 0. (12)

If n =2, then (12) and (11) are equivalent. If n > 3, then (12) implies (11), but (11)
does not imply (12).

Proof. We find it convenient to introduce the auxiliary inequalities
L —nitl >0, (13)

Jr
H(/// 2a?) > 0, or equivalently .2 > 2a? for | <i<n+1, (14)

i=1

and prove a little more than what is required. Precisely, we prove the implications in
the table
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[A] | n=2, | (14) = (1]1) <= (12) = (13)
[B] | n>=3, | (12) = (13) = (11)
[C] | n2>=3, | (11)doesnotimply (12)

Table 1.

We divide the proof into steps for convenience.

Step (A). The implications in [A] follow from the facts that

(11) <= ay, ap, a3 form a triangle
(12) <= ay, ay, a3 form a triangle

(13) <= /a1, \/az, /a3 form a triangle

(14) <= a%, a%, a% form a triangle,
and the equivalences

ai, az, a3 form a triangle <= ,/ay, \/a», \/a3 form an acute triangle,
a%, a%, a% form a triangle <= ay, a,, az form an acute triangle.

The implication = in (16) follows from the simple implications

X2 +y* > 72 = x+y > z (by squaring),
2422

x? —|—y2 > 7% = cosZ, being nothing but il >
Xy

, 1 positive.

5)
(16)

The implication <= follows similarly from the law of cosines. The equivalence <=

in (15) follows from that in (16).

Step (B-1). Here, we prove the first implication in [B]. We shall show that if n >3

(and in fact if n > 2), and if (12) holds, then (13) holds. For this, let

Then we are given that
2

. S
S% > nSy, 1.e,n < —27
S4
and we are to prove that
. 53
S% >nSy, ie,n < -1
AY)

It is clearly sufficient to show that

2 < e, S5 <818,
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But the last inequality follows from the log-convexity of S, since (2)(3) = (1)(2) +
(4)(1); see [2, (2), p. 213].

Step (B-2). For the second implication in [B], we suppose that n > 3, and that
(13) holds. We are to prove (11). Notice that (11) is equivalent to saying that

L —2a; >0forl <k<n+1.
We start with the case n > 4. It follows from (13) that & > Vn , and therefore
L —2ar > N'nM —2a
for all k. Thus to show that .Z > 2a; > 0, it suffices to show that \/n.# > 2a;. But

n+l n+1
vn >2ak<:)n2a > 4a; = n D a? > (4—n)az,
i=1 i=1,i#k

which clearly holds since n > 4. Thus .Z — 2a; > 0 for all k, as desired.

Next consider the case n = 3, and suppose that (13) holds. Rename ay,...,a4 as
x,y,z,w. Then by symmetry it is sufficient to show that y+ z+w > x. This follows
from the following simplifications:

(x+y+z4+w)? > 32 +y*+22+w?), by (13)
2x(y4+z+w) +2(vz+zw+wy) > 2(% +y* + 22 +wh),
2x(y+z+w) —2x > 2(y* + 22+ w?) —2(yz+ 2w+ wy)
= (-2 +@—w’+w-y)’
> 0.
Therefore 2x(y +z+w) — 2x2 > 0, and hence y+z+w > x, as desired. Hence (13)
implies (11).

Step (C). For [C], we shall construct an example where (11) holds, while (12)
does not. For this, we consider the family of examples (aj,...,a,+1) given by

ai=ay=-,a,=1, ayy1 =x,
where x > 0. For such examples, it is easy to see that

(11) is equivalent to x < n and (12) is equivalent to x < 2”1 .

Thus to show that (11) does not imply (12), it is sufficient to find x > 0 such that x < n

but x > 1/2n/(n—1). This is possible if and only if n > 1/2n/(n— 1) which in turn

holds if and only if n > 3. In fact,

2n

n>
n—1

= nn—-1)>2 <= n*-n-2>0
— (n—-2)(n+1)>0 <= n>2.

This completes the proof of the theorem. [
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REMARK 1. It follows from Theorems 4 and 2 that the existence of an n-simplex
U =[Uy,...,U,1] having the property that

1
|U—Uj||= —for 1 <i< j<n+1
a,-aj

implies the existence of an n-simplex W = [W),..., W, 1] having the property that
content of the i-th facetof W =gq; for1 <i<n—+1,

but not conversely (unless n = 2). In particular, this shows that the condition (ii) in
Theorem 1 is strictly stronger than (i) (for all n > 2). This also shows that Fiedler’s
result in [3] is strictly stronger than the result of Al-Afifi et al in [1] (for all n > 2).

REMARK 2. One can also show that the assumption, made in Theorem 1, re-
garding P lying in the affine hull of § is redundant. To see this, assume that § =
[A1,...,Apt1] is a regular n-simplex that lies in R™ for some m > n > 2, and that
P € R™. Without loss of generality, we may assume that P is not in the affine hull
of S. Let H be the affine hull of {P,Ay,... A1}, and let V = [Ag,Aq,...,Au11]
be a regular (n+ 1)-simplex in H. That such a V exists follows by taking a regular
(n+1)-simplex W = [Ty, Ti,...,T+1] in H, identifying A;, 1 <i< 1, with T}, and
then setting Ag = Tyy. By Theorem 1(ii), there is an (n+ 1)-simplex [Bo,Bj,...,By+1]
with

IBi—Bjl| = —— for0<i<j<n+l,
a,-aj
where ag = ||P — Ay||. Restricting attention to the n-simplex [By,...,By 1], it is obvi-
ous that
HB,'—BJ'HZ f0r1<i<j<n+l.

a;a;
Thus, referring to Theorem 1, (ii) holds, and hence (i) holds.

5. More related inequalities

Our main goal in the previous theorem was to establish the implication (12) =
(11). Along the way, we established several other implications among the inequalities
(11), (12), (13), and (14). In the next theorem, we establish all the possible remaining
implications.

THEOREM 5. Let ay,...,ay+1, n =2, be positive numbers, and let L, # , N
be as given in (10). Consider the inequalities (11), (12), (13), and (14) introduced in
Theorem 4 and its proof. Then the implications in the following table hold.

For
n=2 | (14) = (11) <= (12) = (13).
n=3, | (12) = (13) = (11).
n>3, | (12) = (14) = (11).
n=6, | (13) = (14).

Table 2.
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None of the remaining implications hold. More precisely,

(11) does not imply (13).

(13) does not imply (11).

(12) does not imply (14).

(11) does not imply (14).

(13) does not imply (12).

(11) does not imply (12).

(14) does not imply (13).

(14) does not imply (12).

For
(1) | n>3,
(2) | n=2,
(3) | n=2,
4) | n=2,
(5) | n>2,
(6) | n=3,
(7) | n=3,
(8) | n=3
©) [n<5

(13) does not imply (14).

Table 3.

549

Proof. The first two rows of Table 2 are included in Theorem 4. The implication
(14) = (11) in the third row follows from the simple fact that if a,% < a% +- a,%,
n>2,then a,4+| <a;+---+a,. The implication (12) = (14) in the third row follows
from the implication (13) = (11) that was proved in Theorem 4. Thus it remains to

prove the implication in the last row, i. e., (13) = (14) for n > 6.

So suppose that n > 6 and that (13) holds. We are to show that (14) holds. Let us

assume (without loss of generality) that ay,...,a,+| are in ascending order, and let us
put
ai=yifori=1,...,n, and a,.| = x.
Thus
VIS Sy S
We also set

A=y14+yn B = i+ -+,
and we recall the arithmetic-quadratic means inequality

A
— <
n

/B
—, ie., A’ < nB.
n

We also note that (14) is equivalent to saying that

B > x°.

7)

(18)

We proceed by contradiction. Thus we suppose that (14) does not hold, i.e., that

B<x2,

and we show that .£2 —n.# < 0. This is done as follows.
L —nl = (x+A)? —n(x*+B)

INCINCIN N

)
(1 —n)x*+2Ax+ (A>—nB)
(1 —n)x*+2xVnB (by (17))
(1 —n)x®+2xVnx? (by (19))
(1 —n+2yn)x?
0, (because n > 6 and hence 1 —n+2/n < 0).

19)
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The last step follows from the simple implications
l-n4+2yn<0<=4dn<(n—1> < n*—6n+1>0,
n>6=—=n*—6n+1=(n-3>-8>9-8>0.

It remains to give counterexamples that support the last set of statements. The
following one-parameter family of counterexamples (aj,...,d,+1), where

ay=ay="-,a,=1, a1 =x,

and where x > 0 will suffice for almost all our claims. For such examples, it is easy to
see that
(11) is equivalent to x < n,

2
(12) is equivalent to x < _nl ,
n—
2n
-1’
(14) is equivalent to x < \/r_z

(13) is equivalent to x <

We now consider each row of Table 2 separately.

(1) If n >4, take an x such that 2n/(n—1) < x < n. This is possible because
2n/(n—1)<n,ie., 3 <n.If n=23, take the example (1,1,5,5).

(2) For n =2, (13) and (11) are equivalent to x < 4 and x < 2, respectively, and
(x < 4) does not imply (x < 2).

(3) For n=2,(12) and (14) are equivalent to x < 2 and x < V2, respectively, and
(x < 2) does not imply (x < V2).

(4) For n > 2, (11) does not imply (14) because (x < n) does not imply (x < y/n).

(5) For n > 2, (13) does not imply (12), because (x < 2n/(n— 1)) does not imply
(x < y/2n/(n—1)). This in turn follows from 2n/(n—1)=2+2/(n—1) > 2.

(6) If n > 3, then (11) does not imply (12), because (x < n) does not imply (x <
\/2n/(n—1)). This in turn follows from the fact that

2n
n—1

nx

—nn-1<2 n—n—-2<0

<— (n-2)(n+1)<0 <= n<2.

(7) For n > 6, (14) does not imply (13), because (x < y/n) does not imply (x <
2n/(n—1)). This in turn follows from 2n/(n— 1) < /n (for n > 6). In fact,
2n
n—
For n =3, take (ay,...,a¢) = (1,2,3,4,5,6).
For n =4, take (ay,...,as) =(1,1,3,4,4).

1<\/ﬁ<:>4n<(n—1)2<:)n2—6n+1>0<:)n>6. (20)
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For n =3, take (ay,...,as) = (1,1,4,4).

(8) (14) and (12) are equivalent to x < \/n and x < /2n/(n— 1), respectively. If
n >3, then n > 2n/(n— 1), and therefore (14) does not imply (12). For n = 3, take
the example (1,1,5,5).

(9) For n < 6, (13) does not imply (14), because (x < 2n/(n— 1)) does not imply
(x < +/n). This in turn follows from 2n/(n— 1) > /n (for n < 6), which can be proved
in a way similar to (20). O

6. Other cevians

The Pompeiu-like theorem for medians and generalized medians for a triangle
may give the false impression that Pompeiu-like theorems hold for the other classical
cevians, namely, the altitudes and the angle bisectors of a triangle. This is obviously
false for altitudes, since the altitudes %; of a triangle with side lengths @; and area K
are given by h; = 2K /a;, and since the inequalities a; + ay > a3, etc., do not imply
the inequalities h; + hy > h3, etc., as seen by the example (ay,az,a3) = (1,1,c¢), with
¢ < 2. It may turn out to be interesting to find geometric characterizations of triangles
whose altitudes form a triangle.

The question whether the (lengths of the internal) angle bisectors of a triangle
form a triangle is much more interesting and has an unexpected answer. It turns out that
given any three positive numbers by,b,,b3, there is a triangle whose angle bisectors
have lengths by,b;,b3; see [13], [14], and [9]. This answers in the strongest terms the
question whether the angle bisectors of an arbitrary triangle form a triangle. It also
gives rise to the question whether triangles whose angle bisectors form a triangle have
a geometric characterization.
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